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Abstract—Digital twin technology leverages a real-time simu-
lated environment to optimize unmanned aerial vehicles (UAVs)–
mobile edge computing (MEC) networks. Considering unpre-
dictable MEC environments and low-power Internet of things
(IoT) devices, this paper proposes a digital twin-assisted task
offloading scheme in UAV-MEC networks with energy harvesting.
The goal is to minimize latency and maximize the number of
associated IoT devices by optimizing UAV placement and IoT
device association. The constraints on computing, caching, energy
harvesting, latency, and the maximum number of IoT devices a
UAV can serve are considered. To solve the formulated problem,
we employ a branch and bound algorithm to obtain optimal
results. Additionally, we propose a relaxed heuristic algorithm to
solve the problem with reduced computational complexity. This
approach provides efficient alternatives to obtain near-optimal
solutions. Through simulations, we demonstrate the effectiveness
of the heuristic algorithm and validate the benefits of leveraging
digital twin technology in UAV-MEC networks with energy
harvesting.

Index Terms—Digital twin, energy harvesting, mobile edge
computing, task offloading, and unmanned aerial vehicles.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) equipped with mobile

edge computing (MEC) capabilities can be used to provide

coverage to ground Internet of things (IoT) devices by enabling

real-time data processing and analysis at the edge of the

network [1]. Thus, IoT devices can offload their tasks to

UAV-MEC to operate more efficiently and extend their battery

life by harvesting energy. This is especially important as

IoT devices often have limited resources, such as computing

power, caching, and energy. However, ensuring the effec-

tive and reliable operation of UAV-MEC networks requires

a comprehensive understanding of the complex interactions

and dependencies between all system components. Moreover,

the future sixth-generation (6G) networks are expected to be

highly dynamic and heterogeneous, with complex demands

from emerging applications, such as ultra-low latency and

real-time network topology changes [2]. This complexity and

management costs increase as the number of connected devices

grows, which is expected in future wireless networks.

Digital twin is an emerging technology that creates a virtual

layer of the physical network and its components, enabling

real-time simulation, monitoring, and optimization of UAV-

MEC networks. Digital twins can make data and task of-

floading decisions in a simulated environment [3]. Computing,

caching, and communication resources can be allocated more

quickly and accurately based on IoT device requests with the

help of digital twins [4]. The digital twin model constantly

monitors the physical network, providing IoT devices with

perceptual data to make more timely and accurate offloading

decisions [5]. This ultimately improves the energy efficiency

and performance of the system, especially when combined

with energy harvesting in a digital twin-assisted UAV-MEC

network. In [6], the digital twin technology is explored for

task offloading in the MEC network to reduce time overhead

and power consumption. The digital twin concept can also

enable edge networks in the IoT environment [7].

IoT devices in practical systems randomly generate com-

puting tasks, and the digital twin can simulate the behaviour

and performance of IoT devices and UAV-MECs to predict

energy consumption and task completion time accurately. This

prediction can reduce energy consumption and extend mission

time duration by offloading tasks between IoT devices and

UAV-MECs based on computing infrastructure. UAV oper-

ating efficiency is further increased with energy harvesting

technology, and energy can be used to power IoT devices.

Nevertheless, there are challenges with deploying digital twins,

such as estimation errors and choosing appropriate scenarios

for IoT devices and UAV-MEC platforms. Therefore, when

the number of IoT devices increases, it is imperative to

explore the UAV-MEC networks functioning with digital twins

to guarantee the quality of service. This paper investigates

the concept of a digital twin consisting of IoT devices and

UAV-MECs, where IoT devices randomly generate computing

tasks. The objective is to minimize latency and associate the

maximum number of IoT devices with UAVs by optimizing

UAV placement and IoT device connection.

The rest of the paper is structured as follows: Section II

presents the system model and problem formulation. Section

III describes the solution approaches for the formulated op-

timization problem. Section IV presents simulation results to

show the effectiveness of the proposed scheme compared to

optimal results. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-MEC network that consists of a real

physical layer with M number of UAV-MECs providing

coverage to N number of IoT devices distributed randomly
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Fig. 1. System model for digital twin-assisted task offloading.

on the ground as illustrated in Fig. 1. To account for the

dynamic nature of UAV-MEC networks, we integrate a digital

map of the UAV-MECs, IoT devices, and the communication

environment, which constitutes the digital layer. The digital

twin system stores network entity parameters and monitors the

network’s current operating state. Real-time channels allow

the network entities (i.e., UAV-MECs and IoT devices) to

send their current running status and topology to the digital

twin [8], [9]. The digital twin representation of IoT devices

and UAV-MECs may have a deviation from their actual state

values, which can be either positive or negative. For example,

the digital twin server provides an estimated CPU frequency

to define the deviation between UAV-MEC and its digital

twin [5], [8]. The task from n-th IoT device is defined as

Tn = (Sn,Dn,Wn, ξn), where Sn, Dn, Wn, and ξn represent

the data size (in bits) to be computed, computation deadline,

computation workload (in CPU cycles/bit), and residual energy

of n-th IoT device, respectively.

The coordinates of m-th UAV and n-th IoT device are

represented as Lm = (xm, ym, hm) and Ln = (xn, yn, 0)
in a three-dimensional (3D) Cartesian coordinate system re-

spectiverly, where x and y are horizontal coordinates and

h is the height of the UAV. The distance between the n-th
IoT device and m-th UAV is denoted by dn,m. When n-th
IoT device offloads data to hovering m-th UAV, it will need

communication resources. The instantaneous data rate of n-th
IoT device can be written as:

Rn,m = B log2

(
1 +

P IoT
n gn,m
σ2
n

)
, ∀ n,m, (1)

where B represents channel bandwidth, P IoT
n denotes the

transmit power of n-th IoT device, σ2
n is the average power of

the Gaussian noise at n-th IoT device, and gn,m = (Υn,m)−1

is the channel gain between the n-th IoT device and m-th
UAV in which Υn,m is the average path loss consisting of

the probability of line of sight (LOS) and non-line of sight

(NLOS) links between n-th IoT device and m-th UAV [10],

[11]. It is assumed that the available spectrum is divided into

orthogonal resource blocks to avoid user interference.

The transmission delay in offloading data can be represented

as: LO
n,m = Sn

Rn,m
, ∀ n,m. When offloading a task, it may

require computation resources, i.e., Dn �= 0 and Wn �= 0.

The estimated time to perform the task on UAV-MEC can be

written as: L̃UAV
n,m = SnWn

fUAV
m

, where fUAV
m is the estimated

CPU frequency (cycles per second) of m-th UAV.

We assume that the deviation fUAV
m can be obtained before-

hand to calculate the computation latency gap between the real

value and estimation of the digital twin. This can be calculated

as:

ΔLUAV
n,m =

SnWnfUAV
n

fUAV
m (fUAV

m − fUAV
m )

. (2)

Then, the actual computation latency for performing the task

at UAV-MEC is given as: LUAV
nm = L̃UAV

n,m +ΔLUAV
n,m .

The energy harvested by the n-th IoT device from m-th UAV

can be written as: En,m =
[
(PUAV

m × gn,m)× γn,m
]
× ηn,m,

where the efficiency of energy harvesting is denoted by ηn,m
and is dependent on the harvesting circuit. γn,m represents

the harvesting duration and PUAV
m is the transmit power of

the UAV for energy harvesting. We consider energy harvesting

latency LH
n,m to be inverse of residual energy and equal to the

duration of harvesting duration γn,m. An IoT device’s residual

and harvested energy must be greater than the threshold ETH

to offload data. We calculate the deviation in residual energy

ξ̃nζ
E
n , where ξ̃n denotes the percentage deviation from the

residual energy and ζEn represents is a random variable that

varies from -1 to 1. This can be written as: (ξn + ξ̃nζ
E
n ) +

an,mEn,m ≥ βnETH , ∀n,m. This represents infinite possible

constraints due to the vale of ζEn . One way to transform this

is to consider worst case scenario, i.e, setting max
ζE
n

{ξ̃nζEn }.

In our proposed scheme, n-th IoT device can perform

its computational task denoted by Tn locally or offload it

to one of the UAV-MECs. Tasks from the set of tasks TE
(Tn ∈ TE) can be assigned to a given UAV-MEC based

on harvesting and offloading requirements and parameters

associated with UAV-MECs [1]. The priority level of the task

denoted by Wn requested by n-th IoT device is determined

based on the residual energy. The digital twin can then re-

allocate UAV-MECs in real-time based on the priority of IoT

devices. Different UAVs may have different CPU processing

capabilities, meaning that one UAV may have low computation

cost but high latency. When Dn �= 0 and Wn �= 0, the n-th
IoT device can choose to perform computation task locally

or offload it to one of the UAV-MECs. We define a binary

decision variable for offloading as an,m, where an,m = 1 if

n-th IoT device offloading to m-th UAV-MEC and an,m = 0
otherwise.

When Dn = 0 and Wn = 0, the n-th IoT device only needs

resources for offloading and caching. This can be represented

as αn = {0, 1}, where αn = 1 if n-th IoT device is caching

only and αn = 0 otherwise. The UAVs may or may not be able

to serve the IoT devices depending on the available resources.
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This can be written as bn = {0, 1}, where bn = 1 if n-th
IoT device is selected for operation and bn = 0 otherwise.

When the residual energy of n-th IoT device denoted by ξn
is less than a certain threshold ETH , then it needs to perform

energy harvesting before offloading. The energy harvesting

binary indicator can be represented as βn, where βn = 1 if

ξn < ETH and βn = 0 otherwise.

We formulate the optimization problem for task offloading

that considers the latency, including digital twin synchroniza-

tion latency and priority of IoT devices. Here, we formulate

an optimization problem to minimize the utility as:

min
a,b

: U =
∑
n

∑
m

ω[an,m(LO
n,m + (1− αn)LUAV

nm )

+ βnLH
n,m + Ls

n)]− (1− ω)

N∑
n=1

Wnbn,

Subject to:

C1 :
∑
m

an,m = bn, ∀n,m

C2 :
∑
n

an,m ≤ Zm, ∀m

C3 :
∑
n

an,mSn ≤ Am, ∀m

C4 :an,m(LO
n,m + (1− αn)LUAV

nm )+

βnLH
n,m + Ls

n) ≤ Dn, ∀n,m
C5 :(ξn + ξ̃nζ

E
n ) + an,mEn,m ≥ βnETH , ∀n,m,

C6 :0 ≤ fUAV
m ≤ fUAV−MAX

m , ∀m
C7 :an,m = {0, 1}, ∀n,m
C8 :bn = {0, 1}, ∀n,

(3)

where ω is the weight associated with objectives and Ls
n is the

synchronization latency between the physical layer and digital

twin layer. Constraint C1 ensures that n-th IoT device can only

connect to one UAV. C2 limits the number of IoT devices that

a UAV can serve to a maximum Zm. C3 pertains to the caching

capacity, i.e., the available cache capacity of m-th UAB de-

noted by Am should be more than the offloading data by all the

corresponding IoT devices. C4 ensures that the latency for the

task of n-th IoT device composed of offloading, computation,

harvesting, and digital twin synchronization latency must not

exceed the computation deadline Dn. C5 requires an IoT

device’s residual and harvested energy to be greater than the

threshold ETH to offload data. There is a possibility that the

digital twin may not have updated information about residual

energy. Therefore, C5 also includes the perturbing effect of

residual energy, i.e., ξ̃nζ
E
n . C6 restricts the maximum CPU

frequency of UAV-MECs that can deviate in digital twin.

III. SOLUTION APPROACH

The problem presented in (3) is a binary integer problem.

We first use a branch-and-bound algorithm to obtain optimal

results [12]. The algorithm divides the solution space into

branches and bound the objective function in each branch.

Algorithm 1 : Relaxed Heuristic Algorithm (RHA).

1: Inputs: N , [xn, yn, 0], M , Wn, βn, Zm.

2: Output: UAVs coordinates [xm, ym, hm], an,m, bn.

3: UAVs initial locations are random as centroids for clusters.

4: while UAVs locations converge do
5: Assign each IoT device to the nearest UAV.

6: Calculate mean of each cluster to update UAV location.

7: end while
8: Set the UAV height using optimized UAV coordinates.

9: Initialize the primal variables i and j, and set small

positive value ε for termination criteria.

10: while Duality gap is greater than ε do
11: To solve the linear system Λi = v, we need to compute

the matrix Λ and the vector v, where Λ is the matrix of

constraints given in (3) and v is vector of constraints.

12: Compute the matrix χ (KKT conditions) and r (vector

of residuals) for the linear system χj = r.

13: Solve the linear system χj = r for j.

14: Computer the search direction di and dj for the primal

and dual variables using the KKT conditions.

15: Compute the step size using a line search method.

16: Update the primal variables i and dual variables j with

the step size and search directions di and dj.

17: Apply iterative rounding to obtain a feasible solution.

18: Assign the nearest m-th UAV that can cover a given IoT

device by setting binary variable an,m = 1.

19: end while

However, the worst-case complexity of this algorithm is ex-

ponential, making it unsuitable for large-scale IoT networks.

We then develop a relaxed heuristic algorithm (RHA) given

in Algorithm 1 that utilizes K-mean clustering for UAVs

deployment and interior point method for user association to

solve the digital twin-assisted task offloading problem in (3).

The algorithm considers the location of ground IoT devices for

the placement of UAVs. The input parameters are the number

of IoT devices N , their coordinates [xn, yn, 0], and the number

of available UAVs M . The K-mean unsupervised learning

divides the IoT devices into M clusters. Initially, UAVs are

placed randomly as centroids for the clusters. The algorithm

then assigns IoT devices to the nearest UAV and calculates

the mean for each cluster to update the UAV’s location. This

process continues until the UAV locations converge and there

is no longer significantly change. Once the optimized locations

of UAVs are obtained, the height of the UAVs is set based on

the surrounding environment.

Next, we use the interior point method with iterative round-

ing to assign UAVs based on the objective and constraints

in (3) [13]. To solve the optimization problem, we use the

primal-dual interior point method which is not sensitive to

polynomial time complexity [14]. We approximate the opti-

mization problem by adding slack variables to a sequence of

subproblems and obtain the primal-dual search direction using

modified Karush-Kuhn-Tucker (KKT) conditions. We solve

the KKT conditions using Newton’s method [15] to a sequence
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of modified versions of KKT conditions [14]. Our algorithm

solves linear programming problems iteratively, with gradually

relaxed constraints, until an optimal solution is obtained. We

use iterative rounding at each iteration to round the fractional

solution to an integer solution that satisfies the constraints

given in (3). Finally, we apply a threshold to the output of the

interior point method; if it exceeds the threshold value, the

n-th IoT device will establish a connection with m-th UAV by

setting an,m = 1; otherwise, an,m = 0.

We have categorized the solution into four different types:

(i) RHA-L, i.e., a relaxed heuristic algorithm with the K-mean

learning algorithm for UAVs placement (ii) RHA-R, i.e., a

relaxed heuristic algorithm that randomly places UAVs, (iii)

O-L, i.e., the branch-and-bound algorithm with the K-mean

learning algorithm for UAVs placement, and (iv) O-R, i.e.,

the branch-and-bound algorithm with UAVs placed randomly.

IV. SIMULATION RESULTS

We perform simulations of digital twin-assisted task offload-

ing in the UAV-MEC network with energy harvesting. The

network consists of M = 3−11 UAVs and N = 20−120 IoT

devices that are uniformly distributed in a 1000m × 1000m

area. We prioritize IoT devices based on their residual energy

by assigning them levels ranging from Wn = 1 − 5, with 5

being the highest priority and 1 being the lowest. We consider

simulation parameters similar to [16]: size of data Sn=10–20

Mbits, computation deadline Dn=1–12 sec, and computation

workload Wn=452–737 cycles/bit.

Fig. 2 shows performance comparison for M = 3,

ξ̃n = 40% deviation from ξn, priority level Wn = 5, and

ΔLUAV
n = 0.02. Fig. 2(a) shows the normalized utility(

UNORM = 1− U−min(U)
max(U)−min(U)

)
versus the total number of

IoT devices. The normalized utility increases with the number

of IoT devices for all algorithms. Algorithms with a learning

approach have higher utility than random algorithms in all

cases. The maximum normalized utility for O-L is higher than

RHA-A, and the same trend is seen in algorithms with random

UAV deployment. This is because the K-mean learning-based

placement of UAVs can result in better system configuration.

The proposed RHA-L has comparable utility to O-L with less

complexity, emphasizing their scalability for large-scale IoT

networks. Fig. 2(b) shows the percentage of connected IoT

devices versus the total number of IoT devices. The number

of associated IoT devices should generally increase with the

increase in the total number of IoT devices and the number of

UAVs. However, in this case, the number of UAVs is limited

to 3, and each UAV can connect only a limited number of

IoT devices Zm. The percentage of connected devices in the

cases of algorithms with learning placement of UAVs is higher

than the random placement of UAVs, with RHA-L performing

better than O-L. However, this increase in connected IoT

devices comes at the cost of latency in the objective function.

Fig. 3 illustrates the performance comparison for N = 120,

ξ̃n = 40% deviation from ξn, priority Wn = 5, and ΔLUAV
n =

0.02. Fig. 3(a) depicts the normalized utility versus the total

number of UAVs. For all algorithms, the normalized utility
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Fig. 2. Performance comparison for M = 3, ξ̃n = 40% deviation from ξn,
priority Wn = 5, and ΔLUAV

n = 0.02 (a) utility versus IoT devices and (b)
percentage of connected IoT devices versus total IoT devices.

increases with the number of IoT devices. Algorithms with a

learning approach have a higher utility than random algorithms

in all cases. The maximum normalized utility is observed

with O-L compared to RHA-L, and a similar trend is seen

in algorithms with random UAV deployment. This is because

the K-mean learning-based placement of UAVs can result in

a better system configuration. RHA-L has comparable utility

to O-L with less complexity, highlighting their scalability for

large-scale future IoT networks. Fig. 3(b) shows the percentage

of connected IoT devices versus the total number of UAVs.

The number of associated IoT devices generally increases

with the total number of UAVs. In algorithms with learning

placement of UAVs, the percentage of connected devices is

higher than the random placement of UAVs, with RHA-L

performing better than O-L.

Fig. 4 shows the number of connected IoT devices versus

digital twin latency deviation for N = 120, M = 11,

ξ̃n = 40% deviation from ξn, and Wn = 5. When the number

of IoT devices and UAVs remains constant, the number of

connected devices decreases as the digital twin latency devi-
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Fig. 3. Performance comparison for N = 120, ξ̃n = 40% deviation from
ξn, priority Wn = 5, and ΔLUAV

n = 0.02 (a) utility versus number of
UAVs and (b) percentage of connected IoT devices versus total UAVs.

ation increases. Conversely, for a given digital twin latency

deviation, the number of connected IoT devices decreases as

the task data Sn increases. In this case, the task data increases

from Sn = 10 − 20Mbits to Sn = 50 − 75Mbits. This is

because more data needs to be transmitted from IoT devices

to UAV-MEC and computed on UAV-MEC as the computing

tasks increase as a result, fewer IoT devices can be served.

V. CONCLUSION

In this paper, we presented an efficient offloading scheme

in UAV-MEC IoT networks by leveraging digital twins and

energy harvesting. We examine the impact of uncertainties

that arise from the UAV-MEC environment and low-power IoT

devices. Our proposed scheme utilizes a real-time simulated

environment to optimize the placement of UAVs and the asso-

ciation of IoT devices to minimize latency and maximize the

number of associated IoT devices while considering various

constraints. To obtain optimal results, we have employed a

branch and bound algorithm. Moreover, we have proposed a

relaxed heuristic algorithm to reduce computational complex-

ity while providing near-optimal solutions. Simulation results
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Fig. 4. Number of connected IoT devices versus digital twin latency deviation
for N = 120, M = 11, ξ̃n = 40% deviation from ξn, and Wn = 5.

are presented to evaluate the effectiveness of these algorithms

and demonstrate the benefits of digital twin technology in

UAV-MEC networks that incorporate energy harvesting.
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