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Abstract—This work is aimed at deploying deep learning
models to characterize tissue stiffness properties during teler-
obotic palpation and localization of tissue abnormality while
estimating its depth. The method relies on using a minimally
invasive probe with a rigidly mounted tactile sensor at the tip
to capture the force distribution map and the indentation depth
for each tactile element, thereby generating a stiffness map for
the palpated tissue. The probe is attached to a Mitsubishi PA10
robot with hybrid impedance control architecture controlled
by a haptic device which enables the user to telerobatically
palpate the remote tissue and semi-autonomously obtain the
required information from the tissue. When data are collected,
a convolutional neural network (CNN) is utilized for tumor
classification and an artificial neural network (ANN) is used to
estimate the depth of the tumor within the tissue. The proposed
method is verified by classifying tumor phantoms using CNN
with an accuracy of 95.24% for stiffness and using ANN with
an accuracy of 82.14% for depth.

Index Terms—Tactile sensing, tumor localization, deep
learning, convolutional neural network, robotic-assisted min-
imally invasive surgery

I. Introduction

Soft-tissue palpation is one of the most important
parts of a surgical procedure which is commonly used
for tumor localization as the first step taken in cancer
treatment. Since the stiffness of a tumor is higher than
that of healthy tissue, it can be distinguished as a hard
nodule during remote palpation. Considerable work has
been done on the problem of providing haptic information
for tumor localization in MIS soft-tissue palpation [1].
Among them, tactile feedback is more of interest for this
application because of the detailed information it gives
about the palpated area [2], [3]. However, it has been
shown that tactile sensing alone may not be sufficient
for successful tumor localization [4]. In particular, the
determination of tumor depth is a key prerequisite for
tumor resection in MIS for which tactile information alone
would not be sufficient. Talasaz et al. [5] proposed a new
approach for integrating force control with tactile sensing
and position control to characterize tissue stiffness and
to localize tumors while obtaining depth estimation for
tumors. However, the main challenging problem is that
the detection and localization of a tumor from an obtained
image could be very subjective depending on the level of
experience of the surgeon.

This paper addresses the problem mentioned above
by applying Convolutional Neural Networks (CNN) for
tumor classification as well as a multi-layer neural network
for depth estimation while utilizing a stiffness map of
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the palpated tissue integrated with the exploration force
during robot-assisted tumor localization.

Deep learning algorithms are widely used in healthcare
domain especially for medical image localization, segmen-
tation and classifications [6]-[8]. Oleksyuk et al. [6] applied
a CNN model for mechanical property classification of
breast tumor with an experimental tactile sensing system
developed for breast cancer applications. Deep learning
for automatic liver tumor diagnosis has also attracted
considerable interest [9]. In the context of tumor depth
estimation, Zhou et al. [10] developed several deep learning
methods to recognize the depth of hard inclusions in soft
tissue using ordinal classification for robotic palpation (not
in the context of MIS). Similarly Xiao et al. [11] developed
an experimental setup, not suitable for minimally inva-
sive surgery, and proposed a tactile sensing-based deep
recurrent neural network (DRNN) with long short-term
memory (LSTM) architecture to improve the accuracy of
the detection and depth estimation of tumors embedded
in soft tissue.

The contribution of this paper is a novel approach for
tumor localization in robotics-assisted minimally invasive
surgery (RAMIS). This work characterizes tissue prop-
erties telerobotically while the tactile sensing instrument
(TSI) [12] is inserted into the patient’s body in a minimally
invasive manner to collect position, tactile, and force data
from sensor-tissue interaction without friction at the tro-
car interfering with the measurements. Then by utilizing
deep learning, tissue abnormality is localized using a CNN
model. Two key attributes are also established to classify
tumor depth in underlying tissue using a multi-layer ANN
model.

The outline of this paper is as follows. Section II
introduces the setup and the control algorithm used for
telerobotic palpation. The CNN model used for tumor
classification as well the ANN model used for depth
estimation are discussed in Section III. The experimental
results are presented and discussed in Section IV. Finally,
concluding remarks are given in Section V.

II. RAMIS Palpation Setup and Control Algorithm
A. Telerobotic Palpation Setup

Fig. 1 shows the leader-follower teleoperation setup
which consists of a Mitsubishi PA10-7C robot as the
follower and a 7 Degrees-of-Freedom (DOFs) Haptic Wand
[13] as the leader interface. At the robot end effector, a
tactile sensing instrument (TSI), shown in Fig. 2, is used



Stress-strain
diagrams

Position
Command

Force
Feedback

Haptic Wand Mitsubishi PA10-7C

. Robot
-\

ﬂ‘ ; ATI Force Sensor

Tactile Sensor

Fig. 1: Leader-follower robotic setup palpating a tissue [4].

to measure the pressure distribution over tissue during
tumor localization in soft-tissue palpation. The sensor
used in this research is a two-dimensional array (15 x 4)
of pressure sensing capacitive elements in a thin and
continuous sheet [14] developed for measuring the tactile
pressure distribution between objects in direct physical
contact (Fig. 2). Each element is 2 mm x 2 mm and the
total size of the sensor is 30 mm x 8 mm. This sensor
is attached to a probe, with its shaft length of 385 mm
and shaft diameter of 10 mm, that is suitable for use in
MIS without interfering with trocar-palpator friction. The
tactile data obtained from the sensor contains information
about the magnitudes, distributions and locations of
forces. It also provides information about the contact
area and the pressure distribution over it. Moreover, this
sensor is also used as the force sensor, by adding up the
force measurements of all the elements, to measure the
interaction force applied by the TSI on the tissue in the
normal direction to the tissue plane (palpation direction).

B. Control Algorithm

As stated earlier, tactile feedback is of interest for local-
izing tissue abnormality in soft-tissue palpation because
of the detailed information it gives about the palpated
area. To increase the success rate in tactile sensing tumor

Fig. 2: Palpation probe (TSI).
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Algorithm 1 RAMIS Tumor Localization Algorithm

1: Move the TSI to the starting position Py
2: while ~TaskDone do

3: Switch from position control to force control
4: Fg<« Foin

5: while Fy > Fipq, do

6: Activate autonomous force control

7 if RMSE(F — Fy) < € then

8: Acquire the pressure and stiffness map
9: Compute the indentation depth

10: Fy+ Fy+6F

11: end if

12: end while

13: Switch from force control to position control
14: Move to the next area of interest for palpation

15: end while

localization, Talasaz et al. [5] developed a new approach
for integrating force control with tactile sensing and posi-
tion control to characterize tissue stiffness and to localize
tumors while obtaining depth estimation for tumors (The
approach has been detailed out in the previous work
[5]). In the context of telerobotic palpation, it has been
shown that the operator can get some feeling about the
indentation depth by the force reflected to their hand
through the haptic device. However, it might be difficult
for the operator to discern how deep the TSI can palpate
tissue based on direct force feedback. Besides, many
haptic devices have some limitations on the maximum
force that they can reflect to the operator’s hand and
it might be required to apply higher force if the tissue
has higher stiffness and/or if the tumor is located deep
in the tissue. The aforementioned problems were looked
into in detail in [5] by developing a semi-autonomous force
control approach that applies different levels of exploration
force consistently on tissue and capturing tissue-sensor
interaction data. Algorithm 1 presents the Pseudo-Code
of the control algorithm. With this approach, the user
controls the probe remotely to scan the tissue surface for
tumor localization while the robot controls the normal
exploration force autonomously from a starting force to a
maximum desirable force with a fixed constant increment.

ITI. A Deep Learning Algorithm for Tumor Localization

As mentioned earlier, CNN models are very effective
tools for medical image classification that can be employed
to identify tumors from the tactile images obtained using
the TSI during robot-assisted tumor localization. CNN is
composed of a set of convolutional layers with correspond-
ing activation functions, max-pooling layers, a flatten layer
to provide inputs from a reduced sized image, and fully
connected layers with a Softmax function for the final
classification decision. Fig. 3 shows the schematic diagram
of the CNN model and Table I shows the configuration
of the CNN model used for tumor classification in this



TABLE I: The architecture of the CNN model used for tumor

classification.
Layer (type) Output Shape Param #
conv2d_6 (Conv2D) (None, 15, 4, 64) 256
batch_normalization_9 (Bat (None, 15, 4, 64) 256
chNormalization)
activation_9 (Activation) (None, 15, 4, 64) 0
conv2d_7 (Conv2D) (None, 15, 4, 64) 16384
batch_normalization_1@ (Ba (None, 15, 4, 64) 256
tchNormalization)
activation_10 (Activation) (None, 15, 4, 64) 2]
max_pooling2d_3 (MaxPoolin (None, 7, 2, 64) 2]
g2D)
flatten_3 (Flatten) (None, 896) 2]
dense_6 (Dense) (None, 512) 458752
batch_normalization_11 (Ba (None, 512) 2048
tchNormalization)
activation_11 (Activation) (None, 512) 0
dropout_3 (Dropout) (None, 512) 2]
dense_7 (Dense) (None, 2) 1026
Total params: 478978 (1.83 MB)
Trainable params: 477698 (1.82 MB)
Non-trainable params: 1280 (5.00 KB)
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Fig. 3: The schematic diagram of a CNN model with two classes.

work. A CNN sequential model is designed with two
convolutional layers, one max-pooling layer and activation
functions for the feature learning part.

Each convolutional layer has 64 filters of size 2x2.
Adamax optimizer is employed and accuracy is utilized as
the metric for the model performance evaluation during
training. A Rectified Linear Unit (ReLU) is chosen for
the activation function of the convolution layers. Batch
normalization is also applied to improve the training
performance. The classification part of the model includes
a dense layer with a batch normalization layer and ReLU
activation functions and a dropout layer of 0.2. The final
fully connected layer has a Softmax activation function.

To characterize the depth of a tumor, a multi-layer ANN
is employed to classify tumors in three different categories:
shallow, deep, and deeper. Fig. 4 presents the schematic
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TABLE II: The architecture of the ANN model used for depth
estimation.

Layer (type) Output Shape Param #
dense_45 (Dense) (None, 512) 1536
activation_28 (Activation) (None, 512) (]
dropout_27 (Dropout) (None, 512) 2]
dense_46 (Dense) (None, 512) 262656
activation_29 (Activation) (None, 512) ]
dropout_28 (Dropout) (None, 512) [}
dense_47 (Dense) (None, 3) 1539

Total params: 265731 (1.01 MB)
Trainable params: 265731 (1.1 MB)
Non-trainable params: © (0.00 Byte)

Fig. 4: The schematic diagram of an ANN model with two inputs
and three classes

diagram of a multi-layer ANN model with two inputs
and three classes. Assuming that the diseased tissue is
accessible for the clinician to palpate directly, the way the
clinician detects a tumor is to put their finger on the tissue
and to apply some force on the tissue to deform the tissue
sufficiently to be sensitive to the underlying tumor. If the
tumor is located near the surface of the tissue (shallow),
they can detect it by their sense of touch (tactile feedback)
while a small force is applied on the tissue, for a tumor
in the middle of the tissue (deep), more force is required
to deform the tissue to let the clinician feel the tumor,
and for the tumor near the bottom of the tissue (deeper),
a significant amount of force is required for the clinician
to detect the tumor. Therefore, in direct palpation, the
clinician can get some feeling about the depth of the tumor
using the amount of force being applied to the tissue (force
feedback), their sense of touch (tactile feedback), and the
amount of deformation of the tissue (position data).
Therefore, the exploration force can be selected as the
main attribute (feature) for the depth estimator network.
As mentioned earlier the tactile feedback can also be
incorporated with the tissue deformation information to



compose a stiffness map. The second attribute can be
derived from the stiffness images to help in classifying
the tumor depth appropriately. To do so, the maximum
stiffness of each column of the TSI array (max[o;...015])
is first found and then the second feature is defined as
the average of the four maximum values (Eizl Omaz;/4)-
These two features can be utilized to classify the three
categories of the tumor depth and thereby estimate how
deep the underlying tumor is in the tissue. An ANN
sequential model with the configuration shown in Table
1T is designed to classify tumors in “shallow”, “deep” and
“deeper” categories. The ANN architecture consists of two
hidden layers and the output layer. Two dropout layers
of 0.3 as well as L2 regularization are also employed to
avoid over-fitting on the training data. Each hidden layer
has 512 neurons with ReLU activation functions. Softmax
was chosen as the activation function of the output layer.

IV. Experiments

An experimental evaluation was performed to explore
the performance of deep learning integrated with tactile
imaging in RAMIS tumor localization. In this section, the
tissue models used for the experiments are first given.
Then, the results and discussion are presented.

A. Experimental Conditions

The tissue used for the experiments was made of
silicone gel (Ecoflex0030 with Silicone thinner) with elastic
modulus 20 KPa that was experimentally measured by
conducting several palpations on tumor-free areas and
recording the force data and the amount of indentation.
The spherical tumors used for the experiments were
made of silicon gel (SORTA-Clear40) and were eight
times harder than the tissue phantom. The diameter
of the tumors was chosen to be 8 mm - equal to the
width of the TSI. For evaluating the performance of the
approach for depth estimation, a rectangular shaped tissue
phantom with a flat surface was chosen with three tumors
embedded in the tissue at different depths: 2mm(shallow)
, 7 mm(deep), and 10 mm(deeper). Fig. 5 shows the
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Fig. 5: Tissue model used for the experiments.
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dimensions of the tissue phantom, the exact locations
of the tumors and the depths at which the tumors were
embedded

To mimic a real palpation task in MIS, a tissue phantom
with an uneven surface was also constructed in order to
study how the proposed approach works in this scenario
(Fig. 6). The average surface height along the Z-axis was
25 mm with a variation of 5 mm. In this case, three
tumors were embedded at the same depth (2 mm from
the top flat surface). Considering the 5 mm bump, the
first two tumors should be characterized as “shallow” and
the third tumor as “deep”. For ease of use and to provide a
wider range of motion during the experiments, the tissues
were placed on a table and palpated in the left to right
direction. The operator received some visual cues on a
monitor connected to a camera overlooking the tissue but
it was not possible to discern the location of the lump
in the tissue from the camera image. The operator was
asked to palpate the tissue using the TSI through the
leader-follower teleoperation setup. The operator was then
asked to palpate the tissue in a discontinuous mode in
different steps; palpating the first area, raising the TSI
off the tissue, moving to the next area and repeating
this pattern. When the probe is close enough to the
tissue surface, the operator is asked to press a switch
requesting autonomous force control through the robot
in the palpation direction. This ensures the application of
a consistent exploration force during palpation which will
vary discretely from 1N to 7N of force with the increments
of 1IN. When autonomous force control was completed
for an area, a flag was set informing the operator about
the next area for palpation. During the experiments, the
real-time stiffness map was computed by measuring the
force distribution map of the palpated area along with the
indentation depth of the TSI. The total amount of force
applied during palpation (the exploration force) can be
computed by adding up the force measurements of all the
capacitive elements in the TSI.

B. Tumor Classification Results

With the seven different exploration forces applied to
the phantom tissue in Fig. 5, a total of 63 images were
acquired for the stiffness of the palpated tissue during
the first experiment (63x15x4). To create more images
for the training of the CNN model, a data augmentation

Fig. 6: Tissue model with an uneven surface used for the experiments.
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Fig. 7: Sample images used for the CNN model training for tumor
classification.
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Fig. 8: Training/Validation accuracy and loss for CNN model for
tumor classification.

technique is also employed by dividing the TSI array into
five 3x4 sub-arrays and considered all possible combina-
tions of the five sub-arrays resulting in a total of 7560
stiffness images (7560x15x4). Among these images the
original images (63x15x4) were saved as test data, and the
remaining were used for training the network. The images
acquired by palpation of the uneven phantom tissue were
also used in the test data set to better evaluate the
performance of the trained network on a more clinically
relevant dataset.

Fig 7 shows 10 random images used for training the
CNN model labeled 0 for no tumor and 1 for tumor. Fig 8
also demonstrates the training and validation accuracy as
well as the training and validation loss for the 25 epochs
used for training the CNN model. As the results show, the
CNN model trained perfectly on the augmented dataset.
The model was then evaluated on the test data which
includes the data for both the phantom tissues shown in
Figs. 5 and 6 (which consisted of a total of 126 sample
images). The accuracy achieved for the testing data was
95.24% which confirms that the proposed method using
the stiffness map was successful in distinguishing a tumor
from its surrounding tissue, and that the CNN model
developed in this work was also effective in classifying
the tissue with tumors with a high degree of accuracy (A
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Fig. 9: The feature space for the traing data for depth estimation.
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Fig. 10: The feature space for the testing data for depth estimation.

total of 4 false negatives and 2 false positives were also
noted).

C. Depth Estimation Results

For the ANN model, the data are first required to be pre-
processed and the images showing a tumor corresponding
to a certain exploration force to be extracted. The mini-
mum exploration force required to detect a shallow tumor,
a deep tumor and a deeper tumor for the phantom tissue
used in this work was experimentally measured to be 2V,
4N and 6N respectively. After sorting the images from
the dataset, a total of 1428 images (out of 7560 images)
were obtained for training the ANN model (20% of these
were used for validation and the rest for training), and 20
images (out of 126 images) were obtained from the test
dataset for testing. Figs. 9 and 10 show the feature space
for the training data and testing data respectively. Feature
1 is the exploration force and feature 2 is a representative
of the maximum stiffness of the TSI array during palpation
as described in Section III. As can be seen from the feature
space for the training data, with the defined features, the
tumors can be separated into three classes. Due to their
different range, data normalization was also applied on
both the training and test data to reduce the effect of
different scales on the accuracy of the ANN model.

Fig 11 shows 10 random images used for training the
ANN model labeled 0 for “shallow” , 1 for “deep” and 2
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Fig. 11: Sample images used for ANN model training for depth
estimation.
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for depth estimation.

for “deeper”. Fig 12 illustrates the training and validation
accuracy as well as the training and validation loss for the
50 epochs used for training the ANN model. The model
was then evaluated on the test data which includes the
data for both phantom tissues shown in Figs. 5 and 6.
The accuracy achieved on the testing data was 82.14%
showing that the ANN model achieved good performance
for characterizing the depth of the tumors embedded in
the tissue regardless of the unevenness of the tissue surface
(Fig. 6). Sensitivity of 83.33% and specificity of 88.89%
were obtained.

V. Conclusion

This work proposed a new semi-autonomous palpation-
based method for tumor localization via tactile sensing
and utilized deep learning (a CNN model) to successfully
classify tissue abnormality with a success rate of 95.24%.
Appropriate attributes were established for classifying
tumor depths for three categories (shallow, deep, and
deeper) using a multi-layer ANN model. The results also
demonstrated good performance of the depth estimator
network with an accuracy of 82.14% for characterizing the
depth of the tumors embedded in the tissue. The proposed
RAMIS tumor localization approach showed robustness in
the performance even in case of palpating an uneven tissue
surface while maintaining a good accuracy.
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