
Differentiable Hash Encoding for Physics-Informed
Neural Networks

Ge Jin1, Deyou Wang1, Jian Cheng Wong2,3, Shipeng Li1,*

1School of Aerospace Engineering (SAE), Beijing Institute of Technology (BIT), Beijing, China
2School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), Singapore

3Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore
jinge52293@gmail.com, wangdeyou10000@163.com, wongj@ihpc.a-star.edu.sg, lsp@bit.edu.cn

Abstract—Physics-informed neural networks (PINNs) have re-
ceived considerable attention in the field of scientific computing.
Enhancing their performance to fully realize their potential
is a key concern in related fields. Recent studies have shown
that multiresolution hash encoding can significantly improve the
training performance of neural networks, which has been well-
documented in various neural representation tasks. However, the
global non-differentiable nature of widely used linear interpola-
tion hash encoding makes it unsuitable for direct combination
with automatic differentiation (AD) based PINNs. This work in-
troduces and analyzes two differentiable hash encoding methods
and studies their performance through numerical experiments.
The proposed encoding methods are combined directly with AD-
based PINNs, which, to the best of our knowledge, has not been
done before.

Index Terms—Deep Learning, Hash Encoding, Differentiable,
Physics-Informed

I. INTRODUCTION

Solving differential equations is crucial in scientific and

engineering problems. The development of deep learning

methods has brought us promising alternatives to traditional

numerical methods. One of the most popular methods is the

physics-informed neural network (PINN) [1], which has initial

applications in numerous scientific and engineering fields, in-

cluding biology, geology, hydraulics, electromagnetics, etc [2].

However, current PINNs have limited training performance

compared to traditional numerical methods, which restricts

their potential considerably [3] [4]. How to further improve

the training performance of PINN has been a focus issue in

related fields. Related studies have shown that model initializa-

tion, sampling strategy, input encoding, model structure, loss

function construction and balancing, and training strategy can

all effectively affect the training performance of PINN [5]. In

this paper, we particularly focus on input encoding methods

[6] [7].

Among input encoding methods, the recently proposed

multiresolution hash encoding method, which provides a com-

pact and trainable representation of the input coordinates,

has achieved several orders of magnitude improvement in

tasks such as learning NeRF, bringing a disruptive impact

on computer vision (CV) related fields [8]. However, since

this method employs a linear interpolation method for the

multiresolution hash table of trainable feature vectors, it makes

*Corresponding author.

the entire model globally non-differentiable, thus preventing

its direct application in auto-differentiation (AD) [9] based

PINN methods. Huang et al. tested the application of the

multiresolution hash method in numerical differentiation (ND)

based PINN [10], effectively demonstrating its performance

improvement. However, the adopted ND method cannot ef-

fectively utilize the flexibility and accuracy of AD, thus

limiting its application potential. This paper aims to explore

the feasibility of applying multiresolution hashing methods

directly in AD-based PINN methods. We will introduce and

analyze the proposed differentiable hash encoding methods in

Section 2, followed by the experiments in Section 3 and a

discussion in Section 4.

II. METHODOLOGY AND GRADIENT ANALYSIS

In this section, we will first analyze the gradient of the

linearly interpolated multiresolution hash encoding proposed

in [8] and then introduce the method to incorporate cubic

spline interpolation and smoothstep function into multireso-

lution hash encoding to obtain gradient continuity.

The output of the multiresolution hash encoding can be

recorded as

y = enc(x; θ) = [y1(x; θ); . . . ;yL(x; θ)] ∈ R
L×F , (1)

where θ is the trainable encoding parameters, L is the level

number, and F is the dimensionality.

Consider specific level l, the input coordinate x ∈ R
d is

first scaled by the resolution Nl before rounding down and up

�xl� := �x ·Nl�, �xl� := �x ·Nl�. �xl� and �xl� span a unit

hypercube with 2d vertices and each vertex is mapped into an

entry in the respective feature vector array of each level. This

feature vector array can be treated as a hash table Hl. Let vi,l

represent the i-th vertex of the hypercube where x is located,

and i ∈ [1, 2d] ⊂ Z. For one-dimensional,

v1,l = �xl�, v2,l = �xl� = 1 + �xl� (2)

The output of the encoding yl(x; θ) can be given by

yl(x; θ) = Ilinear (Hl (hl(vi,l(x)); θ)) , (3)

where Ilinear denotes the linear interpolation. Let wi,l be the

d-linear interpolation weight, which can be calculated by the

relative position of xl,

440

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00088

Fig. 1. Gradient continuity comparison of Linear and Cubic Interpolation
Hash Encoding.

wi,l =

d∏
j

(1− |xl − vi,l(x)|j) (4)

Then

yl(x; θ) =

2d∑
i=1

wi,l · Hl (hl(vi,l(x)); θ) (5)

Because the hash table look-up operation is non-differentiable,

the Jacobian ∇xyl(x; θ) ∈ R
F×d can be derived as

∇xyl(x; θ) =

2d∑
i=1

∇xwi,l · Hl (hl(vi,l(x)); θ) . (6)

The k-th element of ∇xwi,l ∈ R
1×d is as follows,

∂wi,l(x)

∂xk
= sign(vi,l(x)−xl) ·

∏
j �=k

(1−|xl−vi,l(x)|k). (7)

Since the |xl − vi,l(x)| term is always less than 1, the sign

of the
∂wi,l(x)

∂xk
will only be decided by the sign(vi,l(x)−xl)

term. Therefore, the gradient discontinuity will appear at the

vertices’ positions. We use a simple sin function to visualize

this conclusion. A single hash encoding layer with resolution

Nl = 16 is adopted to learn the target function u(x) = sin(x).
The output u and its derivatives calculated directly by the AD

method are shown in the top panel of Fig. 1. It can be clearly

seen that the first-order derivatives of the linear interpolating

hash codes are discontinuous, and this discontinuity in the

gradient occurs at the boundaries as well as at the grid vertices,

causing a significant bias in the evaluation of the current

gradient as well as higher-order gradient values.

Furthermore, from Eq. 6 we can find that the gradient

discontinuity is only caused by the interpolation and has no

concern with the hashing function.

To ensure the continuity of the higher-order derivatives, an

obvious way is adopting higher-order interpolation. Since a

wide range of typical physical governing equations require

second-order derivatives, we propose the cubic spline interpo-

lated multiresolution hash encoding method. The output of the

encoding yl(x; θ) is given by

yl(x; θ) = Icubic (Hl (hl(vi,l(x)); θ)) . (8)

This encoding satisfies the continuity of second-order deriva-

tives naturally due to the characteristics of cubic spline inter-

polation. This can be seen in the lower panel of Fig. 1, where

the continuity of both the first- and second-order derivatives

of the output results is guaranteed and the target function and

its derivative values can be accurately evaluated.

Another way to ensure the higher-order continuity of the

derivatives is by keeping the d-linear interpolation but apply-

ing the higher-order smoothstep function to the interpolation

weights. We consider the case of the first order as follows.

The general style of the first-order smoothstep function is

S1(x) = −2

(
x− a

b− a

)3

+ 3

(
x− a

b− a

)2

, x ∈ [a, b] (9)

From Eq. 4 we can find that the linear interpolation weights

wi,l ∈ [0, 1] ⊂ R, and wi,l reach its extrema only at the vertex

positions. Therefore, after applying the smoothstep function,

we have

ξi,l = S1(wi,l) = −2w3
i,l + 3w2

i,l, (10)

where ξi,l represents the smoothed interpolation weights. Then

the output of the smoothstep interpolation multiresolution

hashing encoding can be expressed as

yl(x; θ) =

2d∑
i=1

ξi,l · Hl (hl(vi,l(x)); θ) . (11)

Similar to Eq. 6 we have

∇xyl(x; θ) =

2d∑
i=1

∇xξi,l · Hl (hl(vi,l(x)); θ) , (12)

and the k-th element of ∇xξi,l is as follows,

∂ξi,l(x)

∂xk
=

∂S1(wi,l(x))

∂wi,l(x)
· ∂wi,l(x)

∂xk

= 6wi,l(x)(1− wi,l(x))
∂wi,l(x)

∂xk
.

(13)

According to Eq. 4 and Eq. 13 we can find that the gradient

of interpolation weights ∂ξi,l(x)/∂xk identically equals to

Fig. 2. Gradient continuity comparison of different Smoothstep Interpolation
Hash Encoding.

zero when xl equals vertex value vi,l. In other words, the

gradient discontinuity at the vertex position is thus eliminated.

For higher-order continuity of the derivatives, higher-order

smoothstep functions can be adopted.

The top panel of Fig. 2 employs the output of the encoding

layer with the 1st-order smoothing function, and it can be seen

441

that the gradient discontinuity of the linear interpolation at the

grid nodes disappears and is replaced by a zero gradient value.

However, the discontinuity in the second-order derivatives still

exists, which can be resolved by employing a second-order

smoothing function, as shown in the middle panel of Fig. 2. It

is worth noting that although the smoothing function solves the

gradient discontinuity problem, it also simultaneously results

in the inability to learn non-zero values for the first-order

derivative values at the vertex. To enable the encoding to

learn non-zero derivatives at vertex positions, we can leverage

the multiresolution encoding by offsetting xl with a different

constant value at each level to avoid zero derivatives being

aligned across all levels, as shown in the bottom panel of Fig.

2.

III. EXPERIMENTS

In this section, we will validate the proposed encoding meth-

ods on data-driven and physics-informed tasks, separately. We

consider the 1D Poisson equation as follows,

kΔx = f(x), (14)

where k = 0.01 and computational domain is x ∈ [0, 1], the

analytical solution of the equation is

u(x) = (2x3 − 20x)
sin(2πx)

2π
+ sin(8πx), (15)

the source term f(x) can be specified by the analytical

solution. We adopt a Multi-Layer Perceptron (MLP), which

has 3 hidden layers with 64 units each, as the backbone model.

We use the tanh activation and the model is trained with the

Adam optimizer and a fixed learning rate in all experiments.

All experiments used a 12GB NVIDIA RTX3060 GPU card.

We consider the data-driven learning first.

A. Data-Driven Learning

In this section, we compare the performance of four models,

namely MLP, MLP with Linear Interpolation Hash Encoding,

MLP with 2nd Order Smoothstep Interpolation Hash Encod-

ing, and MLP with Cubic Interpolation Hash Encoding, for

learning the target function Eq. 15 in a data-driven learning

task. 1000 labeled points are distributed evenly across the

computational domain. The learning rate is set to 1× 10−4.

Fig. 3 illustrates the predicted values of the target function

and its derivatives for the different models compared to the

analytical solution. It can be seen that all four methods

can effectively approximate the target function values, but

only the MLP and the model with cubic interpolation hash

interpolation can accurately predict the first and second-order

derivative values. The model using linear hash interpolation

hash encoding obtains a high prediction accuracy for the target

function values, however, due to its gradient discontinuity,

it is not able to learn the second-order derivative values

effectively at all. On the other hand, the model using second-

order smoothstep interpolation hash encoding (S2), while

approximating the approximate shape of the derivative values,

introduces undesirable fluctuating values, which makes its

error the largest of all the results.

Fig. 3. Comparison of data-driven learning results.

Fig. 4 and Table I show the training process in more detail

as well as the results. We also compare the proposed methods

with the Fourier Feature (FF) method [11] and SIREN [12]. It

can be seen that the model using cubic hash interpolation uses

the least number of training epochs to obtain optimal accuracy

on all predictions.

Fig. 4. Comparison of data-driven learning histories.

TABLE I
RESULTS COMPARISON FOR DATA-DRIVEN LEARNING

Model Train Prediction MSE Train
Type Epoch u ux uxx Cost

MLP 10k 1.9E-06 4.1E-02 5.6E+02 83.2s
MLP 100k 1.9E-07 6.9E-03 1.5E+02 790.6s

SIREN 10k 1.3E-06 2.2E-02 3.2E+02 79.4s
FF 10k 1.3E-06 2.2E-02 3.2E+02 79.4s

Linear 10k 3.4E-08 2.1E-01 1.8E+05 677.5s
S2

∗ 10k 8.1E-07 2.3E+00 6.2E+06 1005.6s
Cubic 3k 3.0E-12 4.4E-06 4.6E+00 574.3s
∗ S2 is 2nd-Ord Smoothstep interpolation hash encoding.

B. Physics-Informed Learning

Next, we consider a physics-informed learning task. The

known labeled points are distributed in only part of the

computational domain, i.e., the region x ∈ [0, 0.5], and the

prediction of the target function values for the rest of the

computational domain is achieved by embedding the control

equation, i.e., Eq. 14. The number of known labeled points

remains at 1000, and an additional 2000 residual points are

uniformly distributed throughout the computational domain

442

Fig. 5. Comparison of physics-informed learning results.

used to constrain the governing equations. The learning rate

is set to 1× 10−3.

Fig. 5 illustrates the prediction values of each model over

the entire computational domain and the corresponding point-

by-point error values. It can be seen that all models have

small errors in the computational domain with known labeled

point values, but the predicted values vary widely in the region

of unknown function values. One of the models using linear

hash interpolation fails completely in the prediction of the

unknown region, confirming our previous analysis that the

global gradient discontinuity of the encoding method prevents

it from being directly applied to the AD-based PINN method.

Hash encoding methods using smoothstep interpolation and

cubic interpolation do not suffer from this problem. Among

all the methods, the model using cubic interpolation hash

encoding has the fastest decrease in the prediction error value

with the limited number of training epochs, as can be found

in Table II.

However, the results in Table II also show that although the

model with cubic interpolation hash encoding can yield satis-

factory results with fewer training epochs, from the perspective

of training consumption time, its performance advantage over

the MLP model is no longer evident when additional constraint

functions are embedded.

TABLE II
RESULTS COMPARISON FOR PHYSICS-INFORMED LEARNING

Model Train Results Train
Type Epoch Losspinn MSEu Cost

MLP 10k 1.6E-05 5.8E-02 111.3s
MLP 50k 2.4E-06 1.1E-05 592.4s

SIREN 10k 7.8E+02 2.7E-00 135.4s
FF 10k 4.1E-03 2.1E-03 118.0s

Linear 10k 5.3E-06 1.6E+00 724.6s
S2 10k 2.6E-04 1.7E-01 1131.2s

Cubic 3k 5.9E-04 8.9E-05 781.3s

IV. DISCUSSION AND CONCLUSION

In this work, we analyze the gradient continuity of both

smoothstep interpolation hash encoding and cubic interpola-

tion hash encoding methods, and further validate their per-

formance in data-driven as well as physics-informed learning

tasks, respectively. It has been demonstrated that while the

smoothstep interpolation hash encoding method ensures over-

all gradient continuity, its performance is quite limited. In con-

trast, the cubic interpolation hash encoding approach has been

shown to have the potential to achieve high prediction accuracy

with a relatively small number of training epochs in both data-

driven and physics-informed learning tasks. However, due to

the high computational complexity of the cubic interpolation

method, the training overhead increases significantly after the

additional embedding of physical constraints, thereby reducing

its performance advantage in physics-informed tasks to a

certain extent.

ACKNOWLEDGMENT

The authors would like to express our deep gratitude to

Prof. Yew-Soon Ong and Dr. Qingshan Xu, for their valuable

inspiration and expert critiques in this work.

REFERENCES

[1] Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations. Jour-
nal of Computational Physics 378, 686–707.

[2] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli,
F., 2022. Scientific machine learning through physics–informed neural
networks: where we are and what’s next. Journal of Scientific Computing
92, 88.

[3] Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Mahoney, M.W.,
2021. Characterizing possible failure modes in physics-informed neu-
ral networks, in: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., Vaughan, J.W. (Eds.), Advances in Neural Information Processing
Systems, Curran Associates, Inc.. pp. 26548–26560.

[4] Wong, J.C., Chiu, P.H., Ooi, C., Dao, M.H. and Ong, Y.S., 2023.
LSA-PINN: Linear Boundary Connectivity Loss for Solving PDEs on
Complex Geometry. arXiv preprint arXiv:2302.01518.

[5] Wang, S., Sankaran, S., Wang, H. and Perdikaris, P., 2023. An expert’s
guide to training physics-informed neural networks. arXiv preprint
arXiv:2308.08468.

[6] Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan,
N., Singhal, U., Ramamoorthi, R., Barron, J., Ng, R., 2020a. Fourier
features let networks learn high frequency functions in low dimensional
domains. Advances in Neural Information Processing Systems 33,
7537–7547.

[7] Wong, J.C., Ooi, C., Gupta, A. and Ong, Y.S., 2022. Learning in sinu-
soidal spaces with physics-informed neural networks. IEEE Transactions
on Artificial Intelligence.

[8] Müller, T., Evans, A., Schied, C. and Keller, A., 2022. Instant neural
graphics primitives with a multiresolution hash encoding. ACM Trans-
actions on Graphics (ToG), 41(4), pp.1-15.

[9] Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M., 2018.
Automatic differentiation in machine learning: a survey. Journal of
Machine Learning Research 18, 1–43

[10] Huang, X. and Alkhalifah, T., 2023. Efficient physics-informed neural
networks using hash encoding. arXiv preprint arXiv:2302.13397.

[11] Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan,
N., Singhal, U., Ramamoorthi, R., Barron, J. and Ng, R., 2020. Fourier
features let networks learn high frequency functions in low dimen-
sional domains. Advances in neural information processing systems, 33,
pp.7537-7547.

[12] Sitzmann, V., Martel, J., Bergman, A., Lindell, D. and Wetzstein, G.,
2020. Implicit neural representations with periodic activation functions.
Advances in neural information processing systems, 33, pp.7462-7473.

443

