
Deep Learning Based Layout Recognition Approach
for HMI Software Validation

Ashton Xue Qun Pang
Jiaxing Jansen Lin

Chin Hee Ong
Yongquan Chen

AI Singapore
Singapore

e0031568@u.nus.edu

e0269033@u.nus.edu

ongchinhee@u.nus.edu

s200043@e.ntu.edu.sg

Ga Xiang Chong
Continental Automotive Singapore Pte Ltd

Singapore

ga.xiang.chong@continentalcorporation.com

Siti Nuruljannah Baharudin
AI Singapore
Singapore

jannah@aisingapore.org

Yon Shin Teo
Continental Automotive Singapore Pte Ltd

Singapore

yon.shin.teo@continentalcorporation.com

Kevin Seng Loong Oh
AI Singapore
Singapore

kevinoh@aisingapore.org

Abstract—Human machine interface (HMI) software testing in
the automotive industry is a laborious and time consuming pro-
cess, as testers are required to compare every screen downloaded
from the dashboard display cluster against the reference design
specified in the requirements. The current industry standard
allows for efficient validation of the content of display texts
and graphics. However, validating layout information such as
the relative positions, alignments, sizes and types of each visual
asset on the screen remains a difficult task, as the differences
between layouts are not homogeneous. At first glance, some
user interfaces may appear to be rather similar but in fact fall
under different layouts, due to slight variances in the region or
activation conditions. In this work, we propose a two-stage deep
learning based framework for efficient layout recognition, which
can be applied in general HMI user interface validation tasks.
First, we train an object detection model to produce bounding
boxes around visual assets within the specified region of interest
in the pre-processed input images, along with the object class
label. Next, we match the extracted structural information of
the test image against the ground truth reference layout designs
via two different strategies: a self-supervised learning method
(BYOL) and a custom IoU-based layout matching algorithm.
While the IoU-based method slightly outperforms BYOL in
terms of accuracy, BYOL boasts faster inference speed and can
be generalized easily to unseen input images and layouts. Our
approach is language agnostic and allows thorough validation of
HMI screens in a holistic way.

Index Terms—Automotive HMI Software, Software Testing,
Layout Validation, Self-supervised Learning

This research/project is supported by National Research Foundation, Sin-
gapore under its AI Singapore Programme (AISG Award No: AISG2-100E-
2021-085). (Ashton Xue Qun Pang, Jiaxing Jansen Lin, Chin Hee Ong and
Yongquan Chen contributed equally to this work.)

I. INTRODUCTION

Human-machine interface (HMI) software, which offers a

graphical user interface (GUI) for users to monitor and control

underlying equipment and machinery, has seen widespread

applications in different industrial domains. In addition to

displaying the consolidated hardware information at the sys-

tem level, users can also interact with the system via touch

panels, switches, voice control and even hand gestures in a real

time manner. As vehicles become increasingly more software

driven than hardware driven, automotive HMI software plays

a vital role in providing a seamless passenger experience.

Drivers on the road rely on automotive HMI software for

sophisticated driving applications including advanced driver

assistance system (ADAS), smart navigation, connectivity and

security. Moreover, the automotive HMI market is projected

to grow globally from $10.71 billion in 2021 to $18.64 billion

in 2028 at a CAGR of 8.2% in the forecast period of 2021

to 2028. In light of its growing impact on vehicle control and

maintenance, revenue stream and most importantly passengers’

safety and welfare, any defects in HMI software can spell

disastrous consequences, for example vehicle call backs, drop

in consumer confidence, and even the cost of lives.

Effective and efficient software testing is crucial to eliminate

software defects and ensure that all designs and features

were developed according to requirements defined by the

original equipment manufacturer (OEM). Design defects can

arise from systematic issues such as pixel defects, uneven

screen uniformity, errors in signal conversion, etc. It can also

originate from human errors by the designer or developers, as

sometimes typographical and rendering errors can be found

419

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00085

in the texts, or incorrect icons might be displayed on the

screen. Although there exist commercial solutions like optical

character recognition (OCR) and pattern matching to validate

the correctness of the content of individual texts and icons,

there is a gap in identifying whether the overall design has

the correct layout, which is determined by the types, sizes

and relative positions of all graphical assets on the screen,

instead of the content. Current industry standards rely on the

naked eyes of test engineers to visually inspect the layout of

the HMI software. This is challenging as a typical automotive

HMI software can have hundreds of different layouts, and

there are many layouts that appear to be largely similar to

each other as they might correspond to either a same function

group, or belong to product lines of different market or

language variants. Coupled with higher volumes of vehicular

state information and interactive components on the UI screen,

this poses a higher strain for the test engineers to keep up

with the increment in software complexity to guarantee test

accuracy and coverage.

In this paper, we propose a novel, deep learning based two-

stage framework for HMI software validation, consisting of

object detection of UI assets for the first stage, followed by

layout matching based on the detected objects in the second

stage. For the second stage, we experiment with two different

approaches - firstly a deep learning based approach using

image embeddings generated from a convolutional neural

network, and secondly a custom similarity matching algorithm

where we propose several scoring and penalty schemes. Our

novel two-stage approach for HMI software validation results

in 500 to 600 work-hour savings per test project for typi-

cal automotive HMI software, with comparable accuracy as

compared to current industry standards. In a typical test loop,

around 20 to 30K test images may be downloaded from the

clusters, but without the use of our solution, only a fraction

can be covered due to time and human resource constraints.

Instead of relying on testers to identify the correct layout

visually, which limits the test coverage and introduces human

errors, our approach can achieve 100% coverage and allows

the layout recognition and HMI design validation workflow to

be automated in an end-to-end manner.

II. BACKGROUND

At the system test level, testers conduct black box testing on

dashboard instrument clusters to ensure the developed software

conforms to various automotive standards and displays normal

behavior in various driving scenarios. As HMI software are

graphical and interactive in nature, visual design validation

is one of the most important test objective, which covers

both structural and content validation. In the testers’ workflow,

these two types of validation are separated. Structural (layout)

validation consists of checking whether the right types of UI

elements are displayed at the right positions with the correct

size, as well as being aligned properly for text elements.

Content validation focuses on whether the text elements are

typographically correct with no rendering errors, and no wrong

choice of icons were displayed on the screen. Separating these

two components allows for errors to be isolated and attributed

to either structural errors or content errors.

As content validation can be readily addressed by OCR and

pattern matching based commercial solutions, our framework

in this paper focuses only on structural validation (specifi-

cally, layout recognition). Having said that, a well-developed

structural validation framework also has the added benefit of

greatly facilitating downstream testing tasks for content valida-

tion, because intermediate outputs from the layout recognition

module, such as the objects’ positional coordinates, will be

passed to other processes like OCR to check for content and

textual correctness.

III. RELATED WORK

Previous work on GUI element detection in mobile applica-

tions compared the detection performance between traditional

techniques, like edge detectors and template matching, with

deep learning models like Faster R-CNN [1]. In the context of

mobile applications where fonts and UI assets are plentiful and

varied, the authors found that traditional techniques, generic

object detectors (e.g. Faster R-CNN) and off-the-shelf OCR

tools (e.g. Tesseract [2]) are not up to task for detecting

GUI texts reliably. Based on their findings, they opted to

detect text and non-text GUI elements separately in their GUI

element detector [3], relying on the specialized EAST scene

text detector [4] for text detection. For non-text GUI elements,

they utilized traditional techniques for region detection, before

classifying the regions into GUI elements using a fine-tuned

ResNet-50 [5].

More recently, Khaliq et al. found more success in using

deep learning object detectors EfficientDet [6] and DEtection-

TRansformer [7] for detecting GUI elements to be used for

functional user interface testing [8].

Meanwhile specific to HMI testing, Rosenbauer et al. pro-

posed using a genetic algorithm for finetuning traditional mod-

els like template matching and feature detectors automatically,

without which test engineers would have had to manually

calibrate the parameters such as edge detection thresholds [9].

Object detection is only one component of our layout

matching framework. The final step requires us to be able to

match the arbitrary number of detections to a specific reference

design layout. In their work for the RICO mobile application

dataset [10], Deka et al. annotated text and images within

UI screens as two separate classes. They also provide the

annotations encoded as color coded images. An autoencoder

is trained on the color coded images, which thus learns to

recognize layouts of texts and images. They were then able

to use the autoencoder’s outputs to retrieve similar UI images

from a library based on a given UI query.

For our deep learning based layout matching approach, we

encode UI components into three main classes, namely ”icon”,

”text” and ”mixed”, in order to train a layout embedding

and matching model using self-supervised learning [11]. Self-

supervised learning was used due to the scarcity of data inher-

ent to our use case. Specifically, to train a convolutional neural

network to recognize unique layouts, each layout has only one

420

Fig. 1. Annotated HMI Image

ground truth data sample (which is its reference specification).

We found that using predictions from the upstream object

detector as training data does not definitively improve the

model, and may at times worsen it. In contrast with RICO,

our layout embedding model will not be used to self-query

the training UI dataset. Instead, they will be used to match

frame-grabbed device screens, which are being tested, back to

their corresponding reference layout design (or give a warning

signal if there is no close match). For the matching process, we

opted for Euclidean distance to compute the pairwise metric

distance between the input screen and a particular reference

layout, as its characteristics fit our use case. However, we note

that there are also other popular distance metrics commonly

used for image similarity matching and content retrieval [12].

IV. DATASET

The dataset used in this paper consists of annotated images

from a commercial automotive HMI software. The dataset

contains approximately 3,000 high-definition (1920 by 720)

screen captures of modern vehicle digital dashboards, includ-

ing settings, telematics, entertainment and navigation maps

in various languages. An example HMI image can be found

in Figure 1. The annotations are in the form of ”HMI style

guides”, also known as the reference layouts. The style guides

contain all the HMI design requirements from the OEM in

the form of various metadata for each UI element, such as

their exact bounding box location coordinates and object types.

Object types are categorized into 3 classes:

• Text - rendered Unicode characters in multiple languages

such as English, Chinese, and Japanese

• Icon - a graphical element that represents a specific action

or feature

• Mixed - any combination of two or more text and icon

objects

The final dataset of 1,619 annotated images across 328

unique layouts was curated after multiple iterations of ex-

ploratory data analysis (EDA) and data cleaning to eliminate

duplicates, inconsistencies, and missing layout definitions.

As shown in Table I, EDA results revealed a highly skewed

distribution across object types. Mixed annotations only con-

stituted 3.2% of the total sample size. As a result, additional

stratification steps were implemented during data splitting to

Fig. 2. Masking Process Visualisation

ensure the distribution of object types was similar across the

training, validation and test subsets.

TABLE I
DATA SPLIT RATIOS AND DISTRIBUTIONS

Dataset Train
(70%)

Validation
(15%)

Test
(15%)

Total
(100%)

Images 1,133 243 243 1,619
Annotations 12,189 2,673 2,652 17,514
Text 6,568

(53.9%)
1,455
(54.4%)

1,461
(55.1%)

9,484
(54.2%)

Icon 5,217
(42.8%)

1,135
(42.5%)

1,109
(41.8%)

7,461
(42.6%)

Mixed 404
(3.3%)

83 (3.1%) 82
(3.1%)

569
(3.2%)

The following data transformation activities are performed

on the data prior to model training:

• Masking was performed on the images to extract the

region of interest (ROI). As seen in the visualisation in

Figure 2, the speedometer and fuel guage are masked as

these are not part of the layout.

• Conversion to COCO format [13] for training the object

detection model in the first stage of the solution.

V. METHODOLOGY

In this section we describe in detail the architecture of our

proposed layout recognition framework. To provide context,

we start by first giving a brief overview of how it fits into

the overall HMI testing workflow that includes both layout

recognition (structural validation) and content validation, to

achieve the test objectives in the automotive HMI test setting.

As shown in Fig.3, bounding boxes of visual assets including

textual and graphical objects are firstly detected from the

input test image downloaded from the dashboard cluster. The

salient features of the detected objects (in particular, their

bounding box coordinates along with the object’s class) are

matched to the reference HMI style guides to recognize the

correct reference layout. This completes the layout recognition

component.

The next step in the tester’s workflow is to apply OCR

and pattern matching techniques to recognize the content of

the texts and icons within each predicted bounding box, and

validate them against the ground truth content described in

421

Fig. 3. Overall HMI Testing Workflow (including both Layout Recognition
and Downstream Testing Tasks for Content Validation)

the style guide corresponding to the matched layout. This

completes the content validation component. The results of the

executed test scripts are consolidated inside the test reports, in

which failed test cases are highlighted so that further actions

can be taken by the test engineers to identify and resolve the

issues.

A. Two-stage Framework for Layout Recognition

Our proposed framework for layout recognition is broken

down into two stages: an object detection stage followed by a

layout matching stage. In stage 1, a deep learning based object

detection model is trained to detect and locate three classes of

objects (UI elements): ”icon”, ”text” and ”mixed” [which is a

group of icon(s) and text(s)]. The model outputs the X and Y

coordinates of the top-left and bottom-right of each bounding

box enclosing the detected object, as well as a predicted label

for the class of the object. In stage 2, the boxes’ positions

and the classes of the detected objects are used as features,

to match the input image to each of the reference layouts

and the UI elements within them. We tested two different

methodology options within stage 2: a self-supervised deep

learning model, and a custom similarity matching algorithm

based on Intersection over Union (IoU). The overview of our

framework is illustrated in Fig.4.

B. UI Object Detection

For stage 1, we chose the YOLOX [14] object detection

model. This is an anchor-free version of the well-known

YOLO series of object detectors. The primary consideration

was its fast inference speed, followed by its object detection

performance.

C. Layout Matching with Deep Learning

The first approach in stage 2 is based on a deep learning

model. We generated a processed version of the input image

by: i) converting the background to white, ii) replacing the

UI objects by their bounding boxes, and iii) filling the boxes

with one of three colors to encode the class of the object (red

for ”text”, blue for ”icon”, green for ”mixed”). The resulting

Fig. 4. Proposed Two-stage Framework for Layout Recognition

processed image has thus encoded the following information:

positions of the objects and the type of content within. This

creates the features for the deep learning model to generate

embeddings to represent layouts.

The actual textual and graphical characteristics of the con-

tent itself are not utilized in the creation of the embeddings in

stage 2. This is because the objective is to perform matching

based on layout only, and it is important not to allow the

matching to be biased by differences in the specific content

within each of the objects. This is also the reason why the

framework is split into the above two stages, instead of a single

unified stage.

As a baseline, we adopted an unsupervised approach with

no model training. At inference time, the processed version

of the input image is generated based on the detected objects

from the object detection model. The processed images are

passed into the pre-trained ImageNet convolutional neural

network to be embedded [11]. The generated embeddings

are then compared against a dictionary of stored embeddings

for the reference layout images, to find the nearest matching

reference layout based on the Euclidean distance between

the embedding vectors. This approach achieved above 70%

accuracy for layout matching, but it was not sufficient for our

use case.

To achieve better matching performance, our goal was

to train a model to learn to discriminate between layouts.

However, we were not able to adopt a full supervised learning

approach, as we had a very limited number of training samples

- on average, there were only a few ground truth sample

images per layout. This practical limitation warranted a self-

supervised learning approach, as such methods are designed

to work with as little as one to two samples per layout. We

chose the BYOL (Bootstrap Your Own Latent) [15] algorithm

as the framework, due to its state of the art performance and

high inference speed.

BYOL uses two neural networks, referred to as online and

target networks (Fig. 5). The online network is defined by a

set of weights θ and consists of three stages: an encoder f θ,

a projector gθ and a predictor qθ. The target network has the

422

Fig. 5. Architecture of BYOL model

same architecture as the online network, but uses a different

set of weights ξ, which are an exponential moving average of

θ. The model aims to minimize similarity loss between the

prediction qθ(zθ) and the target network’s projection sg(z′ξ).
Like other Siamese architectures, BYOL uses two augmented

views of the input image to train each network; however, it

does not require the use of negative pairs of images.

D. Layout Matching with IoU-based Algorithm

The second approach in stage 2 is a similarity matching

algorithm we designed from scratch. It is based on Intersection

Over Union (IoU), which is a fundamental metric in object

detection that quantifies the amount of overlap between two

bounding boxes. The algorithm has the following defining

elements:

• IoU score calculation for two single boxes. (This is the

foundation of this algorithm.)

• Algorithm to search for the analytical best confidence

score threshold for stage 1 predictions.

• Penalty for object class mismatch between a single

ground truth bounding box and a single predicted bound-

ing box.

• Penalty for different number of bounding boxes between

ground truth layout and predicted layout.

• Similarity scoring schemes that incorporates the above

mentioned elements to generate layout similarity scores

from the single box-to-single box IoU score/s for every

inference image.

1) Key hyperparameters:
Stage 1 confidence score threshold, C.S.T . This is the

confidence score threshold for the stage 1 object detection

model’s predictions. It is a float value in the range of [0, 1).

We also provide a custom algorithm to search for the analytical

best value without the need to run the entire pipeline end to

end.

Penalty for object class mismatch, P1. This is the penalty

for object class mismatch between the ground truth bounding

box and IoU-matched predicted bounding box. It is a config-

urable arbitrary float value in the range of [0, 1]. Specifically,

the IoU score of the IoU-based best match would be multiplied

by this value if a class mismatch is found. A maximum value

of 1 represents no penalty. A minimum value of 0 represents

a full penalty.

Penalty for different number of bounding boxes, P2. This

is the penalty for the absolute difference in the total number of

bounding boxes between ground truth and predicted layouts.

It is a float value in the range of [0, 1]. It is used to adjust the

layout similarity score. We provide four different formulae for

calculating this penalty, outlined in supplementary material,

section VII-A).
Scheme for layout similarity scoring. This is the scheme

used for similarity score calculation between two layouts. We

provide the following two schemes:

• Equal-weighted IoU

• Area-weighted IoU

2) Search algorithm for stage 1 object detection model’s
confidence score threshold:

This is a custom algorithm we created to search for the ana-

lytical best value for the stage 1 object detection model’s con-

fidence score threshold. This method makes use of all masked

images that have matching reference layout coordinates (called

”matchable images”). For each of these matchable images,

we will perform a stage 1 object detection inference to get a

predicted layout. The absolute difference in the total number of

bounding boxes in the predicted layout versus the ground truth

layout is then calculated. This difference is summed across all

matchable images, and termed as the ”sum of difference”. We

define the analytical best value as one that would minimise

this sum of difference.
Based on this definition of the analytical best stage 1

confidence score threshold, we proceed to a 2-stage search

algorithm:
Brute force search. For C.S.T, we try all values from

0.1 (inclusive) to 0.9 (inclusive) with a step size of 0.1 and

calculate the sum of difference for each of them. The stage 1

confidence score threshold value that gives the lowest sum of

difference shall be the best value.
Binary search. The best stage 1 confidence score threshold

value determined from the brute force search is used as the

pivot value for binary search.
3) Generate layout similarity scores:

The end goal of the IoU-based layout matching algorithm is

to generate a matrix of similarity scores between all unique

ground truth layouts and predicted layouts, to facilitate the

comparison of each predicted layout to all unique ground truth

layouts. Within a single layout-to-single layout comparison,

each ground truth bounding box will have a single closest

matching predicted bounding box, based on the highest IoU

score found. The number of IoU scores to be expected here

equates to the number of ground truth bounding boxes. If

there is a mismatch in the object class between the ground

truth box and the predicted box with the highest IoU score,

the score would be adjusted by multiplying with the penalty

ratio, P1. An initial similarity score for each ground truth

layout and predicted layout combination is calculated by

aggregating the IoU scores of the matched bounding boxes in

a way defined by the chosen layout similarity scoring scheme

(i.e. Equal-weighted IoU or Area-weighted IoU). The final

similarity score matrix is then derived by multiplying each

initial similarity score with its corresponding penalty ratio,

P2.

423

VI. EXPERIMENTS

A. Evaluation Metrics

In the stage 1 object detection model, mean average preci-

sion (mAP) was used to assess model performance.

mAP =
1

N

N∑
i=1

APi

where:

• N is the total number of queries or instances.

• AP i is the average precision for the i-th query or instance.

Average precision is calculated as:

AP =
∑
n

(Rn −Rn−1)Pn

where Rn and Pn are the precision and recall at the nth

threshold.

In the stage 2 layout matching model, the following classi-

fication metrics were used.

Precision =
True Positives

True Positives + False Positives
(1)

Recall =
True Positives

True Positives + False Negatives
(2)

Accuracy =
True Positives + True Negatives

Total Sample Size
(3)

F1 Score = 2× Precision× Recall

Precision + Recall
(4)

B. Stage 1 Object Detection - YOLOX

For our experiments, we divided the full dataset of 1,619

HMI images into 70% training, 15% validation and 15%

test sets using stratified splitting. The data split ratios and

distributions are outlined in Section 4 of this paper. The

training set of 1,133 HMI images consist of 12,189 object

annotations in total, of which 6,568 belong to text, 5,217

to icon, and 404 to mixed object classes. The validation set

of 243 HMI images consist of 2,673 object annotations in

total, of which 1,455 belong to text, 1,135 to icon, and 83

to mixed object classes. The test set of 243 HMI images

consist of 2,652 object annotations in total, of which 1,461

belong to text, 1,135 to icon and 82 to mixed object classes.

All of the models used in the experiments were pre-trained

on the COCO object detection dataset by the MMDetection

community. The MMDetection repository [16] was used

for training the YOLOX model. In particular, we chose the

YOLOX-s backbone as it is lightweight and offers the best

tradeoff between performance and resource usage.

We trained the YOLOX model using the training set and

evaluated its performance on the validation set. For training,

we used a batch size of 16 and learning rate of 0.01 with

the default YOLOX scheduler. In addition, We also turned

off RandomFlip augmentations, together with the YOLOX

augmentations from a default of last 15 epochs to last 50

epochs. The model was trained for a total of 100 + 100 epochs.

This translates to 100 training epochs, with a continuation

of 100 more training epochs on the already trained model

weights, equating to 200 epochs in total. We used the AP50

score for evaluating all of the models, and the results are shown

in Table II.

TABLE II
YOLOX EXPERIMENTS

Model Batch
Size

Learning
Rate

Epochs Validation
mAP

YOLOX-s 16 0.01 200 0.984
YOLOX-s 16 0.01 100 +

100
0.986

YOLOX-s 8 0.001 200 0.963
YOLOX-s 8 0.001 100 +

100
0.983

C. Stage 2 Layout Matching - BYOL

For the training dataset, we generated processed versions of

the original reference layout images as described in Section

5.3. These consisted of white backgrounds with the ground

truth UI objects’ bounding boxes color coded into red for

”text”, blue for ”icon”, and green for ”mixed” classes. A total

of 347 reference layout images were generated for training,

consisting of 328 unique layout images and 19 duplicated

images. The Lightly open-source repository [17] for self-

supervised learning was used for training the BYOL model,

with a PyTorch Lightning implementation. All of the models

in the Lightly repository were pre-trained on ImageNet by the

Lightly community.

The models were trained with varying number of epochs

- 300, 500 and 800 with a set of consistent model hyperpa-

rameters. All models were trained with 4 workers, batch size

of 8, learning rate of 0.06, input size of 128, and a default

collate function. Once the model was trained, we performed

an evaluation on the test set using the learned weights. The test

images were passed through our inference and post-processing

pipeline to generate the image embeddings. These embeddings

were then compared with the set of reference layout image

embeddings using a K-nearest neighbors algorithm to match

the predicted layout with the references, and retrieve the top-1

most similar layout.

For computing evaluation metrics, we used FiftyOne’s [18]

classification evaluation to generate a classification table of the

results, based on comparing the top-1 matched layout with the

ground truth reference layout. Key results are shown in Table

III.

TABLE III
BYOL KEY EXPERIMENTS

Model
(Stage
2)

Epochs Precision Recall F1
Score

Accuracy

BYOL 300 0.946 0.946 0.946 0.946
BYOL 500 0.945 0.945 0.945 0.945
BYOL 800 0.957 0.957 0.957 0.957

The metrics were calculated based on matching the predicted layouts to 347
reference layouts, which include 19 duplicates.

424

D. Stage 2 Layout Matching - IoU-based Algorithm

This algorithm is used as an alternative layout matching

solution in stage 2. In contrast to BYOL, it does not require

any model training. We experimented with different sets of

hyperparameters, which gave rise to different accuracy scores

as shown in IV. C.S.T of 0.6 is the optimal solution derived

by our custom search algorithm described in section V-D2.

TABLE IV
IOU-BASED LAYOUT MATCHING ALGORITHM KEY EXPERIMENTS

No. C.S.T P1 P2 Accuracy
1 0.6 0.5 [“simple ratio”] 0.9839
2 0.6 0.5 [“sigmoid”, 1, 3] 0.9839
3 0.6 0.5 [“ellipse”, 4, 0.1] 0.9839
4 0.6 0.5 [“ellipse”, 6, 0.1] 0.9753
5 0.6 0.5 [“linear”, 6, 0.1] 0.9790

The accuracy metric was calculated by matching the predicted layouts to
328 unique reference layouts. Note that as the 19 duplicates are excluded
here, these results may not be fully comparable to those calculated in Table

III. However, we expect that any discrepancy will be negligible, and the
results may still be compared in a practical sense. Refer to supplementary
material section VII-A to understand the notations used for P2. All
experiments here were done using the ”Equal-weighted IoU” scheme for
layout similarity scoring.

TABLE V
END-TO-END PERFORMANCE MEASUREMENTS

Measurements YOLOX+BYOL YOLOX+IoU
Accuracy of layout
recognition

0.957 0.960

Frames per second 5.468 0.300

Inference speeds were benchmarked on a single Azure NC4as T4 v3 virtual
machine. Note that the BYOL algorithm utilized GPU while the IoU-based
algorithm utilized CPU for inference. All experiments were carried out on
hardware with 4xCPU 32GB and 1xGPU V100 16GB.

E. Summary of Final Chosen Approach

Both the YOLOX+IoU-based and YOLOX+BYOL ap-

proaches achieved highly impressive matching accuracy. Ta-

ble V summarizes the experiment with the best test re-

sults across the combined two-stage, end-to-end workflow.

While the accuracy of the YOLOX+IoU-based approach is

marginally higher, the YOLOX+BYOL approach had much

faster inference speed that was within acceptable limits for

production implementation. The methodology was also more

generalizable to different test settings in future due to the

ability to learn. For these reasons, the final solution chosen

for productionization was YOLOX+BYOL.

VII. CONCLUSION

In this paper, we have presented a deep learning powered

HMI software validation framework based on an innova-

tive two-stage layout recognition process. Its feasibility and

effectiveness in an industrial production environment was

demonstrated using an actual automotive HMI software as

an example. Our framework addresses the labor intensive

nature of automotive software testing by achieving HMI design

validation, from ingestion of raw HMI images to identifying

the correct layout, and finally extracting design information

on the style guide to achieve HMI content validation in an

end to end manner. A business study by an industry partner

shows this can result in thousands of work-hour savings per

year, and eliminates human errors in the process, as there

are hundreds of layouts in each HMI software, some with

differences indiscernible to the naked eye.

It is also interesting to note that the graphic assets bounding

box detection method in our framework has been validated to

be language agnostic, as it is able to recognize text boxes

regardless of language. This greatly enhances its usability and

practicality as one HMI software can feature up to 26 different

languages. The automation process enabled by our deep learn-

ing based framework is fast (with an average inference speed

of 0.9 FPS), which reduces the time to delivery from several

weeks to overnight, and allows 100% test coverage since all

test images can be examined.

ACKNOWLEDGMENT

The authors would like to thank Mr. Phyo WaiAung from

Continental Automotive Singapore Pte Ltd and Mr. Codrut

Toader from Continental Automotive Romania for their do-

main knowledge support and critical contributions in the inte-

gration of the solution into Continental’s own HMI software

testing toolchain; Mr. Lin Yuxin and Ms. Teoh Soo Yee from

Continental Automotive Singapore Pte Ltd for testing the

deployment of the solution within Continental; Ms. Sudha

Ravi from AI Singapore for providing project management

support; and Mr. Syakyr Surani and Mr. Ryzal Kamis from

AI Singapore for providing machine learning operations and

IT support.

REFERENCES

[1] J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li, “Object
detection for graphical user interface: Old fashioned or deep learning or
a combination?” CoRR, vol. abs/2008.05132, 2020. [Online]. Available:
https://arxiv.org/abs/2008.05132

[2] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), vol. 2, 2007, pp. 629–633.

[3] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen, “Uied: A hybrid tool for
gui element detection,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1655–1659.
[Online]. Available: https://doi.org/10.1145/3368089.3417940

[4] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“East: An efficient and accurate scene text detector,” 2017.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[6] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” 2020.

[7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” 2020.

[8] Z. Khaliq, S. U. Farooq, and D. A. Khan, “A deep learning-based
automated framework for functional user interface testing,” Information
and Software Technology, vol. 150, p. 106969, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922001070

[9] L. Rosenbauer., A. Stein., and J. Hähner., “A genetic algorithm for hmi
test infrastructure fine tuning,” in Proceedings of the 18th International
Conference on Informatics in Control, Automation and Robotics -
ICINCO,, INSTICC. SciTePress, 2021, pp. 367–374.

425

[10] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building data-
driven design applications,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
845–854. [Online]. Available: https://doi.org/10.1145/3126594.3126651

[11] S. Moon, D. Buracas, S. Park, J. Kim, and J. Canny, “An embedding-
dynamic approach to self-supervised learning,” 2022.

[12] M. Tahoun, K. Nagaty, T. El-Arief, and M. A-Megeed, “A robust
content-based image retrieval system using multiple features represen-
tations,” in Proceedings. 2005 IEEE Networking, Sensing and Control,
2005., 2005, pp. 116–122.

[13] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context,” 2015.

[14] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[15] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent:
A new approach to self-supervised learning,” 2020.

[16] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li,
X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and
D. Lin, “MMDetection: Open mmlab detection toolbox and benchmark,”
arXiv preprint arXiv:1906.07155, 2019.

[17] I. Susmelj, M. Heller, P. Wirth, J. Prescott, and M. E. et al., “Lightly,”
GitHub. Note: https://github.com/lightly-ai/lightly, 2020.

[18] B. E. Moore and J. J. Corso, “Fiftyone,” GitHub. Note:
https://github.com/voxel51/fiftyone, 2020.

SUPPLEMENTARY MATERIALS

A. Penalty for different number of bounding boxes, P2

The calculated penalty ratio, P2, will be used to adjust the

similarity score, S, in the following manner:

S′ = S × P2

We present 4 configurations to calculate the penalty ratio.

1) Simple ratio:

Let a = number of bounding boxes in ground truth

layout

Let b = number of bounding boxes in predicted layout

Configuration for P2: [“simple ratio”]

P2 = min[
a

b
,
b

a
]

2) Linear-based:

Let x = absolute difference in the total number of bounding

boxes (Ground Truth vs Predicted)

Configuration for P2: [“linear”, scalar, m]

P2 = max[1− x

scalar
,m]

Refer to Figure 6 for an illustration of the formula above.

Fig. 6. Linear-based Penalty Ratio

3) Ellipse-based:

Let x = absolute difference in the total number of bounding

boxes (Ground Truth vs Predicted)

Configuration for P2: [“ellipse”, scalar, m]

P2 =

√
max[1− (

x

scalar
)2,m2]

Refer to Figure 7 for an illustration of the formula above.

Fig. 7. Ellipse-based Penalty Ratio

4) Sigmoid-based:

Let x = absolute difference in the total number of bounding

boxes (Ground Truth vs Predicted)

Configuration for P2: [“sigmoid”, scalar, shift]

P2 =
σ(

−x
scalar

+ shift)

σ(shift)

Refer to Figure 8 for an illustration of the formula above.

B. Scheme for layout similarity scoring

Let the individual IoU score(s) between a ground truth

layout and a predicted layout be I1 + In + ..., where n is any

426

Fig. 8. Sigmoid-based Penalty Ratio. The red arrows and purple arrows
represent the possible ranges of x and P2 values when shift = 0 and
shift = 3 respectively.

positive integer.

Let the corresponding area(s) of the ground truth bounding

box(es) be A1 +An + ..., where n is any positive integer.

If there is no matching bounding box between a ground truth

layout and a predicted layout, the similarity score between

the two layouts will be assigned 0.

As pointed out in subsubsection V-D3, n corresponds

to the number of ground truth bounding boxes.

1) Equal-weighted IoU:

Similarity score =
I1 + ...+ In

n
2) Area-weighted IoU:

Similarity score =
I1 ×A1 + ...+ In ×An

A1 + ...+An

427

