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Abstract—Autonomous systems (AS) often use Deep Neural
Network (DNN) classifiers to allow them to operate in complex,
high-dimensional, non-linear, and dynamically changing envi-
ronments. Due to the complexity of these environments, DNN
classifiers may output misclassifications during operation when
they face domains not identified during development. Removing
a system from operation for retraining becomes impractical as
the number of such AS increases. To increase AS reliability
and overcome this limitation, DNN classifiers need to have the
ability to adapt during operation when faced with different
operational domains using a few samples (e.g. 2 to 100 samples).
However, retraining DNNs on a few samples is known to cause
catastrophic forgetting and poor generalisation. In this paper, we
introduce Dynamic Incremental Regularised Adaptation (DIRA),
an approach for dynamic operational domain adaption of DNNs
using regularisation techniques. We show that DIRA improves
on the problem of forgetting and achieves strong gains in
performance when retraining using a few samples from the
target domain. Our approach shows improvements on different
image classification benchmarks aimed at evaluating robustness
to distribution shifts (e.g.CIFAR-10C/100C, ImageNet-C), and
produces state-of-the-art performance in comparison with other
methods from the literature.

I. INTRODUCTION

Autonomous systems (AS) often are developed using deep

neural network (DNN) classifiers to interact and adapt in

dynamically changing real-world environments to achieve their

intended goals. The benefit of using DNNs in autonomous

systems is their ability to learn complicated patterns from

complex environments, and thus produce highly non-linear

decision boundaries to cope with the complexity of oper-

ational environments. However, it is a challenge to verify

the behaviour of DNNs. A popular example of such ASs is

self-driving cars. Current research shows that for each self-

driving car, an impractical amount of testing is required to

verify the system for deployment [1]. Innovative methods of

increasing the efficiency of testing and validation are actively

being developed to make the process more practical, e.g. [2,

3]. However, due to the vast operational environments and the
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enormous effort required in testing to achieve deployment,

the community is additionally incorporating trustworthiness

assessment of AS to allow for reliable deployment and pro-

gressive improvements during the operational lifetime of such

systems [4]. This follows a two-stage approach presented by

Koopman et.al. [5], which stipulates that, given an AS passes

some minimum safety validation case, the system is deployed

and is improved during operation to increase its reliability over

time. Thus, the system is allowed to adapt to dynamically

changing operational environments.

The process of continual learning or adaptation can be bro-

ken into three stages 1) detection of change in the operational

domain, e.g. [6, 7, 8, 9], 2) supply of labels from an oracle

or ground truth for new operational domain samples, e.g. [10,

11], 3) retraining. Alternatively, 2) and 3) can be substituted

by one stage of self-supervised or unsupervised retraining. We

aim to investigate this option in future work. In this paper, we

focus on point 3), i.e. retraining.

DNN classifiers use gradient-based optimisation algorithms

to learn. The gradient optimiser modifies the decision bound-

ary based on the samples used in training. Retraining using few

samples can result in a phenomenon known as catastrophic
forgetting, where the model overfits to the few training samples

used and does not generalise to the domain distribution [12].

Generally, to overcome catastrophic forgetting, new samples

are added to the initial training dataset and the classifier is

fully retrained. Full retraining, however, can be cumbersome to

perform during operation. In this paper, we propose Dynamic

Incremental Regularised Adaptation (DIRA), a framework to

achieve operational domain adaption by retraining using only

few samples from the target domain. We utilise the concept

of regularisation in our framework to overcome the need for

full retraining.

Practically, upon adaptation of AS, reassessment of the

system’s safety may be required. The safety compliance of

evolving DNN classifiers during operation against a set of re-

quirements or regulations is beyond the scope of this paper, but

may be achieved through the use of runtime safety behavioural

checkers as presented by Harper et.al. [13] or by using online

methods for quantifying trustworthiness in predictions during

operation as shown by Ghobrial et al [14].

In the next section, we discuss related work material.

Section III introduces our method. Experimentation Setup

and Results & Discussion are handled by sections IV and
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V, respectively. We conclude and discuss future works in

Section VI.

II. RELATED WORK

A. Types of Incremental Learning

Gradually assimilating new information from a continuously

changing data stream, known as ‘continual learning’, poses

a challenge for deep neural networks. Continual learning,

however, is a fundamental aspect of evolving autonomous

systems. In a continual learning setting the problem is broken

down into several parts that need to be learned sequentially.

In the continual learning literature, these parts are often called

tasks. Thus, the term tends to have several meanings. These

several connotations of the term task make it difficult to study

the different challenges associated with continual learning. To

overcome this problem, Ven et al.[15], proposed to brake down

continual learning into three incremental learning scenarios:

task-incremental, domain-incremental, and class-incremental

learning (see Table I). Each scenario describes the context

of the parts required to be learned sequentially, formerly the

three scenarios contexts were referred to using the term task.

Braking continual learning into different scenarios makes it

more convenient to study the different challenges associated

with each scenario, and subsequently develop appropriate

techniques to overcome the associated challenges [16, 17, 18,

19].

The first scenario (task-incremental learning), describes the

case where the algorithm is required to learn incrementally a

set of distinct tasks. For example, if a neural network model

was to classify numbers from 0 - 9 in English (like in the

MNIST dataset [20]), then a new task for the model can be to

learn to classify samples in Permuted-MNIST [12] or Fashion-

MNIST [21] i.e. the same number of classes but the pattern has

changed distinctively. For more examples see [22, 23, 24]. In

the second scenario (domain-incremental learning), the model

needs to learn the same problem but in different contexts,

because the domain or input distribution has shifted. Using

our previous example of classifying digits 0 - 9, in domain

incremental learning, the model is required to learn to classify

digits 0 - 9 but with Gaussian noise or contrast noise added

to the input samples. See [25, 26] for more examples. The

third scenario (class-incremental learning), describes when the

model needs to learn a growing number of classes. In the

example of classifying digits 0 - 9, class-incremental learning

is the model learning to classify digit ‘10’ as an additional

class to the existing 0 - 9 classes. See examples [27, 28].

Since our focus is on dynamic distributional shifts during

operation, we are interested in the second scenario of incre-

mental learning i.e. domain-incremental learning. We focus

on trying to achieve domain incremental adaptation using a

limited number of samples.

B. Domain Adaptation Frameworks

There have been a number of introduced approaches in

the literature that address the problem of domain-incremental

adaptation. For a breakdown of categories for the different

Scenario Description
Task-Incremental Sequentially learn to solve a number
Learning of distinct tasks.
Domain-Incremental Learn to solve the same problem in
Learning different contexts.
Class-Incremental Differentiate between incrementally
Learning observed classes.

TABLE I: Overview of incremental learning scenarios [15]

introduced approaches in the literature, we direct interested

readers towards [29]. Here we will cover some state-of-the-art

examples of these approaches relevant to our results discussed

later in section V.

One popular approach is using self-supervision to achieve

domain adaptation. Test-time training (TTT) combine different

self-supervised auxiliary contexts to achieve domain adapta-

tion. They break down neural network parameters into three

parts, such that pictorially the architecture has a Y-structure.

The bottom section of the Y-structured architecture represents

the input layer and the layers responsible for the shared feature

extraction, whilst the other two sections contain layers for

learning and outputting labels for the main and auxiliary tasks

independently. An example of this auxiliary task is being

able to tell the rotation of the input image. During training

time the whole neural network is optimised using a combined

loss function that aims to maximise performance on both the

main and auxiliary tasks. During retraining to adapt to a new

domain, only parameters of the shared feature extraction and

the auxiliary task sections are allowed to change. By doing

so the the shared feature extraction section of the network

modifies to learn the new domain, so then the network may

output correct predictions on the unchanged branch of the

network responsible for the main task [30, 31].

Correcting domain statistics is another common approach

to achieving domain adaption, e.g. [29, 32, 33, 34]. Some of

these approaches rely on using a large number of samples

to recalculate the running mean and standard deviation of

batch normalisation layers for the target domain e.g. [33,

32]. Other approaches, like Dynamic Unsupervised Adaption

(DUA) [29], combine the running mean and standard devi-

ation for normalisation layers from the original domain and

the target domain to achieve adaptation in an unsupervised

fashion, whilst using significantly fewer samples (typically

≈ 100 samples).

Our proposed DIRA method aims at achieving adaptation

through the regularisation of new and old information. We

retrain the model on samples from the target domain. There-

fore, we require labels to be provided with the retraining

samples, which makes our approach a supervised instead of

an unsupervised method. We use regularisation techniques to

avoid catastrophic forgetting and achieve adaptation using very

few samples. By doing so, we benefit from transfer learning of

information from the initial domain to the target domain. Our

philosophy is that if humans use transfer learning to learn

and adapt to different environments, we believe that neural

networks can also achieve domain adaptation in a similar
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fashion. We see our approach can be combined with self-

supervision methods, such as done in TTT, to overcome the

need for providing labels. Exploring the use of self-supervision

in our approach is left as future work. In this paper, we assume

labels for samples from the target domain are available for

retraining.

C. Regularisation
The concept of regularisation allows a neural network to

learn new information whilst retaining previously learned

information. This allows a neural network to learn new in-

formation without experiencing catastrophic forgetting and

without needing access to training data of previously learnt

information. Regularisation achieves this by presenting a pe-

nalisation term in the loss function of the optimisation prob-

lem. Several works in the literature have introduced different

penalisation terms, some popular examples are Synaptic Intel-

ligence (SI) [35], Learning without forgetting (LWF) [36], and

Elastic Weight Consolidation (EWC) [37]. In DIRA, different

regularisation techniques may be utilisable, however, based on

surveys such as the one provided by Kemker [38], the EWC

penalisation term results in state-of-the-art performance within

regularisation techniques. Therefore, we developed our method

predominantly based on EWC.

III. METHOD

We first summarise EWC regularisation [37] as our ap-

proach revolves around it. Then we discuss the details of our

DIRA method.

A. Elastic Weight Consolidation
Kirkpatrick et al. [37] introduced Elastic Weight Consolida-

tion (EWC) to overcome forgetting in task-incremental learn-

ing. EWC overcomes forgetting by introducing a penalisation

term in the loss function when retraining. This penalisation

term provides a sense of the importance of each weight in the

trained model on the original classification task. Therefore,

when retraining on a new task, the algorithm is guided to avoid

making significant changes to weights with high importance to

the initial task. In this paper, we are interested in adapting to

new domains, instead of adapting to new tasks. In the rest of

this section, we will discuss the derivation of EWC and outline

the assumptions that need to be taken into account when using

EWC for domain adaptation.
During training of a DNN, the goal is to minimise the

loss function L(θ), represented as the Log-Likelihood function

−log(P (θ|D)) [39]. This aims at estimating θ, which is the

set of weights and biases in a DNN, given D, the dataset rep-

resenting the samples of the distribution of interest. D can be

split into two independent datasets such that D = {DA, DB},

where DA and DB are datasets that are trained on sequentially

and each of them may represent a different distribution. Using

the chain rule in probability it can be shown that:

log(P (θ|DA, DB)) = log(P (DB |θ,DA)) + log(P (θ|DA))

− log(P (DB |DA))
(1)

Considering the RHS of equation 1:

• First term, using conditional independence

log(P (DB |θ,DA)) = log(P (DB |θ)) and hence

can be seen as the loss function, LB(θ) that needs to be

minimised for the new distribution or dataset DB alone.

• Second term, log(P (θ|DA)) is the loss function for

training the neural network on distribution DA only. Thus

can be denoted as LA(θ).
• The Third term, is irrelevant as this term is constant with

respect to θ and thus is lost when optimising using the

stochastic gradient descent (SGD) i.e. does not need to

be computed. We will neglect this term for the rest of the

derivation.

Therefore, the overall loss function in equation 1 can be

written as:

L(θ) = LB(θ) + LA(θ) (2)

In continual learning, distribution A would have been

trained on initially, and later samples from distribution B arise

and must be learnt by the DNN. In this case, the term LA(θ)
is considered to be intractable as it is assumed that access to

training samples for distribution A is not available after initial

training.

The underlying idea of EWC is to take a Bayesian approach

to adapt the DNN model parameters, therefore learning ad-

ditional distributions whilst avoiding catastrophic forgetting

or minimising forgetting. However, due to intractable terms,

it is not possible to maintain the full posterior P (θ|D)).
An inference technique is required to approximate these in-

tractable terms. EWC can be seen as an online approximate

inference algorithm [40]. An essential assumption for EWC

to approximate LA(θ) is that the DNN has been optimised

for DA such that θ has reached a local or a global minimum,

θ∗A, for distribution DA. This allows for −log(P (θ|DA)) to be

approximated as a Gaussian distribution function at its mode

using Laplace’s method [41]. Expanding −log(P (θ|DA)) us-

ing Taylor series around θ∗A:

−log(P (θ|DA)) ≈− log(P (θ∗A|DA))

+ (
∂(−log(P (θ|DA)

∂θ
|θ∗

A
)(θ − θ∗A)

+
1

2
(θ − θ∗A)

TH(θ∗A)(θ − θ∗A)

+ · · ·

(3)

Considering the RHS of equation 3:

• The First term, is a constant and similar to earlier it will

get lost in the SGD optimiser.

• Second term, evaluates to gradient 0 as it is assumed that

θ∗A is at the mode of the distribution.

• Third term; H(θ∗A) is the Hessian of −log(P (θ|DA))
with respect to θ evaluated at θ∗A, which is

(∂
2(−log(P (θ|DA)

∂θ2 |θ∗
A
).
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The Hessian can be computed by approximating it to the

empirical Fisher information matrix. Using Bayesian rule:

H(θ∗A) =− ∂2(log(P (DA|θ)))
∂θ2

∣∣∣∣∣
θ∗
A

− ∂2(log(P (θ)))

∂θ2

∣∣∣∣∣
θ∗
A

+
∂2(log(P (DA)))

∂θ2

∣∣∣∣∣
θ∗
A

(4)

Considering the RHS of equation 4:

• First term can be approximated as the negative of the

empirical Fisher information matrix, F , [42, 43, 44]. The

Fisher matrix can be defined as a way of measuring

the amount of information that a random observation

DA[n] carries about a set of unknown parameters θ of

a distribution that models log(P (DA|θ), where n is an

index falling within the size, N , of the observable random

samples DA. Formally, it is the negative of the expected

value of the observed information, hence it can be shown

that it approximates to the first term of equation 4:

F (θ) = −NE

[
∂2(log(P (DA[n]|θ)))

∂θ2

]

≈ −N
1

N

N∑
n=1

∂2(log(P (DA[n]|θ)))
∂θ2

= −
N∑

n=1

∂2(log(P (DA[n]|θ)))
∂θ2

= −∂2(log(P (DA|θ)))
∂θ2

(5)

The approximation made to the expectation in equation 5

becomes exact as the number of observations or samples

becomes infinite. Therefore, the data size N of the

previous information is crucial to the applicability of

using the EWC approximation.

• Second term, is the prior probability.That is the probabil-

ity distribution the DNN represents before being trained

on any observations i.e. datasets. Given that often θ in

DNNs are initialised using a random uniform distribution,

then this term evaluates to zero and hence is ignored by

the EWC algorithm.

• Third term, evaluates to zero as non-dependent on θ.

Putting terms together from the previous steps makes equa-

tion 2 reach the EWC loss function presented by [37]:

L(θ) = LB(θ) +
∑
j

λ

2
FA,j(θj − θ∗A,j)

2 (6)

where λ is a hyper-parameter presented by Kirkpatrick et al. to

allow for fine-tuning to minimise forgetting, and j labels each

parameter. We summarise the list of assumptions for which

equation 6 holds:

Assumption 1: The DNN was trained very well on the previ-

ous distribution represented by DA that θ has reached a local

or a global minimum i.e. θ∗A = argminθ{−log(P (θ|DA))}.

Assumption 2: “Enough” observations are available in DA to

allow for the approximation from the Hessian to the empirical

Fisher information matrix.

B. Dynamic Incremental Regularised Adaptation (DIRA)

This section describes the algorithmic details of our method.

In order to achieve successful domain-adaptation we have

taken into consideration the two assumptions outlined in

section III-A when developing DIRA. Let M0 be the model

trained on the original domain dataset X0. The standard

optimisation problem in training a neural network on the

original domain with a loss function L0 solves:

min
θ

L0(θ) (7)

The aim of our approach is to adapt the trained model to out-

of-distribution target data XT using a few number of samples

ST from the target domain. To achieve this goal we utilise

the concept of transfer learning, aiming at reserving beneficial

information learnt from the original domain to allow for suc-

cessful adaptation to the target domain. Our hypothesis is that

by using regularisation techniques one should be able to utilise

this notion of transfer learning to achieve adaption with a

limited number of samples from the target domain. Therefore,

the problem we try to optimise for during adaptation becomes

a combination of the loss function for the original domain L0

and the target domain LT :

min
θ

LT (θ) + L0(θ) (8)

The L0 is intractable during adaptation since we have no

access to the original domain training data. Therefore, an

approximation of the original domain is done using EWC

which yields the optimisation problem:

min
θ

LT (θ) +
∑
j

λF0,j(θj − θ∗0,j)
2 (9)

To satisfy assumption 1, whenever we retrain we always

start from the original model M0. Practically this is achievable

as a copy of M0 can always be kept onboard of a system.

Assumption 2 can be satisfied by calculating the Fisher matrix

using the original training dataset during initial training and a

copy of this calculated Fisher matrix would be saved on board

of the system, omitting the need to keep a copy of the initial

training data on board.

In each training step t, the model parameters are updated

according to Equation 10, where η is the learning rate.

θt+1 = θt − η

(LT(θ)

dθ
−

∑
j λF0(θt,j − θ∗0,j)

2

dθ

)
(10)

The two hyperparameters critical for the success of our

optimisation problem are η and λ. Different numerical search

methods can be used for finding values for these hyperpa-

rameters, e.g. grid search, Bayesian optimisation etc. From
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empirical testing, we found that a combination of η = 1e-5

and λ = 1 yields near optimum adaptation for datasets we

used in our experimentation.

IV. EXPERIMENTATION SETUP

We used the problem of image classification to showcase

our method. All of our experimentation was based in PyTorch

library [45]. In the rest of this section, we discuss the details of

our experimentation setup. Code is available at this repository:

https://github.com/Abanoub-G/DIRA

A. Benchmarks

We utilise CIFAR-10C, CIFAR-100C, and ImageNet-C

datasets in our experimentation. These are image classification

benchmarks to evaluate a model’s robustness against common

corruptions [46]. The benchmarks add different corruptions to

the tests sets of CIFAR-10/CIFAR-100[47] and ImageNet [48]

There are 20 corruptions in total with five different levels of

severity, however, most SOTA domain-incremental retraining

frameworks utilise 15 corruptions out of the 20 in their com-

parisons, e.g. [29, 30]. These are deemed the more common

corruptions. We use the same 15 common corruptions used by

other methods in the literature.

B. Baselines

We list below the different baselines we assess against our

DIRA approach:

1) Source: Refers to results of the corresponding baseline

model trained on the incorrupt data (i.e. X0), without

adaption to the target domain.

2) SGD: Denotes retraining on samples of the corrupt data

using only Stochastic Gradient Decent optimisation [39],

i.e. without using any complimentary incremental learn-

ing frameworks, similar to how initial training on the

incorrupt data is done.

3) TTT [30]: Test-Time Training (TTT) adapts parameters

in the initial layers of the network by using auxiliary

tasks to achieve self-supervised domain adaption.

4) NORM [32, 33]: Ignores the initial training statistics

and recalculates the batch normalization statistics using

samples from the target domain only (requiring a large

number of samples).

5) DUA [29]: Dynamic Unsupervised Adaptation (DUA),

takes into account initial training statistics and updates

batch normalization statistics using samples from the

target domain (requiring few samples).

C. Models and Hardware

We used ResNets [49] in our experiments, utilising two

versions of ResNet: ResNet-18 (18-layer) and ResNet-26 (26-

layer). For CIFAR-10/CIFAR-100, we used ResNet-26. Initial

training for the models was done locally. For ImageNet,

we used a pre-trained off-the-shelf ResNet-18 model from

PyTorch [45]. Experiments for CIFAR10 and CIFAR100 were

done on an MSI GF65 THIN 3060 Laptop with 64GB RAM

and a Linux Ubuntu 20.04.2 LTS (64-bit) operating system,

Fig. 1: ResNet-26 mean classification accuracy over 15 dif-

ferent corruption types on CIFAR-10C at the highest severity

(Level 5).

whilst for ImageNet we used a Dell Alienware Desktop PC

with 64GB RAM and a Linux Ubuntu 18.04.4 LTS (64-bit)

operating system.

To achieve reliable comparisons against baselines the start-

ing model parameters from which retraining is done must

be the same. Otherwise, the accuracy improvements cannot

be reliably attributed to the effectiveness of the retraining

method and can be argued that it is due to varying starting

model accuracies or parameters. Therefore, in our results for

CIFAR10/100 on ResNet-26 we only compare against Source,

as we do not have the initial models used in retraining by other

SOTA methods. For ImageNet on ResNet-18 we compare

against SOTA methods because the starting trained model used

by other SOTA retraining methods is the same off-the-shelf

ResNet-18 model from PyTorch.

D. Optimisation Details

We used Stochastic Gradient Decent (SGD) for optimisation

during training and retraining in our work. For retraining

DIRA, we found from empirical testing that η = 1e-5

and λ = 1 yields near optimum adaptation. The retraining

is relatively quick as only a small number of samples are

used and the retraining is done over 10 epochs. We use

top-1 classification accuracy as our assessment metric in all

experiments [50].

V. RESULTS & DISCUSSION

A. Regularisation effect on adaptation

To investigate overall adaptation improvement using reg-

ularisation we plot Figure 1. Figure 1 shows how top-1

classification accuracy changes as the number of samples

available from the target domain increases. The naive approach

would be to retrain relying only on the Stochastic Gradient

Decent (SGD) optimiser using a fixed learning rate (η). When
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gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg mean
Source 58.5 61.3 37.3 51.9 59.6 58.6 58.1 73.3 67.8 50.0 80.7 19.2 71.8 66.1 79.8 59.6
DIRA 73.6 75.6 61.9 79.7 65.8 77.9 80.0 77.4 77.0 72.6 84.2 60.2 74.9 76.9 79.5 74.5

TABLE II: Top-1 Classification Accuracy (%) for each corruption in CIFAR-10C at the highest severity (Level 5). Source shows

the results from the same model trained on the clean train set (CIFAR-10) and tested on the corrupted test set (CIFAR-10C).

ResNet-26 is used with 100 retraining samples.

gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg mean
Source 24.2 27.0 9.7 30.0 30.9 33.6 35.5 38.8 34.6 19.6 44.8 8.4 43.4 39.8 50.0 31.4
DIRA 44.7 45.1 33.6 50.9 40.4 49.6 52.3 47.3 46.6 37.9 55.2 33.3 47.0 51.5 51.7 45.8

TABLE III: Top-1 Classification Accuracy (%) for each corruption in CIFAR-100C at the highest severity (Level 5). Source

shows the results from the same model trained on the clean train set (CIFAR-100) and tested on the corrupted test set (CIFAR-

100C). ResNet-26 is used with 100 retraining samples.

gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg mean
Source 1.6 2.3 1.6 9.4 6.6 10.2 18.2 10.5 15.0 13.7 48.9 2.8 14.7 23.1 28.3 13.8
TTT 3.1 4.5 3.5 10.1 6.8 13.5 18.5 17.1 17.9 20.0 47.0 14.4 20.9 22.8 25.3 16.4

NORM 12.9 10.4 9.5 12.4 10.6 20.0 28.1 29.4 18.5 33.1 52.2 10.2 26.5 35.8 31.5 22.7
DUA 10.6 12.4 11.9 12.0 11.4 15.3 25.7 22.2 21.6 31.4 54.4 4.1 27.8 33.5 32.6 21.8
DIRA 12.0 13.5 11.6 10.2 11.5 18.7 31.2 26.6 27.2 36.3 56.3 9.2 35.7 38.1 32.0 24.7

TABLE IV: Top-1 Classification Accuracy (%) for each corruption in ImageNet-C at the highest severity (Level 5). Source

shows the results from the same model trained on the clean train set (ImageNet) and tested on the corrupted test set (ImageNet-

C). For a fair comparison with TTT, NORM, and DUA, we use the same initially trained ResNet-18 model. 100 retraining

samples are used. Highest accuracy is highlighted in bold.

Fig. 2: Dynamic adaptation scenario example for DIRA to

different domains from CIFAR-10C. Pre-trained ResNet-26

on CIFAR-10 adapts to different corruption examples from

CIFAR-10C dataset at the highest severity (Level 5), to show

how well DIRA can dynamically adapt to operational domains.

using a learning rate of 1e-2, which is a common value used

when training a model on a dataset, we can notice that the

retrained model incurs catastrophic forgetting and does not

improve on the target domain beyond the Source model, even

when retraining samples are increased. Lowering the learning

rate overcomes the issue of forgetting and allows the model

to adapt gradually to the target domain eventually as the

number of samples increases. Using DIRA improves the issue

of forgetting further for low number of samples (i.e. 1 to

2 samples) and allows the model to reach higher accuracies

when retraining using less than 10 samples. Eventually, the

performance of retraining using SGD (with low η) converges

with DIRA as the number of retraining samples increase.

Tables II and III shows the improvement DIRA achieves

upon retraining on 100 samples for each type of corruption in

CIFAR-10C and CIFAR-100C benchmarking datasets, respec-

tively, compared to the Source accuracy.

B. Dynamic adaptation scenario for DIRA

In real-life scenarios, varying domains may occur during

operation. To visualise how DIRA tackles such a scenario,

we plot in Figure 2 the shift to four different domains

consecutively from CIFAR-10C. The results depicted show

that as soon as samples from the target domain are presented

an abrupt improvement occurs in the accuracy of the model.

This accuracy continues to grow as more samples from the

target domain become present.

C. Comparison with SOTA

To assess how well our approach performs compared with

SOTA domain adaptation frameworks we compare results

with three domain adaptation frameworks from the literature:

TTT [30], NORM [32, 33], and DUA [29], on ImageNet-

C benchmarking dataset. Table IV show top-1 classification

accuracy for the highest severity level on dataset ImageNet-

C. Our DIRA framework performs competitively with SOTA

domain adaptation approaches. As can be seen from the table,

we achieve SOTA overall performance averaged between the
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different corruptions the dataset. This is while using a limited

number of samples from the target domain (100 samples).

VI. CONCLUSIONS AND FUTURE WORKS

We have introduced a novel domain incremental learning

framework, named DIRA (Dynamic Incremental Regularised

Adaptation). DIRA allows for dynamic adaptation to changing

operation environments using a limited number of samples.

Our approach achieves this using the notion of transfer learn-

ing. Whereby relevant knowledge from the original domain is

retained using regularisation techniques to allow the model to

adapt to the target domain making use of transfer learning. Our

DIRA approach proves to be competitive to available domain

adaptation approaches in the literature, and achieves SOTA

results compared to these approaches.

DIRA is currently categorised as a supervised retraining

approach, as it relies on ground truth labels to be provided

with samples from the target domain for adaptation. This is

acceptable but may limit its applications where a source to

provide ground truth labels is unavailable. Our future work

is to explore the combination of DIRA with self-supervised

approaches to remove the need for ground truth labels during

adaptation.
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