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Abstract—Social media, a vast platform for communication
and entertainment, unfortunately, is an ideal breeding ground
for cyberbullying. While most common among teenagers, it also
affects other demographics. Despite strict zero-tolerance policies
on social media, the elusive nature of cyberbullying persists.
Simple word searches are insufficient, leading to the exploration
of Natural Language Processing (NLP) to detect and classify
cyberbullying. This study balances result accuracy with model
simplicity, crucial for an effective detector. Quick identification
of offensive content is essential to combat cyberbullying. The ever-
changing slang and trends require an easily updatable detector.
Using a cyberbullying dataset from real tweets on X (formerly
Twitter), this study initially applies traditional machine learning
algorithms, including Logistic Regression, Support Vector Ma-
chines, Decision Trees, and Random Forests. The investigation
then moves to Transformers-based autoencoders from the BERT
family, including sentence-transformers. However, these models
require significant memory and disk space due to their large num-
ber of training parameters. The study focuses on the efficiency
of cyberbullying detectors using character-level language models
based on the bidirectional long-short-term memory (BiLSTM)
neural architecture. Our experiments demonstrate that these
detectors offer comparable performance and provide a practical
option for real-world deployment.

Index Terms—Cyberbullying, natural language processing, text
classification, machine learning

I. INTRODUCTION

In the digital age, social media platforms offer unparalleled

communication opportunities but also enable the alarming

rise of cyberbullying [1]. As people increasingly express

themselves online, cyberbullying, defined as using electronic

communication to harass or intimidate, threatens digital well-

being [2]. The intersection of technology and empathy pro-

vides hope [3]. The term ’bully’ originates from the 1500s,

involving an intimidator and a victim [4]. Bullying, a way to

gain power or superiority, is considered an instinctual survival

trait, with various tactics learned from early ages persisting

into adulthood, impacting others negatively [5]. With the

evolution of technology and the Internet’s ubiquity, Web 2.0

platforms facilitate social media growth. Datareportal’s April

2023 Global Overview [6] shows over half the world (4.80

billion) uses social media, with around 150 million new
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users in the past year. The shift to cyberbullying has been

facilitated by the distance and anonymity social media offers.

Despite being a complex social phenomenon, comprehensive

classification of cyberbullying remains an ongoing challenge

[7]. The study in [8] identifies the following main categories

of cyberbullying:

Trolling – Posting provocative messages to bait the victim for

an emotional response.

Harassment – Sending threatening or harassing messages.

Cyberstalking – Stalking others’ information for false accu-

sations, monitoring, identity theft, threats, or data destruction.

Masquerade – Using a fake profile to cyberbully under

another identity.

Flaming – Using vulgar language to provoke someone

Denigration – Unfairly criticising someone online by spread-

ing damaging gossip and rumours.

Apart from classifying cyberbullying by attack types, it can

also be categorised based on content, which is crucial for

identifying the crime and determining appropriate countermea-

sures. Examples include attacks on religious, ethnic, or age

groups. These categories evolve with society, making cyber-

bullying a complex phenomenon and cyberbullying classifica-

tion a difficult task. To address this, labelled datasets have been

proposed [9] with offensive content-based categorisations.

The rise of machine learning and natural language process-

ing (NLP) has enabled automated detection and classification

of cyberbullying in recent decades. Early methods [10] focused

on using social information and textual characteristics to

identify cyberbullying. As machine learning advanced, more

sophisticated systems were developed. For instance, [11] used

the Levenshtein algorithm for word detection and Naive Bayes

for classification, but faced computational challenges. [12] em-

ployed fuzzy SVM for data augmentation and semi-supervised

tweet classification. Meanwhile, [13] proposed collaborative

tweet analysis for improved efficiency, outperforming sequen-

tial methods in 7 of 15 cases. Building on this, [14] intro-

duced a probabilistic fusion paradigm considering confidence

ratings and various social and textual factors. With the rise of

deep neural networks, many systems using deep learning for

cyberbullying detection and classification have emerged. For

example, [15] introduced a method that enhances Twitter cy-
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berbullying detection by using word vectors to preserve tweet

semantics, bypassing traditional feature extraction. An optimi-

sation algorithm fine-tuned the parameters of a convolutional

neural network (CNN) for optimal results. Another study, [16],

employed a multi-layer CNN. Additionally, modern neural

architectures have been explored for cyberbullying detection

across different languages [17]–[19].

To improve multi-classification performance in cyberbully-

ing detection, recent systems often use hybrid algorithms. A

study in [19] explored eleven classification algorithms and

seven feature extraction methods across two datasets, high-

lighting the effectiveness of attention models and bidirectional

neural networks. Logistic regression was the most efficient

traditional classifier, and Term Frequency-Inverse Document

Frequency consistently achieved high accuracy. However, deep

neural networks generally outperform traditional methods.

Another study [20] used Large Language Models (LLMs) and

traditional classifiers to identify and classify two prominent

cyberbullying types—personal assaults and hate speech—on

platforms like Twitter and Wikipedia. Building on this re-

search, the study in [7] introduces and compares two cyberbul-

lying detection architectures. The first is an ensemble model

using a CNN for feature extraction and an SVM classifier.

The second employs a pre-trained BERT model. A system-

atic review [21] highlights persistent challenges in leveraging

machine learning for cyberbullying detection, including multi-

language platforms and underexplored areas in unsupervised

learning. The complex and evolving nature of cyberbullying

continues to challenge even advanced machine learning algo-

rithms. An open question remains: whether traditional machine

learning, deep learning like Transformers-based models, or

pre-trained LLMs offer the best balance between reliability

and simplicity.

In light of these considerations, the present study presents a

comparative analysis of four traditional machine learning mod-

els and four Transformers-based models for classifying tweets

into six cyberbullying classes. We also investigate character-

level language models, which have shown comparable perfor-

mance to Transformers in tasks like Named Entity Recognition

[22]. We approach cyberbullying detection as a classification

problem using a balanced dataset and evaluate multiple lan-

guage models. Our analysis shows that character-level lan-

guage models are efficient due to their bidirectional context

capture and comparable performance to larger Transformer-

based models, which increase computational costs. We report

accuracy, macro- and weighted-F1 scores, and apply ensemble

learning to assess the collective impact of diverse algorithms.

The remainder of this article is organised as follows. Section

II details the dataset and the cyberbullying classification sys-

tem. Section III presents our comparative results, and Section

IV concludes and discusses potential future work.

II. CYBERBULLYING CLASSIFICATION

This section outlines the methodology to detect cyberbully-

ing tweets from X (formerly Twitter) using a mixed-method

approach combining qualitative and quantitative analysis. We

use a publicly available dataset from the Kaggle platform for

cyberbullying detection. This dataset provides 51, 718 tweets

categorized into various forms of cyberbullying, and non-

cyberbullying tweet instances. We use different approaches,

such as traditional machine learning algorithms combined

with TF-IDF and Count vectorization, fine-tuning pre-trained

Transformers-based models, and pre-trained character-level

language models. We conduct classification experiments to

identify the best approach and comprehensively evaluate vari-

ous language models on the same dataset. We aim to identify

the most efficient approaches and train robust models for

cyberbullying detection.

The dataset in [9] presents a slight imbalance in data with

Religion 16%, Age 16%, Gender 16%, Ethnicity 15%, other

cyberbulling 15%, and not cyberbullying 22%. ML methods

work under the assumption of a balanced distribution of data,

which is not the case with real-world data. Thus, we used the

RandomUnderSampler operator to rebalance the dataset.

We further divide the data into training (70%), development

(15%), and test (15%) sets.

For the ML algorithms, we use TfIDFVectorizer,

removing English stop words, with a 1-gram range and a vo-

cabulary size of 10, 000. These vectors are used by traditional

ML algorithms in training with labels in a supervised setting.

Pre-trained language models based on Transformers use their

own tokenizers to split raw text into tokens at the subword

level, based on a set vocabulary from the pre-training corpus.

In contrast, character-level language models use a simple

character-level vocabulary from the monolingual corpus used

for pre-training, avoiding the need for complex tokenization

like Transformers.

A. Experiment Setup

In our experiments, we group methods from the same

paradigm into three settings. The first explores traditional

machine learning-based methods. The second focuses on

Transformer-based pre-trained language models, and the third

uses Flair’s character-level language models. We limit our

investigation to pre-trained language models and exclude au-

toregressive decoder-based LLMs, which generate text rather

than class labels.

1) Traditional Machine Learning algorithms: Initially, we

employed four traditional machine learning algorithms for

classification: Support Vector Machine (SVM), Logistic Re-

gression (LR), Decision Tree (DT), and Random Forest (RF).

SVM is a robust classifier known for its sparse approach,

kernel method, and maximum margin separation [23]. LR is a

standard algorithm used for classification. DT uses a recursive

or iterative division of the instance space to construct a rooted

tree with nodes and leaves [24]. RF, capable of handling

both regression and multiclass classification, offers a built-in

estimation of generalisation errors and allows for measurement

of variable importance [25].

2) Pre-trained Transformers-based Langauge Models: In

this setting, we employ attention-based Transformer models,

also known as autoencoders, which contextualise token and
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sentence representations within sentences and snippets [26].

We choose Transformer encoders for their superior perfor-

mance and shorter training times compared to recurrent net-

works [27]. BERT, or Bidirectional Encoder Representations

from Transformers, is a pre-trained language model designed

to create bidirectional representations from unlabelled text, en-

abling the construction of state-of-the-art models with minimal

modifications [28]. Given the cost and complexity of operating

large-scale pre-trained models, DistilBERT offers a smaller,

60% faster, and more efficient alternative, retaining 97% of

BERT’s language understanding capabilities [29].

RoBERTa is a refined version of BERT designed to address

its limitations, such as cost and restricted tuning. It improves

upon BERT by removing the next sentence prediction objec-

tive, using longer sequences, and adapting the masking pattern

during training [30]. Albert-base, on the other hand, enhances

performance through two parameter reduction techniques: fac-

torised embedding parameterisation, which splits the large vo-

cabulary embedding matrix to allow for increased hidden size

without adding parameters, and cross-layer parameter sharing,

which prevents parameter growth with network depth [31]. We

also employ Sentence-BERT (SBERT), a pre-trained network

using Siamese and triplet structures to generate semantically

meaningful sentence embeddings compared using cosine sim-

ilarity [32]. It offers faster results than BERT or RoBERTa for

finding related or semantically similar sentences. However, the

speedup varies based on factors like the task, dataset size, and

computational resources. While SBERT is quicker, RoBERTa

may offer better accuracy in certain tasks [33]. Thus, the

model choice depends on project needs, prioritising speed or

accuracy. We use the all-mpnet-base-v2 model from SBERT

for its reported performance.

3) FLAIR: Fast & Lightweight Analysis and Identifica-
tion of Named Entities and Linguistic Relations: Akbik et

al. [34] introduced a character-level language model in the

FLAIR framework (https://github.com/flairNLP/flair). These

Long Short Term Memory (LSTM) networks rival Transform-

ers in performance [35]. Durining pre-training, each LSTM

predicts a 256-character sequence, addressing long-term de-

pendency issues in Recurrent Neural Networks (RNNs). In

this study, we use the Bidirectional Long Short Term Memory

(BiLSTM) architecture from the multi-X and news-X-fast

pre-trained models. The multi-X model supports multiple

languages, and news-X-fast is trained on general domain

English data. FLAIR provides Pooled embeddings, enhancing

token-level information during training. We also experiment

with Stacked embeddings, combining Transformers-based and

FLAIR-based character-level model embeddings. We choose

the best Transformers-based model to stack with both multi-X

and news-X-fast to assess performance. These models capture

the context of each character, enabling a nuanced understand-

ing of language. Pre-trained models like multi-X and news-X-

fast conserve computational resources by leveraging existing

learned representations rather than training from scratch, with

significantly less storage and processing time compared to

Transformers-based models.

B. Training and Hyperparameters

In the first setting, we use traditional ML algorithms (SVM,

LR, DT, and RF). LR is trained with the regularisation

parameter C set to 2.0, and SVM uses a linear kernel with C at

1.0. Training these ML models on the vectorised data finished

within 30 minutes each. For ensemble learning, we employ a

majority voting approach. We use HuggingFace APIs to access

pre-trained language models and fine-tune each autoencoder

model, conducting experiments on a GPU with 16 GB VRAM.

We used a batch size of 16 and weight decay of 0.01. Fine-

tuning runs with DistilBERT, Roberta-base, Albert-base-v2,

and All-mpnet-v2 took about 3 hours each, totalling 12 hours.

Using pre-trained character-level embeddings, we trained an

LSTM classifier with a 512 hidden layer size, a learning

rate of 5e-05, and a mini-batch size of 64, training over 50

epochs with early stopping. We used the same hyperparameters

with the better-performing character-level model for Pooled

embeddings. The mini-batch size was reduced to 16 for

Stacked embeddings due to memory constraints.

III. RESULTS AND ANALYSIS

To evaluate the effectiveness of the proposed models for

cyberbullying detection, we use the F1 score as the primary

metric. For each experiment, we discuss the accuracy, macro

averaged F1 (F1macro) and weighted average F1 (F1weighted).

Table I displays results achieved by the models under con-

sideration. LR performs best with a macro-F1 of 0.84. While a

majority voting ensemble matches this, LR is preferable for in-

dividual performance. SVM is close but has a lower weighted

average and accuracy. LR and ensemble models show the

highest results and require further monitoring with more data.

DistilBERT, Roberta-base, and Albert-base-v2 achieved top

accuracy scores of 0.85, 0.86, and 0.85, respectively. The all-

mpnet-base-v2 model performed lowest with 0.83 accuracy,

0.84 macro average, and 0.83 weighted average. Combining

the top three Transformers-based models in an ensemble

yielded the highest accuracy of 0.86 among both ML and

Transformers-based models.

Character-level FLAIR framework models, multi-X and

news-X-fast, show strong performance comparable to Trans-

formers (Table I). Individually, they may not surpass some

traditional machine learning algorithms. While TF-IDF doesn’t

capture context, character-level embeddings do. When token-

level information is pooled and concatenated, their perfor-

mance matches Transformers. FLAIR Stacked embeddings of

DistilBERT with multi-X achieved 0.83 accuracy, with macro

and weighted averages of 0.84 and 0.83. Overall, Pooled

Flair embedding with multi-X exhibits the highest accuracy

and weighted average. Model sizes differ by a factor of

five between character-level models and Transformers-based

models. Inference time on the test set varies by a factor of

two. Stacked models are around twice the size of Transformer-

based models without justified performance.
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TABLE I
QUANTITATIVE RESULTS OF CYBER-BULLYING DETECTION

Traditional ML Model Accuracy F1macro F1Weighted

Logistic Regression (LR) 0.83 0.84 0.83

Support Vector Machine (SVM) 0.82 0.84 0.82

Decision Tree (DT) 0.79 0.81 0.79

Random Forest (RF) 0.78 0.80 0.78

Ensemble Learning 0.83 0.84 0.83

Transformer-based Language Model Accuracy F1macro F1Weighted

DistilBERT 0.85 0.86 0.85

Roberta-base 0.85 0.86 0.85

Albert-base-v2 0.85 0.86 0.85

All-mpnet-base-v2 0.83 0.84 0.83

Ensemble Learning 0.86 0.87 0.86

FLAIR Model Accuracy F1macro F1Weighted

Flair Embeddings

multi-X 0.82 0.83 0.82

news-X-fast 0.81 0.83 0.82

Pooled Flair Embeddings

multi-X 0.84 0.85 0.84

Stacked Embeddings

multi-X and DistilBERT 0.83 0.84 0.83

news-X-fast and DistilBERT 0.83 0.84 0.82

IV. CONCLUSION AND FUTURE WORK

In this study, we explore cyberbullying detection on social

media using a dataset from platform X with cyberbullying

labels. We compare traditional ML algorithms, fine-tuned

Transformers, and character-level BiLSTM models. Our ex-

periments show that character-level models perform similarly

to Transformers, and pooling token-level information enhances

classification. We also evaluate model size, training, and

inference times, suggesting BiLSTM models are suitable for

real-time deployment. Fast inference is vital for practical

deployment, as Transformers require expensive infrastructure.

Therefore, these efficient models could be preferable for

cyberbullying detection. However, since these models aren’t

pre-trained on social media data, additional pre-training on

relevant data may be needed for improved performance.
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