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Abstract—The government’s endorsement of renewable energy
objectives and the requirement to use carbon-free energy sources
to keep up with the growth in energy consumption have expanded
the integration of solar photovoltaic (PV) systems in distribution
networks. However, an excessive PV penetration may lead to
operational threshold violations. PV system allocation that is
optimal in terms of placement and sizing can enhance power
quality and grid performance. We formulate the allocation of
PV systems as a combinatorial mixed-integer nonlinear model to
maximize the distribution network PV hosting capacity (PVHC).
We chose three differential evolution (DE) mutation strate-
gies, namely DE/rand/1/bin, DE/current�to�best/1/bin, and
DE/rand/1/either�or, and the vortex search (VS) algorithm
to solve that optimization problem. This study aims to identify
the method that solves the PV allocation problem with higher
quality. We performed manual parameter tuning to set both
the population and iteration numbers for each algorithm. In
addition, for the DE mutation strategies, we set the scale factor
and crossover rate parameters. The results show that the VS
provides the highest grid PVHC.

Index Terms—differential evolution, distribution system, host-
ing capacity, metaheuristic algorithm, photovoltaic allocation,
vortex search.

I. INTRODUCTION

Small-scale generators attached to distribution feeders or the

customer side of the meter at the distribution level are known
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as distributed generation (DG) units. The government’s accep-

tance of renewable energy objectives and the need to satisfy

growing energy demand with carbon-free energy sources have

led to a rise in integrating renewable DG units into distribution

networks, primarily solar photovoltaic (PV) systems [1].

The vast connection of distributed PV generation to dis-

tribution feeders requires careful planning owing to potential

negative consequences on service quality and technological

limits, despite the technical, environmental, and financial

advantages of deploying DG units. These effects include an

increase in voltage, overloading grid equipment, reverse power

flow, and deterioration in grid power quality [2]. Therefore, it

is necessary to allocate DG units optimally to prevent these

technical issues.

Works [3]–[6] solved the optimal placement and sizing of

DG units in distribution networks using metaheuristic algo-

rithms. In [3], the authors separately minimized power losses

and bus voltage deviations using the differential evolution

(DE) algorithm. References [4], [5] included the power factor

of each DG unit as a design variable. In [4], the objective

function minimized the power imported from the substation,

and DE was employed. The particle swarm optimization and

genetic algorithm (GA) optimization methods were used in

[5] for minimizing the annual energy losses and bus voltage

deviations, considering the installation of single and double

DG units. Work [6] proposed a hybrid approach that employs

the Chu-Beasley GA at the master stage and the vortex search

(VS) algorithm at the slave stage.

To optimize the allocation of PV systems, we implemented

three DE mutation strategies and the VS algorithm. This work

aims to determine which algorithm provides better quality

solutions by comparing their results. DE is a stochastic search

method that employs mutation, crossover, and selection oper-

444

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00089



ators [7]. We employed the following three mutation strate-

gies: DE/rand/1/bin, DE/current�to�best/1/bin, and

DE/rand/1/either�or. VS is a single-solution-based meta-

heuristic inspired by the vortex pattern [8]. Additionally, we

performed manual parameter tuning of the control parameters

for each algorithm.

The remaining sections of this work have the following

structure: Section II presents the optimization model for the

PV allocation problem. Section III describes the metaheuristic

algorithm design and its computational implementation. Sec-

tion IV presents briefly the DE and VS search mechanisms.

The case study is shown in Section V. Section VI provides the

results of the manual parameter tuning and solutions reached

for each algorithm. Lastly, Section VII provides the concluding

remarks.

II. PV ALLOCATION PROBLEM

The PV allocation problem, i.e. siting and sizing of PV

systems in the distribution network, is stated as follows: “From

a set of candidate locations and some PV systems, what is

the best placement, installed capacity, and power factor for

each PV power plant to be connected to a distribution feeder

to ensure compliance with operational constraints imposed

by both the grid and PV power plants?”. Three classes of

optimization techniques can solve this problem: (i) Classical

optimization methods, which directly solve mathematical mod-

els, provide exact solutions but may become computationally

intractable for large-scale problems; (ii) Intelligent search

methods, known as metaheuristic algorithms, offer flexibility

and adaptability and can find near-optimal solutions for com-

plex optimization problems beyond the reach of classical tech-

niques; and (iii) Hybrid methods, which combine the strengths

of metaheuristics and classical optimization techniques [9].

The nonlinear power flow equations lead to a non-convex

feasible space [10]. The mathematical formulation of the

optimal PV allocation problem includes power flow equations

as equality constraints, which makes it a non-convex opti-

mization problem. The design variables are integers (location)

and continuous (size and power factor) values. Therefore,

the optimization model for the PV allocation problem is

constrained, non-convex, nonlinear, and mixed-integer. Due

to these characteristics, we chose metaheuristic algorithms to

solve that problem.

The PV hosting capacity (HC) is the amount of solar PV

generation that the distribution grid can accommodate [11].

The objective function of the optimization model maximizes

the PV HC (PVHC), that is, the sum of each PV power plant’s

installed capacity, as follows:

max
∑

p∈ΩPV

P inst
p (1)

where ΩPV is the set of buses in which PV systems can be

connected, P inst
p is the installed capacity of the PV power

plant at bus p, Since installing PV power plants impacts the

distribution network operation, we must perform a power flow

analysis to evaluate that impact on network parameters, such as

bus voltages and line currents. Therefore, the operational state

of the grid is determined by the following nonlinear power

flow equations:

PPV
k − PD

k = Vk

∑
km∈ΩL

Vm(Gkm cos θkm +Bkm sin θkm)

(2)

QPV
k −QD

k = Vk

∑
km∈ΩL

Vm(Gkm sin θkm −Bkm cos θkm)

(3)

QINV
k = δ

PPV
k

pfk

√
1− pf2

k
∀k = p ∈ ΩPV (4)

where k is a bus from the set of distribution network’s buses

(ΩB); PPV
k = P inst

p and QPV
k = QINV

k ∀k = p ∈ ΩPV

represent the active and reactive powers of the p-th PV power

plant connected at bus k, respectively; the QPV
k given by (4)

is the reactive power injected or absorbed by the PV system

into the grid and is a function of both the output active power

and the set power factor (pfk); δ is the power factor type and

is defined as either 1 or -1 to represent a leading and lagging

power factor, respectively; PD
k and QD

k are the active and

reactive power demand on the bus k, respectively; Vk and Vm

are the voltage magnitudes on the buses k and m, respectively;

ΩL is the set of lines; the conductance, susceptance, and

voltage angle difference on the line linking buses k and m
are represented by Gkm, Bkm, and θkm, respectively.

∑
k∈ΩB

bk = N ∀bk ∈ {0, 1}, ∀k = p ∈ ΩPV (5)

The sum of the binary variables bk, denoting if a PV system

is installed at bus k, must be equal to the quantity of PV

systems that are installed (N ), according to (5). The inequality

constraints of the optimization model are the following:

bpP
min
p ≤ P inst

p ≤ bpP
max
p ∀bp ∈ {0, 1}, ∀p ∈ ΩPV (6)

pfmin
p ≤ pfp ≤ pfmax

p ∀p ∈ ΩPV (7)

V min
k ≤ Vk ≤ V max

k ∀k ∈ ΩB (8)

0 ≤ Ikm ≤ Iratedkm ∀km ∈ ΩL (9)

Pslack ≥ Prpf (10)

The boundaries of the PV system’s installed capacity and

PV inverter power factor at bus p are given by (6) and

(7), respectively. Inequalities (8) and (9) limit the voltage

magnitude at bus k and avoid overloading related to the current

through the line km, respectively. To some extent reverse
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power flow is allowed at the feeder-head. Therefore, the active

power at slack or swing bus must be greater than the reverse

power flow threshold (Prpf ) as in (10). Note that Prpf is a

negative number.

In summary, the constraints include the nonlinear power

flow equations, boundaries of each PV system’s installed

capacity and power factor, and thresholds of bus voltages,

current through the conductors, and reverse power flow at the

feeder-head.

III. METAHEURISTIC DESIGN AND IMPLEMENTATION

This section outlines the design and implementation of the

metaheuristic, including aspects such as solution encoding,

the initial population, evaluation of the quality of a candidate

solution, and the constraint handling.

A. Solution Encoding

The design variables are each PV system’s location, in-

stalled capacity, power factor type (δ), and power factor value

(pf ). Figure 1 depicts a solution vector comprising four types

of design variables. Location variables are discrete (integers),

but we represent them as continuous values. So, all the

elements of the solution vector are continuous values. To get

the location number, the corresponding variables are rounded

to the nearest integer number. α is a real value in the range

[0,1] that allows representing δ in the algorithm and is given

by (11). α values less than 0.5 indicate a leading power factor,

while α values greater than or equal to 0.5 represent a lagging

power factor. Since N represents the quantity of PV systems

that will be installed, each part of the vector will have N
elements, and the solution vector will have a total of N × 4
elements.

δ =

{
−1 if α ≥ 0.5

1 otherwise
(11)

B. Initial Population

In the population initialization process, one solution vector

(or individual) equals the variable’s lower bounds. The remain-

ing individuals are randomly generated between the lower and

upper boundaries of the design variables. It ensures that at least

one individual from the population is feasible.

C. Objective Function Value and Feasibility

The quality of a candidate solution is defined by its objective

function value (OFV) and its feasibility. The power flow

analysis allows us to obtain the OFV and verify the feasibility

of the solution. It is possible to determine the current and

power flow through the lines from the power flow outputs (i.e.,

the magnitude and phase angle of the bus voltages). Therefore,

we can check if the bus voltages, line currents, and reverse

power flow constraints are satisfied. We perform the power

flow analysis of the distribution grid using an open-source

simulation tool called OpenDSS [12].

D. Constraint Handling

We implemented a repair method to guarantee that only

one PV system would be connected in each potential location.

A random number is chosen one at a time from a list of

potential sites using this repair process. This selection process

is carried out N times. After a number is selected, it is

eliminated from the list of places, making it impossible to

choose the same number again. The location repair procedure

does not guarantee the solution’s feasibility; it only ensures

that unique locations will be in the solution vector. The

metaheuristic executes the repair procedure every time the

search mechanisms (i.e., the DE and VS algorithms) generate

new candidate solutions. Each infeasible solution has a degree

of infeasibility computed as follows:

S = w1(V
f−V max)+w2(I

f
km−Iratedkm )−w3(Prpf−Pslack)

(12)

where w1, w2, w3 are the weights of each constraint violation;

V f is the maximum bus voltage of the feeder; and Ifkm
is obtained as follows: First, for each line, the conductor

(or cable) current is divided by its current rating, and the

maximum value is saved in a list. Then, we get the maximum

value of that list and multiply it by its corresponding ampacity.

A feasible solution is always better than an infeasible one.

Among infeasible solutions, the one with the lowest infeasi-

bility value is the best.

E. Metaheuristic Framework

Figure 2 depicts the metaheuristic design steps. The steps

in blue boxes are problem-dependent. While the search mech-

anism (or algorithm), such as GA, DE, VS, among others,

generally is not for a specific optimization problem, instead it

can be employed for solving several optimization problems.

This work employs simulation-based optimization, where

optimization is the primary method that uses simulation as

a subcomponent. The metaheuristic conducts the optimization

process, whereas the simulation method is the power flow anal-

ysis that enables objective function evaluation and constraint

satisfaction verification.

IV. SEARCH MECHANISMS

Figure 1 shows three-fourths of the design variables are

continuous. We chose the DE and VS algorithms because

both are well-suited for continuous optimization problems.

In addition, DE has already been used to solve the optimal

DG allocation problem [3], [4] and is simpler to code than

other evolutionary algorithms [13]. The VS algorithm is a

single-solution-based algorithm that requires setting only the

maximum iteration (iter) and neighborhood solution (NP )

numbers, and its computational implementation is simple.

Some works have compared the DE performance with other

population-based algorithms, such as GA and particle swarm

optimization. This paper compares a population-based algo-

rithm with a single-solution-based algorithm.
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Fig. 1. Encoding of the solution vector.
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Fig. 2. Metaheuristic design.

A. Differential Evolution

DE is an evolutionary algorithm for real parameter opti-

mization developed by Storn and Price in 1995 [7]. It is a

population-based stochastic search mechanism that seeks the

best solution over continuous search spaces. The main idea

behind the algorithm is to generate trial vectors. First, the

mutation operator creates the mutated or donor vector by

adding a weighted difference between two individuals to a

third. Next, a trial individual is created by recombining the

donor with the target vector.

After the population initialization and the objective function

evaluation, the algorithm executes the following four steps at

each iteration for each individual:

1) Random choice of three different solutions from the

population;

2) The creation of the trial individual by applying the

mutation and crossover operators;

3) Verifying the variable boundaries of the trial individual,

if some variable of the trial individual is beyond the

search range, it must be returned to the feasible search

range;

4) Selection of the best solution by comparing the OFV and

infeasibility degree of the trial and current individuals.

DE is characterized by three control parameters that de-

fine its performance in achieving high-quality solutions: the

population number (NP ), scale or differentiation factor (F ),

and crossover rate (Cr). A predefined number of iterations (or

generations) (iter) is the stopping criterion for the algorithm.

To solve the optimal PV allocation problem, we employed

the following three different mutation strategies:

1) DE/rand/1/bin: This is the classic mutation scheme,

which creates an i-th mutant individual (�mi,it) at iteration it
and uses a binomial crossover as follows:

�mi,it = �xr1,it + F (�xr2,it − �xr3,it) (13)

where �xr1,it, �xr2,it, and �xr3,it are three random solutions from

the population, which are mutually different and also different

from the current individual.

2) DE/current�to�best/1/bin: This strategy mutates the

current i-th individual �xi,it by adding two scaled difference

vectors, as follows:

�mi,it = �xi,it + F (�xbest,it − �xi,it) + F (�xr1,it − �xr2,it) (14)

where �xbest,it is the best individual in the population, �xr1,it,

and �xr2,it are two random solutions from the population. The

current, base, and difference vectors must be different.

3) DE/rand/1/either�or: The mutant vectors that are

pure mutants (such as in the classic DE) occur with a prob-

ability of PF , and those that are pure recombinants happen

with a probability of 1− PF , as follows:

�mi,it =

{
�xr1 + F (�xr2 − �xr3), if rand() < PF

�xr1 +K(�xr2 + �xr3 − 2�xr1), otherwise
(15)

rand() is a uniformly distributed random number within the

range of (0, 1) and K = 0.5(F + 1).

B. Vortex Search

The VS is a single-solution-based algorithm for solving

bound-constrained global optimization problems. It mimics

the vortex flow phenomenon and uses an adaptive step size

adjustment to balance the exploration and exploitation of the

search. VS uses the inverse incomplete gamma function to

decrease the radius at each iteration [8]. A real positive number

a is an input of the lower incomplete gamma function. In the

VS algorithm, that parameter a defines the resolution of the

search. At each iteration it, the value of ait is computed as

follows:

ait = a0 − it

iter
(16)

where a0 is equal to 1 to ensure full coverage of the search

space at the first iteration.

V. CASE STUDY

We tested the three DE mutation strategies and the VS

algorithm for the PV allocation problem in a real medium-

voltage distribution feeder model shown in [14]. There are
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eight candidate locations, and we are allocating three PV sys-

tems. The distribution feeder has a residential load profile with

a peak demand of 4580 kW at 19:00. From the measurements

at the feeder-head, we consider two operating points for the

power flow analysis, whose load values in per unit (p.u.)

(selecting the peak demand as the base) are 0.668 and 0.501 for

the first and second operating points, respectively. The active

power outputs of the PV systems are equal to their installed

capacities.

The PV inverter rating is 10% higher than the installed

capacity of the PV system (SINV = 1.1P inst) so that it can

inject or absorb reactive power at a power factor of 0.9,

even when the PV system is injecting its total active power

output. The minimum and maximum voltage thresholds are

0.95 p.u. and 1.05 p.u., respectively. The current threshold for

each conductor is its rated current, Prpf = −10000 kW, and

w1 = w2 = w3 = 1
3 . The allowed ranges of the location

variables, installed capacities (in kW), α, and pf are [0.5,

8.49], [1000, 7000], [0, 1], and [0.9, 1], respectively. For the

parameter tuning and comparison of each algorithm, we fixed

the number of objective function evaluations to 500. We tested

the algorithms on a workstation running Windows 10 with an

Intel®Core™i7-4770 2.6 GHz processor and 16 GB of RAM.

VI. RESULTS

We implemented the algorithms in Python 3.9. The py-dss-

interface package, particularly version 2.0.2, enables access to

OpenDSS version 9.6.1.3 via dynamic link library (DLL) in-

terface. We tuned the parameters for every search mechanism.

The parameter tuning comprises two stages. The first stage,

just for the three DE strategies, concerns tuning the F and

Cr control parameters, whereas the second one determines

the best values of NP and iter for all algorithms. In the

first stage, we set NP = 10 and iter = 50 and modify both

F and Cr parameters in the range of [0.1, 1] with a step

size of 0.1, resulting in 100 possible combinations. The final

value of each (F , Cr) combination is the average of the final

OFV for five different runs, and we chose the combination that

yielded the highest mean PVHC. Figure 3 shows the heatmaps

for the three DE strategies. Warmer tones, such as red and

orange, indicate higher mean OFVs, while cooler tones, like

dark green, represent lower values. The best combinations of

(F , Cr) were (0.8, 1.0), (0.6, 0.8), and (0.5, 0.6) for the first,

second, and third mutation strategies, respectively.

In the second stage of the parameter tuning, with the best

(F , Cr) parameters found in the first stage, the following

five (NP , iter) combinations were tested: (5, 100), (10, 50),

(20, 25), (25, 20), and (50, 10). Table I displays the mean

PVHC for five runs of each (NP , iter) combination. The

(10, 50) combination reached the highest mean OFV for every

algorithm.

Once the control parameters were set, we executed each

search mechanism 30 times. The following performance met-

rics were chosen to compare the algorithms: the mean, best,

worst, standard deviation (std dev) OFVs, and the mean

runtime. The results of each metric are shown in Table II. The

VS algorithm has the highest values for both the PVHC mean

and the PVHC. The DE/current�to�best/1/bin mutation

strategy presents the best values for the worst and std dev

PVHC.

Figure 4 shows the convergence of the best run for each

algorithm. There are higher variations in the OFV in the first

20 iterations, approximately, and after that iteration, the value

of the PVHC presents minor modifications. Table III displays

the locations, installed capacities, and power factors of the

three PV systems, founded by the best solution of the VS

algorithm (PVHC= 12399.87 kW). The power factor at the

fourth and fifth locations is leading, whereas the PV inverter

at the eighth location is operating with a lagging power factor.

Additionally, the maximum values of bus voltage and line

thermal load of the feeder for the best solution are 1.05 p.u.

and 99%, respectively, and P slack = −9367.236 kW. Since

the bus voltage reaches the maximum threshold, overvoltage

is the main constraint for reaching higher PVHC levels.

VII. CONCLUDING REMARKS

This work presented the application of two algorithms,

namely differential evolution (DE) and vortex search (VS), for

optimizing the allocation (placement and sizing) of solar pho-

tovoltaic (PV) power plants into a power distribution network.

We implemented and compared four search mechanisms: three

different DE mutation strategies, namely DE/rand/1/bin,

DE/current�to�best/1/bin, and DE/rand/1/either�or,

along with the VS algorithm. Moreover, a manual parame-

ter tuning process that comprises two stages was presented.

The results showed the VS algorithm outperformed the DE

mutation strategies, as it yielded the highest values for two

metrics: the PV hosting capacity (HC) mean and PV HC.

Future work would be to solve the proposed optimization

model using a commercial optimization solver and compare

the quality of its result with the best solution obtained by the

VS algorithm.
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Castro, “Photovoltaic distributed generation – an international review on
diffusion, support policies, and electricity sector regulatory adaptation,”
Renewable and Sustainable Energy Reviews, vol. 103, pp. 30–39, 2019.

[2] M. Ebad and W. M. Grady, “An approach for assessing high-penetration
PV impact on distribution feeders,” Electric Power Systems Research,
vol. 133, pp. 347–354, 2016.

[3] M. R. Nayak, S. K. Dash, and P. K. Rout, “Optimal placement and sizing
of distributed generation in radial distribution system using differential
evolution algorithm,” in Swarm, Evolutionary, and Memetic Computing,
B. K. Panigrahi, S. Das, P. N. Suganthan, and P. K. Nanda, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 133–142.

[4] P. D. Huy, V. K. Ramachandaramurthy, J. Y. Yong, K. M.
Tan, and J. B. Ekanayake, “Optimal placement, sizing and
power factor of distributed generation: A comprehensive study
spanning from the planning stage to the operation stage,”
Energy, vol. 195, p. 117011, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360544220301183

[5] M. Purlu and B. E. Turkay, “Optimal Allocation of Renewable Dis-
tributed Generations Using Heuristic Methods to Minimize Annual
Energy Losses and Voltage Deviation Index,” IEEE Access, vol. 10,
pp. 21 455–21 474, 2022.

448



Fig. 3. Mean OFV of (a) DE/rand/1/bin, (b) DE/current�to�best/1/bin, and (c) DE/rand/1/either�or.

TABLE I
RESULTS FOR THE FIVE (NP , iter) COMBINATIONS

NP iter
Mean PVHC [kW]

DE/rand/1/bin DE/current�to�best/1/bin DE/rand/1/either�or VS
5 100 10727.20 11389.75 9290.33 11904.82
10 50 12119.34 12109.58 12108.07 12234.23
20 25 12016.84 12059.76 12016.29 12174.89
25 20 12056.97 12086.16 12060.51 12080.85
50 10 11916.46 11915.57 11871.18 12065.85

TABLE II
PARAMETERS AND METRICS FOR THE SEARCH MECHANISMS

Algorithm Parameter PVHC [kW] Mean
(F , Cr) Mean Best Worst std dev runtime [s]

DE/rand/1/bin (0.8, 1) 12139.67 12318.21 11008.02 244.79 243
DE/current�to�best/1/bin (0.6, 0.8) 12129.25 12272.28 11960.76 86.57 239

DE/rand/1/either�or (0.5, 0.6) 12023.26 12223.57 11807.49 108.28 247
VS − 12182.72 12399.87 11639.4 155.41 275

0 10 20 30 40 50
Iteration

4000

6000

8000

10000

12000

PV
HC

 [k
W

]

DE/rand/1/bin
DE/current-to-best/1/bin
DE/rand/1/either-or
VS

Fig. 4. PVHC over iterations of the best run for each algorithm.

TABLE III
BEST SOLUTION FOUND BY THE VS ALGORITHM

PV Location Distance Size Power
system [km] [kW] factor

#1 4th 6.41 5257.63 0.991
#2 5th 8.01 6029.06 0.967
#3 8th 7.46 1113.17 0.998−
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