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Abstract— Emotion recognition based on Brain-Computer 
Interface is crucial in deepening our understanding of humans’ 
emotions and decision-making process. The enhanced precision 
in emotion measurement allows for more rigorous analysis of 
mental disorders and therapy effectiveness. Our method aims to 
solve two challenges in this field. First, existing models’ features 
often fail to comprehensively capture the multiple dimensions of 
information in EEG signals, like temporal or frequency 
domains. We propose two models: a CNN model trained on 
temporal features and a DNN model trained on differential 
entropy features, and ensemble their predictions with weighted 
voting. Second, labels can be uncertain, where data is 
unconfidently labelled. This is due to emotions’ subjectivity 
causing a lack of clear ground truth in EEG. The proposed 
method aims to mitigate this by using a semisupervised method 
that utilises data with uncertain labels as unlabelled data. Co-
training is used to allow the two models to learn from each other. 
Our combined model achieves higher accuracy than temporal 
and spectral models by  and   respectively for the 
SEED dataset. For the MER dataset, its accuracy outperforms 
temporal and spectral models by  and   
respectively for arousal classification, and  and 

respectively for valence classification. 

Keywords— Brain-Computer Interface, Emotion recognition, 
Semi-supervised learning, Ensemble learning, Multiview 
learning, Deep learning  

I. INTRODUCTION 

Emotion recognition using a Brain-Computer Interface is 
a scientific way of measuring emotions, and it allows for 
precise, less subjective ways to study mental disorders and 
evaluate the effectiveness of treatment methods. Through this, 
valuable insights can also be gained about how emotions work 
in the brain. 

Emotions are captured using EEG signals. However, the 
complexity of EEG signals means that even medical experts 
face challenges in manually crafting features to decipher 
emotions from EEG signals [1]. Thus, artificial intelligence 
and deep learning have emerged as a natural solution, being 
able to identify patterns within EEG signals. 

One challenge in EEG is fully capturing the various 
dimensions of information found in EEG signals, like 
temporal, spectral and spatial domains. Yet, most feature 
extraction methods extract features corresponding to only one 
domain, causing an incomplete representation of EEG data. 
To mitigate this, two models are trained, one on temporal 
features and one on spectral features. Both types of features 
have been shown to be effective [2, 3, 4] in emotion 
recognition models. This allows each model to focus on 
extracting patterns from its specific feature space. Such an 
approach can result in higher accuracy and lower 

classification errors than inputting all features into a single 
classifier. [5, 6] Ensemble learning, in particular weighted 
voting, is used to combine the predictions of the two classifiers 
to generate more accurate final predictions [7, 8] 

Emotion recognition faces another challenge of uncertain 
labels, where data is not confidently or accurately labelled. 
This is exacerbated by the subjective nature of emotion. The 
absence of a clear ground truth makes it challenging to 
determine whether emotion labels are accurate [9, 10]. 

This subjectivity happens in multiple ways throughout the 
EEG experimental process. In the design phase, stimuli used 
to elicit emotions may not evoke the correct emotional 
feedback from every subject, as different subjects react 
differently to the same stimuli. Subjects becoming mentally 
fatigued throughout the experiment could cause the recorded 
emotions to differ from the emotion label [10]. Intra-subject 
and inter-subject variability in identifying emotions can also 
make self-reported emotion labels uncertain. These factors all 
decrease classification performance. [11, 12, 13] 

Various solutions have been proposed to deal with the 
issue of uncertain labels in EEG, but they largely do not 
address the problem sufficiently. Robust classifiers are less 
affected by noise [14, 15], but prioritising robustness to label 
noise has an inherent trade-off with accuracy and can worsen 
performance [11]. Completely removing data with uncertain 
labels would discard valuable, limited data [16]. There is thus 
a research gap where there are few methods that alleviate EEG 
label uncertainty effectively while maximising the usage of 
data.   

Our solution addresses this gap. The labels of the noisiest 
data are removed, and a semi-supervised model is trained, 
with the uncertain data being reused as unlabelled data. This 
allows uncertain data to still be used without corrupting the 
models with potential label noise. After co-training, the 
predictions of the two classifiers are combined using weighted 
voting to generate the final predictions. 

Our major contributions are listed as such: 

1. We develop a novel hybrid co-training and ensemble 
method that effectively mitigates the issue of uncertain 
labels in EEG. 

2. We combine different representations of EEG signals by 
allowing models trained on different features to learn 
from each other. This forms a more complete 
understanding of the data. 

3. Our method of combining different models together 
consistently enhances performance compared to the 
individual models, and can be used on top of base models 
to provide relative improvements in accuracy. 

500

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00099



 

4. More generally, our emotion recognition model can be 
used in healthcare to assess patients with mental health 
conditions and can be made part of assistive 
communication devices. 

II. RELATED WORK 

A. Temporal features 
Statistical features are a reliable method of EEG emotion 

classification. Liu and Sourina [4] extracted 6 common 
statistical features, including Higher Order Crossing features, 
from the DEAP dataset. Using a SVM classifier, they obtained 
a mean accuracy of 85.38%. Rahman et al. [3] extracted 10 
statistical features, including L2-norm and fractal dimension. 
When using Artifical Neural Network (ANN), they achieved 
86.57% on the 3-class SEED dataset. 

B. Non-linear features 
Non-linear features are another representation of EEG 

signals that have been effective in emotion classification. This 
includes complexity features like differential entropy and 
Higuchi Fractal Dimension. Iyer et.al. [2] extracted 
differential entropy features and used the ensemble of three 
models, CNN, LSTM and CNN-LSTM to classify emotions. 
They attained 97.16% accuracy on the SEED dataset.  

C. Spectral features 
EEG signals also consist of a frequency domain that can 

be taken advantage of to generate useful features. For 
example, it is common to decompose EEG signals to smaller 
frequency bands and calculate features like Power Spectral 
Density, average bandpower and differential entropy.  

Rahman et. al. [17] generated topographic images from 
RPSD features: the ratio of the Power Spectral Density (PSD) 
of the band of interest to the PSD of the total frequency band. 
Using a CNN, they attained an average classification accuracy 
of 94.63% among all the subjects. 

D. Multi-view learning and semi-supervised learning 
Multi-view learning and semi-supervised learning have 

recently been used in EEG emotion classification to improve 
performance over single-view learning and fully-supervised 
learning respectively. 

Gao, Fu, Ouyang and Wang [18] used a spatio-temporal 
and self-adaptive GCN to combine spatial and temporal 
domain information into one model. Additionally, differential 
asymmetry (DASM) and rational asymmetry (RASM) 
spectral features were also used in the model. They attained 
an accuracy of 86.00% on the SEED dataset.  

Zhang, Davoodina and Etemad [19] proposed PARSE, a 
semi-supervised model which could learn on large amounts of 
unlabelled data and limited amounts of labeled data. This was 
done through data augmentation, label guessing of unlabelled 

data, and refining the guessed labels. They attained 91.14% 
accuracy when there were 25 instances of labelled data. 

III. METHODOLOGY 

Fig. 1 summarises the methodology process. 

A. Datasets 
The SJTU SEED dataset [20, 21] is an emotion dataset 

which comprises 62-channel EEG signals and eye movement 
data, collected using the ESI NeuroScan System and SMI eye-
tracking glasses respectively. It was generated by showing 15 
film clips as stimuli. There were 15 subjects, and each subject 
repeated the trial 3 times. The film clips were around 4 
minutes each, and are labelled positive, neutral and negative 
based on their content. 

The Music Emotion Regression (MER) dataset is a dataset 
constructed by recording the EEG signals of 50 participants 
exposed to music stimuli. Each participant goes through two 
experiment sessions. In each session, the subject is briefed, 
goes through a practice run, and then undergoes 3 blocks of 
experiments with rests in between. Each block consists of 13 
trials - in each trial, a subject listens to a music clip, chooses 
their arousal and valence rating, and rests for 15 seconds. The 
music used are generated by a deep learning model, 
constructed to elicit specific valence and arousal levels. There 
are two emotion recognition tasks for this dataset, identifying 
high / low arousal levels and high / low valence levels. 

B. Preprocessing 

For the SEED dataset, the collected signals were 
downsampled to 200Hz, and a bandpass filter of 0 - 75Hz 
was applied to filter out low-frequency drifts and high-
frequency noise.  

For the MER dataset, bandpass filtering from 0.3 to 4Hz 
and downsampling from 1000Hz to 250Hz was conducted on 
the dataset. Afterwards, the Common Average Referencing 
(CAR) rereferencing technique was used,  where the average 
of the signal of all electrodes was subtracted from the EEG 
signal, to filter out common noise. Independent Component 
Analysis and EOG artifact removal was then conducted to 
remove noisy signal components like those generated from 
blinking. 

All signals in the dataset are cropped to match the length 
of the shortest signal. A sliding window is applied on the 
signal to generate 4 seconds windows with a window overlap 
of 2 seconds. This maximises the available data. 

1) Extracting temporal features: For each window, 
temporal features of skew, kurtosis, Higuchi Fractal 
Dimension (HFD), and hjorth parameters like hjorth activity, 
mobility and complexity were extracted.  

Fractal Dimension is a geometric method of representing 
complexity in the temporal domain. Being non-linear, it 

 

Fig. 1. Summary of Methodology. 
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works for non-stationary signals like EEG signals, unlike 
methods like Fourier Transform which require the 
assumption of stationarity. HFD, a variation of the box-
counting fractal dimension, is used is used to approximate 
Fractal Dimension, as it provide closer approximations of 
theoretical values than other methods [22, 23].   

Let a discrete time series be represented as 
 where  is the total number of data 

samples. From this series,  new time series are constructed 
as such.  

� ����

� � ����

� � ����

� � ����

where  is the initial time,  is the time interval, and  is 
the floor function, and  is the discrete time series for 
initial time  . 

From here, the length of each curve, represented as 
, is calculated. 

� �	��

Then, the length of the time interval , represented as 
, is as follows: 

� � �
��

The HFD is the slope of the best-fit linear plot of the 

data points  and .  

Hjorth parameters are also utilised, which have been 
used in EEG emotion recognition to good effect [24, 25].  

For a signal of  of  datapoints, the formulas for 
Hjorth activity, mobility and complexity are as shown: 

� � ����

� � ����

� � ���

 Trials were conducted to determine the effectiveness of 
these features in improving classification accuracy, and 
features with a positive impact on the accuracy were used in 
the final model. 

2) Extracting spectral complexity features: For our 
second view, EEG signals are decomposed into 4 sub 
frequency bands, and non-linear differential entropy features 
are extracted.  

Firstly, a bandpass filter was used to decompose and filter 
the signal to produce theta (4-8Hz), alpha (8-13Hz), beta (13-

30Hz) and gamma (30-64Hz) signals. This is important in the 
 process of extracting differential entropy features, as 
for a fixed length EEG sequence, an EEG signal will follow 
a Gaussian distribution once it is decomposed to smaller 
frequency bands [26]. Thus, the signal of a certain 
frequency band then conforms to normal distribution  

, and the probability density function of the 
signal can be expressed as a function of the mean  and the 
standard deviation . This will simplify subsequent analysis. 

Differential entropy is based on the concept of Shannon 
entropy from information theory. For a continuous random 
variable, Shannon entropy is defined as: 

� � �����

where  represents the probability density function of 
the signal. The probability density function can then be 
simplified as shown below:  

� ������

����������������� �

where DE is the differential entropy of the signal. 

Differential entropy features are then combined with 
channel data to obtain a feature vector of size 248 for each 
sample. The feature data is scaled to a range of 0 to 1. 
Finally, Principal Component Analysis (PCA) is applied to 
shrink the feature vector down to 100 components. This 
minimises redundancies in the extracted features. 

C. Model Architecture 
1) Temporal view model: A CNN model architecture is 

used to model the selected temporal features. However, 2D-
CNN models require data samples with 2 spatial dimensions. 
For our data with 1 spatial dimension,  a 1D-CNN variant was 
found to be more suitable, and is also capable of extracting 
valuable temporal information from  data [27]. Accordingly, 
1D versions of convolutional layers and max pooling layers 
are used.  The model architecture consisted of 4 sets of a 
convolutional layer followed by max-pooling layer. After 
every two convolutional layers, a dropout layer was added. A 
dropout value of 0.1 was empirically chosen.  Additionally, 
every convolutional layer was followed by a Rectified Linear 
Unit (ReLU) activation function to strongly confine the 
outputs of the weights to positive values. Two dense layers 
and a softmax activation function are applied at the end of the 
model architecture.  The model was trained for 60 with a 
batch size of 32. 

2) Spectral view model: To train the differential 
entropy features, a Deep Dense Neural Network is used. 
Dropout layers are added to help address the issue of 
overfitting, with p = 0.2. The DNN consists of a set of 2 dense 
layers followed by 1 dropout layer, then another set of the 
same layers. An Adam optimizer and categorical cross 
entropy loss was used in the training of the model. The  
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model was trained for 160 epochs until convergence, with a 
batch size of 32. 

3) Co-Training: Our two base models will then be used 
with a co-training paradigm.  For the proposed use case, the 
original co-training paradigm has been adapted to focus on 
disagreement between the two base models. 

The process of co-training is as follows: In each iteration 
of co-training, both base models are trained until accuracy 
stabilises. Then, the models are used to predict class 
probabilities for unlabelled data instances. A subset of data 
where the two models predict different labels is then added 
into the training dataset with replacement. Pseudolabels are 
generated by ensembling the predictions of the two models 
together to create a stronger prediction. Each round, the 
training dataset will consist of the original labelled dataset 
and a subset of data that the models disagreed on the previous 
round. This cycle occurs until the combined model 
converges. Fig. 2 summarises the process of co-training. 

This approach is slightly different from the original co-
training method, which adds data with high confidence 
predictions to the training dataset [32]. However, adding 
examples which models disagree on to the training dataset 
allows the models to learn from each other. Additionally, 
instances that models disagree on are likely to be instances of 
uncertain labels.  

D. Training Methodology 
To assess both the performance and reliability of our 

proposed method, k-fold cross-validation is used, with k = 
5. This involves separating the dataset into 5 subsets, 
training the model on 4 (k-1) subsets, and validating it on 
the remaining subset. This process is repeated 5 times with a 
different subset being used for validation each time. With 
this, the model's ability to generalise to new unseen data and 
the variability of its performance can be measured. 

IV. RESULTS AND ANALYSIS 

In this section, the performance of the individual temporal 
and spectral models and the overall co-training ensembled 
model are evaluated for both datasets. To analyse the benefits 
of ensembling, the performance of the individual CNN and 

DNN models, without ensembling or co-training, is also 
computed. The parameters of these models follow those listed 
in Section III-C-1 and Section III-C-2. The performance of the 
ensembled predictions of these two models without co-
training is also computed and compared to that of our 
proposed method.  

A. Results for SEED Dataset 
Firstly, from Table I, the individual temporal model and 

spectral model achieve good results on their own. The model 
trained on temporal features achieves an accuracy of  
and a F1 score of , and the model trained on 
differential entropy features achieve an accuracy of  
and a F1 score of . This is indicative of the suitability 
of the model architecture and features selected to this emotion 
recognition task. 

Still, when comparing individual models to the proposed 
co-training ensembled model, the proposed method 
outperforms both individual models significantly. Our method 
attained   accuracy and an F1 score of . This 
is a  and 6.87% improvement in accuracy over the 
temporal and spectral models respectively.  

 Additionally, ensembling predictions of both individual 
models without using co-training also outperformed 
individual models, demonstrating the effectiveness of 
ensembling itself in improving performance. The accuracy of 
these ensembled predictions are higher than that of the 
temporal and spectral models, by 5.82% and 4.22% 
respectively. However, the co-training ensemble method still 
performed the best, showing the benefits of our proposed 
approach.  

B. Results for MER Dataset 
For the MER Dataset, emotion recognition is split into 

an arousal classification task and a valence classification 
task. The results for both tasks can be found in Table II. 

For the arousal task, the spectral classifier performs 
significantly better than the temporal classifier, attaining 

 accuracy compared to  accuracy for the 
temporal model.   But the proposed method still shows a 
performance increase, achieving an accuracy of . 

 
Fig. 2. Diagram of co-training process 

 [28, 29, 30, 31] 
TABLE I.  RESULTS OF SEED DATASET 
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The valence task finds the temporal classifier performing 
much better than the spectral classifier, where the temporal 
model attains  accuracy and the spectral model 
achieves  accuracy. The proposed method also 
outperforms the base models significantly, achieving an 
accuracy of . 

Similar trends in performance are observed in the MER 
dataset as in the SEED dataset.  Ensembling predictions of 
the base models together without co-training also attains 
superior performance than the individual models. For the 
arousal task, it shows a 24.13% and 2.03% increase in 
accuracy over the temporal and spectral model respectively. 
For the valence task, it demonstrates a 2.59% and 37.54% 
increase in accuracy compared to the temporal and spectral 
model respectively. 

V. DISCUSSION 

A. The effectiveness of ensembling 
A major requirement for the effectiveness of ensemble 

learning is diversity in the feature selection and/or model 
architecture is strongly encouraged [32], such that 
combining both classifiers can leverage both classifiers’ 
strengths to improve performance and compensate for 
individual models’ weaknesses. In aiming to fulfil this 
requirement, the proposed method has ensured the two sets 
of features used to train the models have been chosen to be 
suitably distinct, being taken from different domains of the 
EEG signal. Different model architectures were also 
deliberately chosen for the two classifiers. This seems to be 
an effective method to ensure diversity, as our proposed 
method shows an improvement in performance. 

However, one possible concern about ensembling 
different feature sets together is that a single classifier 
trained on all the feature sets could provide similar 
performance, rendering ensemble learning techniques 
superfluous in this case. To investigate this, a single 
classifier was also trained on both temporal and spectral 
features, and its performance will be compared the proposed 
method. For the SEED dataset, this single classifier attained 
an accuracy of 94.29% and a F1 score of 94.30%, lower 
than the proposed method. For the MER dataset’s arousal 
and valence tasks, the single classifier also achieved a lower 
accuracy and F1 score than the proposed. This could be 
because the relatively high dimensionality of all the features 
together could require a model with increased complexity 
and more data to model accurately. While the performance 
of both methods could be different for different scenarios, 

ensemble learning’s superior performance here 
demonstrates the benefits of ensembling in this case. 

B. The effectiveness of co-training 
Much research has been done to investigate the 

sufficient conditions for co-training to be successful. One 
such condition is that the feature sets are class conditionally 
independent [33]. However, it is rather unlikely that the 
temporal and spectral features used in the proposed method 
would be class conditionally independent. In fact, as both 
temporal and spectral features are generated from the same 
EEG signal, there is a level of interdependence between 
them. It has also been shown that weak dependence can also 
guarantee the success of co-training (bootstrapping), but this 
is rather challenging to show. Since the effectiveness of co-
training in EEG cannot be discerned easily, the best way to 
determine it is to test it out experimentally, which is the 
motivation behind the proposed method. Nonetheless, even 
while the feature sets may not be class-conditional-
independent or weakly dependent, the experimental results 
have shown that co-training is still effective in our case. 

Co-training was also intended to mitigate the issue of 
uncertain labels. Since uncertain labels contaminate the 
dataset with noise and reduce accuracy, the improvement in 
performance when co-training is used, compared to simple 
ensembling, indicates that this method is successful.  

VI. FUTURE WORK 

The feasibility of the proposed method has been 
demonstrated for model architectures like CNN and DNN for 
the base models. However, future work could include testing 
the proposed method on different model architectures like 
LSTM, Attention Networks and Graph Neural Networks. 

This framework utilised weighted voting specifically to 
demonstrate the effectiveness of ensembling in improving 
performance. However, more work could be done to test the 
performances of different ensembling methods, like bagging, 
boosting and stacking, in order to determine the optimal 
method for ensembling models in this scenario. 

Finally, future work could include comparison and 
evaluation with other state-of-the-art methods. 

VII. CONCLUSION 

The proposed semi-supervised co-training ensembled 
model is effective in increasing model performance over 
individual models, as shown as its better overall performance 
compared to individual models for both SEED and MER 
datasets.  

  
TABLE II.  RESULTS OF MER  DATASET, FOR AROUSAL (LEFT) AND VALENCE (RIGHT) 

504



 

It also mitigates the issue of models not fully representing 
EEG data, by ensembling classifiers trained on different 
features from different domains of the EEG signals. This 
method consistently outperforms training a single classifier on 
all the features. 

The findings also suggest that semisupervised co-training 
is effective in mitigating the issue of uncertain labels and 
improves performance. 

Therefore, the proposed method shows promise in 
enhancing the performance of EEG emotion recognition and 
mitigating some of the common challenges faced by emotion 
recognition tasks. 
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