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Abstract—Vision-language models pre-trained on large scale
of unlabeled biomedical images and associated reports learn
generalizable semantic representations. These multi-modal repre-
sentations can benefit various downstream tasks in the biomedical
domain. Contrastive learning is widely used to pre-train vision-
language models for general natural images and associated
captions. Despite its popularity, we found biomedical texts have
complex and domain-specific semantics that are often neglected
by common contrastive methods. To address this issue, we
propose a novel method, perturbed report discrimination, for
pre-train biomedical vision-language models. First, we curate
a set of text perturbation methods that keep the same words,
but disrupt the semantic structure of the sentence. Next, we
apply different types of perturbation to reports, and use the
model to distinguish the original report from the perturbed
ones given the associated image. Parallel to this, we enhance the
sensitivity of our method to higher level of granularity for both
modalities by contrasting attention-weighted image sub-regions
and sub-words in the image-text pairs. We conduct extensive
experiments on multiple downstream tasks, and our method
outperforms strong baseline methods. The results demonstrate
that our approach learns more semantic meaningful and robust
multi-modal representations.

Index Terms—AI for healthcare, multi-modal model, self-
supervised learning

I. INTRODUCTION

In the ever-evolving landscape of the biomedical field, the

advent of Artificial Intelligence (AI) has unfurled a new era,

particularly with its deep learning (DL) tendrils extending into

diverse healthcare applications. DL’s transformative role in

medical imaging, embracing a spectrum of tasks from image

classification to segmentation, has been metaphorically hailed

as ‘A third eye for doctors’ [1]. Natural language processing

(NLP) techniques have also been applied in the medical do-

main and achieved great success in many tasks, including radi-

ology natural language inference, medical question answering,

and others Beyond imagery and linguistics, AI’s prowess also

manifests in the nuanced handling of varied data streams,

including audio, video, and complex high-dimensional data,

underscoring its multifaceted role in healthcare.

While AI has revolutionized healthcare, its advances have

predominantly focused on single modalities. However, the in-

trinsic nature of healthcare information necessitates exploring

multi-modal data. Multi-modal learning (MML), employing

tokenization and embedding approaches, treats inputs from

any modality as a token sequence to learn a joint embedding

space. This approach not only mitigates data scarcity but also

enables the development of diverse tasks and facilitates zero-

shot learning [2] without specific fine-tuning.

Vision-language models (VLM) are one typical type of

multi-modal models, with popular methods such as CLIP [3]

and ALIGN [4] being successful. Although showing good

performance, they grapple with challenges in relational un-

derstanding, fusion, and alignment between text and image

modalities. VLMs also struggle with limited transferability,

efficiency, universality, and interpretability. Within healthcare,

these challenges are compounded by growing reporting back-

logs, pressure on clinicians, such as strict radiology workflows

slowing down case throughput especially as patient volumes

rise, the absence of pretrained foundational models impeding

rapid integration and deployment, and limited size of clinical

datasets restricting the development of robust and versatile

AI solutions. A particular hurdle is the unique healthcare

discourse style and textual semantics, like the use of negation

to rule out conditions (e.g., ‘no evidence of pneumonia’),

which could be ignored by AI models without sufficient data

fed in to interpret complex medical data such as paired chest

X-rays (CXR) and corresponding radiological reports written

by experienced physicians.
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Aware of the deficiency of clinical semantics understanding

of current language models as well as vision-language models,

[5] developed CXR-BERT tailored specifically in outstand-

ing CXR reports by additional pre-training steps focused

on radiology reports to capture their dense and complex

semantics. While this specialization significantly enhanced

vocabulary-specific understanding, it did not fully address

the intricacies of clinical sentence structure. Together with

the specialized text model, they presented a self-supervised

vision-language approach BioViL using contrastive learning,

demonstrating state-of-the-art performance in various biomed-

ical benchmarks.

In this paper, we aim to propose a novel self-supervised

VLM based on contrastive learning of jointly pretrained

language and image models tailored for fine-grained under-

standing of clinical semantics and sentence structure, result-

ing in stronger vision-language alignment. Regarding high

level of granularity of medical modalities, for example, the

model should learn localized representations, where scene-

level global information does not suffice. This is solved by

introducing a local attentive contrastive loss which contrasts

attention-weighted image sub-regions and words in the Image-

Text pairs. Besides, the model should avoid the ‘object bias’

[6] similar to ‘bag of objects’ caused by CLIP-loss computa-

tion by our data-driven approach of loss design. We designed

a set of diverse perturbations for every text in the original

dataset, and the loss is computed reflecting the model’s ability

to discriminate these generated texts together with the original

text, which share almost or totally same retrieval results. To

examine whether our proposed model has better compositional

representations of objects, attributes, and relations for medical

text encoders, we tailored an evaluation protocol using the

aforementioned text perturbations. The main contributions of

this paper can be summarized as follows:

1) We develop a novel self-supervised vision-language

model that manipulates clinical texture well using di-

verse text perturbations derived from the standard image-

text paired dataset in contrastive learning paradigm.

2) We introduce a hierarchical contrastive learning strategy,

including a image-level contrastive loss to capture global

structure, and a local contrastive loss which focus on fine

details.

3) We further design a set of evaluation tasks to evaluate

the model’s ability to understand clinical language rep-

resentation other than just ‘bag of words’ based on the

former perturbations.

4) Empirically, our proposed model outperforms the base-

line vision-language model on our proposed evaluation

protocol of sentence structure, medical natural lan-

guage inference benchmarks including MedNLI [7] and

RadNLI [8]. Especially, our model succeeds in multi-

task image classification on a chest radiograph bench-

mark CheXpert [9], and outperforms baseline metods,

demonstrating its strong ability in cross-modal correla-

tion.

II. RELATED WORK

Our work lies in the evolving field of biomedical VLMs,

which centers on extracting information from combination of

medical images and reports. This area has recently gained

traction, as evidenced by works like [5]. The majority of

current methods rely on contrastive learning to bridge visual

and linguistic elements. ConVIRT [10] firstly used bidirec-

tional contrastive losses to project the two modalities into a

shared space, and performed image classification task well

while requiring much fewer annotated training data as an

ImageNet-initialized counterpart. A shift in focus towards

local rather than global information was introduced by LoVT

[11], which targets localized medical imaging tasks like se-

mantic segmentation or object detection by introducing a local

contrastive loss to align image regions or report sentences

while encouraging spatial smoothness and sensitivity. Wang

et al. [12] extracted both image labels and entities extracted

from reports to deepen understanding of medical semantics,

eliminating the false negative noises and making use of

vast image-only and text-only unpaired datasets. With the

help of strong backbones, models such as BioViL [5] and

ChexZero [13], which leverage a pretrained radiology-specific

CXR-BERT text encoder and a pretrained CLIP [3] model

respectively, also achieve comparable results.

Inspired by these prior studies, our work aims to compre-

hensively investigate the distinct clinical semantics as well

as the high granularity of both medical vision and language

that are essential to understanding biomedical multi-modal

representation.

III. METHOD

Our proposed self-supervised vision-language learning ar-

chitecture integrates unimodal feature extractors for both im-

ages and texts pretrained separately in advance and a con-

trastive projection approach to fuse the cross-modal embed-

dings into joint space. Our local-attentive contrastive loss is

designed to boost precision in medical image-text matching

by aligning specific image sub-regions with relevant text

fragments. We also introduce report perturbation sensitivity

loss to understand clinical semantics, focusing on sentence

structure and part of speech relevant to clinical contexts, paired

with the standard image report matching contrastive loss which

primarily focuses on lexical identification. A series of text

perturbations, integral to this process, are also employed in

our subsequent evaluation protocol. The overall architecture is

shown in Fig. 1.

A. Pretrained Unimodal Feature Extractor

With pre-trained text feature extractors carrying radiological

knowledge by pretraining at hand, we choose to transfer

powerful domain-specific language information from them

instead of training the models from scratch which is time and

energy-consuming. For each modality, we obtain the global

features for subsequent calculation of image report matching

contrastive loss and report perturbation sensitivity loss, as well

as the local features for local attentive contrastive loss. For
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Fig. 1. Overall architecture of our proposed self-supervised vision-language learning framework.

text data, we used the CXR-BERT pretrained via Masked

Language Modelling (MLM) on the PubMed [14], MIMIC-III

[15] and MIMIC-CXR corpora as well as radiology section

matching (RSM) which sequence prediction tasks were per-

formed on MIMIC-CXR to match ‘Impression’ to ‘Findings’

sections of the same study. The output of the pretrained model

become the global features of the text et ∈ R
de . Considering

the common abbreviations and typographical errors in medical

reports, we employ word-piece level tokenization, resulting

a sub-word feature esubt ∈ [K,N ] for every report with W
words, K dimension for every word-piece feature, and N
as the sum of the number of the sub-words in each word,

output from the encoder. The ultimate word-level local text

embedding elocalt ∈ R
de is aggregated by the average of the

sub-word embeddings for each word, projected to a vector

sized of de.

B. Joint Contrastive Projection

Based on the gained unimodal information in radiology

domain from aforementioned feature extractors, we build our

own contrastive projection model to fuse the vision and

language embeddings into the joint space. Target at tackling

the issue of high granularity of medical region of interests

and unique clinical texture and semantics style which differs

from the general language, we incorporated the local attentive

contrastive loss to learn the salient image sub-region to attend

to, report perturbation sensitive loss to learn the linguistic

characteristics as well as the image report matching contrastive

loss to perform the simple lexical retrieval task.

1) Image Report Matching Contrastive Loss: The basic

image report matching contrastive loss [3] can be defined

as a symmetric cross-entropy loss based on cosine similarity

between image and text features. Denoting the normalized

image and text global embeddings as ei ∈ R
de and et ∈ R

de

correspondingly, cross-entropy loss for Image-Text and Text-

Image of the scaled pairwise similarity for every batch B can

be defined as below, where τ is the scaling parameter:

Lglobal =− log
exp(eTij · etj/τ)

exp(eTij · etj/τ) +
∑k �=j

exp(eTik · etj/τ)
By employing this image report matching loss, the matched

Image-Text pair were attracted together, while unmatched pairs

were pushed away.

2) Local Attentive Contrastive Loss: Medical images’ Re-

gion of Interests (ROI) are identified by more subtle cues

than the natural images. This means only a small portion

in a single graph aligns with the key word in the given

report, requiring learning of local granules in addition to

global vectors for Image-Text retrieval. In our local attentive

contrastive loss [16], We adopted a context-aware image

embedding econi ∈ [de,W ] for every image, which is the

attention-weighted sum of all M sub-region’s significance

esigi ∈ [M,W ] to every given word. The attention weight ajk
is the normalized similarity between a given word j and a

given sub-region k across all image sub-regions:

ajk =
exp (elocalik

T · elocaltj )
∑M

l exp (elocalil

T · elocaltj )

The aggregated similarities S between all word embeddings

and their corresponding context-aware image embeddings de-
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fines the local attentive matching score for a Image-Text pair

[I, T ]:

SI,T = log(

W∑

k=1

(exp(

M∑

j=1

ajk · vk))T · elocaltk
)

Addition of the symmetrical cross-entropy loss for Image-Text

and Text-Image matching becomes the final contrastive loss:

Llocal = − log
exp(SIi,Ti

/τ)

exp(SIi,Ti
/τ) +

∑j �=i
exp(SIi,Tj

/τ)

The model learns the fine-grained local semantic alignments

between the image sub-regions and word pieces by employing

this attentive contrastive loss.
3) Report Perturbation Sensitivity Loss: We present a

report perturbation sensitivity loss to teach our model to

understand the rich semantics in the radiological setting.

Without expensive manual annotations or specific encoding

of order and composition cues in advance, our method can

enhance the text encoder’s preference for reports with correct

word ordering and semantics. This is done by performing

perturbations of every caption systematically based on our

customized rules using spaCy [17].
a) Generating Text Perturbations: In [18], the author

conducted a series of ablation experiments on language mod-

els, demonstrating several manipulations of the contexts are

crucial in degrading the models’ performance. Inspired by that,

we define a set of rules and generate 9 different perturbations

as negatives by shuffling the words of specific entity types or

according to specific patterns while keeping words unchanged.

These perturbations, shown in Table I, are used both in the cal-

culation of report perturbation sensitivity loss and subsequent

evaluation.
b) Contrastive Loss: Deriving from the original captions,

we use the generated perturbations as negative text samples in

contrast with the original reports. The global image embed-

dings are denoted eiori ∈ R
de , and the global text embeddings

from the original texts and the 9 generated perturbations are

denoted as etori ∈ R
de and etPerts

∈ [de, 9]. For a single

image, the report perturbation contrastive loss is calculated

as the cross-entropy loss of the similarity with the original

aligned text against similarity with all other negatives:

Lpert =− log
exp(eTiori · etori/τ)

exp(eTiori · etori/τ) +
∑Perts

k exp(eTiori · etk/τ)
This way, the model aims to pick the original reports for

an associated image, thus understanding the clinical contexts

better.
Therefore, our final loss is:

L = Lglobal + αLlocal + βLpert

IV. EXPERIMENT

To validate our proposed model, we conducted various

downstream evaluation experiments including fine-tuning clin-

ical text classification tasks on RadNLI and MedNLI, fine-

tuning multi-task image classification task on CheXpert, as

well as our own clinical semantic structure evaluation task on

Open-I dataset after pretraining.

A. Datasets

1) Open-I [19]: We used the Open-I dataset to train our

vision-language model. The chest X-ray dataset contains 3,996

radiology reports associated with 8,121 images. The findings
part of the reports are used, and 6469 Image-Text pairs remains

after removing empty values.

2) RadNLI [8] and MedNLI [7]: RadNLI and MedNLI

benchmarks contain 960 and 11k labeled hypothesis and

premise pairs, respectively. MedNLI is collected in a broad

clinical domain, while RadNLI is more radiology-specific.

The task, also named Natural Language Inference (NLI), is to

predict the label from the three label categories: entailment,

contradiction, and neutral given the sentence pair.

3) CheXpert [9]: The CheXpert dataset contains a total of

224,316 chest radiographs from 65,240 patients, where each

radiograph is paired with the corresponding radiology reports.

Each radiograph is labeled for the presence of 14 total medical

observations.

B. Implementation details

In all scenarios, we pretrained our multi-modal model for

150 epochs, with a batch size of 64. We use SGD [20] opti-

mizer, and set the learning rate to 0.0015, momentum factor

to 0.9, and weight decay to 5e− 4. For image preprocessing,

we follow [5], using the same augmentations as used in the

aforementioned pretrained image encoder. The dimensions of

our input images are 224×224 pixels. To fine-tune the impact

of each loss term and the margin in our model, we set the

scaling hyper-parameters α and β at 0.1, and τ at 0.07. These

values were selected based on outcomes from a targeted grid

search.

C. Evaluation of extracted representation

We compare our model to its version that removes the local

attentive contrastive loss, as well as two strong baselines un-

der several configurations. ConVIRT [10] (Contrastive VIsual

Representation Learning from Text) is an efficient method of

image representation learning from natural language super-

vision by contrasting only global representations of image

and report pairs. In addition, within the same radiological

domain, we also compared our architecture to GLoRIA [16]

(Global-Local Representations for Images using Attention).

This method also demonstrated high-performance and label-

efficiency for various downstream medical image recognition

tasks with limited labels. For a fair comparison, we keep

the pretraining procedure unchanged, using the same 6000

Image-Text pairs of the Open-I dataset as input. The pretrained

unimodal encoders are kept the same, using the same published

checkpoints through the comparison. We conducted the same

protocols on our downstream task as well.
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TABLE I
LIST OF TEXT PERTURBATIONS FOR AN EXAMPLE RADIOLOGICAL REPORT

Perturbation Type Example

Original Text the lungs are clear there is no pleural effusion or pneumothorax
Shuffle All Words pneumothorax are lungs the there is pleural or no effusion clear
Swap Adjacent Words in the Sentence lungs the clear are is there pleural no or effusion pneumothorax
Reverse Sentence pneumothorax or effusion pleural no is there clear are lungs the
Shuffle Within Trigrams lungs the are there is clear pleural effusion no or pneumothorax
Shuffle Trigrams or pneumothorax no pleural effusion the lungs are clear there is
Shuffle Nouns and Adjectives the pneumothorax are clear there is no pleural lungs or effusion
Shuffle All but Nouns and Adjectives there lungs is clear are the or pleural effusion no pneumothorax
Shuffle Nouns, Verbs, and Adjectives the is pneumothorax lungs there pleural no are effusion or clear
Replace Adjectives with Antonyms the lungs are unclear there is no pleural effusion or pneumothorax

TABLE II
RESULTS OF FINE-TUNED MULTI-TASK IMAGE CLASSIFICATION ON THE CHEXPERT BENCHMARK

Accuracy Consolidation Pleural Effusion Average

ConVIRT [10] 28.80% 43.60% 36.20%
GLoRIA [16] 71.11% 28.89% 50.00%
Ours (w/o local loss) 33.80% 77.80% 55.80%
Ours 93.40% 51.80% 72.60%

1) Text classification: For text classification, we fed the

MedNLI and RadNLI datasets into the text encoder of the

multi-modal model after pretraining and fine-tuning separately.

Table III displays the accuracy of the different models on

MedNLI and RadNLI benchmarks.

TABLE III
RESULTS OF FINE-TUNED TEXT CLASSIFICATION ON THE RADNLI AND

MEDNLI BENCHMARKS

Method MedNLI RadNLI

ConVIRT [10] 86.80% 68.50%
GLoRIA [16] 86.64% 68.33%
Ours (w/o local loss) 87.62% 66.67%
Ours 85.79% 68.96%

2) Multi-task image classification: For fine-tuned multi-

task image classification, we only used frontal images, and we

use 20,596 images for training and 500 images for testing. We

benchmark the performance on classification of Consoildation
and Pleural Effusion. Similarly, we fed the dataset into the

image encoder of the multi-modal model after pretraining and

fine-tuning. Table II displays the accuracy of the different

models on both separate tasks and averages.

3) Clinical Semantic Structure Evaluation: In our clinical

semantic structure evaluation task, we used the aforemen-

tioned text perturbations as negatives. The cosine similarity

is calculated for every caption inside a candidate caption list

which includes an original text and its perturbations with the

corresponding image using the global embeddings:

SI,T =
eI · eT

‖eI‖2 ‖eT ‖2
If the similarity between the original aligned Image-Text

pair is the highest, then the decision is considered as cor-

rect. This means the model is able to retrieve the correctly

structured report given an image. This evaluation task incor-

porates the representations of negative samples, outperforming

the classical Image-Text retrieval task by introducing more

difficult candidates.

We use 469 image-text pairs from the Open-I dataset as

validation set, then feeding them into the uni-modal encoders

of the multi-modal model, deriving the accuracy illustrated

before. The results are shown in Table IV. The results show

that our proposed method outperforms baseline methods.

TABLE IV
RESULTS OF ZERO-SHOT CLINICAL SEMANTIC STRUCTURE EVALUATION

ON THE OPEN-I BENCHMARK

Method Open-I

ConVIRT [10] 43.10%
GLoRIA [16] 44.30%
Ours (w/o local loss) 46.30%
Ours 49.00%

V. CONCLUSION

In this paper, we propose a novel pre-trained vision-

Language model that enhances fine-grained clinical semantics

understanding by increasing sensitivity to caption perturba-

tions and focusing on local attention. This approach allows the

model to capture not just broad image-level information, but

also intricate clinical sub-region and word-piece details within

both images and texts. By contrasting generated negative ex-

amples with original medical reports, our model gains a deeper

understanding of medical report semantics and structure. This

method has demonstrated significant improvements across

various clinical datasets in multiple downstream benchmarks

and our custom-designed composition sensitivity evaluation
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task. In the future, we will explore pre-training our proposed

model with images of higher resolution, and extending our

model to other modalities, including electronic health records

(EHR).
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