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Abstract—Over the past few decades, strokes, also called 
cerebrovascular diseases or cerebral vascular accidents (CVAs), 
have become a significant contributor to morbidity and 
mortality globally. Brain stroke early diagnosis is vital to initiate 
treatment to prevent brain cells from becoming necrotic. Non-
contrast-enhanced computed tomography (NCCT) is the 
primary imaging technique used to diagnose brain stroke 
conditions. Deep learning-based computer-aided diagnoses are 
developed to aid in diagnosis as ‘the brain is time’. DenseNet201 
architecture has alleviated the issue of gradient vanishing by 
utilizing dense connections. This study aims to detect brain 
stroke conditions by developing two deep learning models 
utilizing the transfer learning architecture of DenseNet201. Two 
deep learning models serve as a two-step process to identify 
ischemic stroke and its subtype conditions. Model 01 achieved 
an intrinsic accuracy of 97. 03% in the training set, 94. 50% in 
the validation set. Also, test and test time augmentation 
accuracy (TTA) was 94.50%. Model 02 reached an intrinsic 
accuracy of 98.02% in the training set and 95.67% in the 
validation set. Further, the test and TTA accuracy were 95.67%. 

Keywords—Brain stroke, Deep learning, Computed 
tomography, Transfer learning, Computer-aided diagnosis 

I. INTRODUCTION 

Stroke is one of the main causes of adult disability and the 
second leading cause of mortality worldwide [1,2]. A stroke, 
medically referred to as a cerebrovascular accident (CVA), 
happens when there is a sudden cessation of blood circulation 
to a specific area of the brain, resulting in the impairment or 
death of brain cells [3]. There are two primary categories of 
strokes: ischemic stroke and hemorrhagic stroke are two 
types of strokes [4]. An ischemic stroke occurs due to an 
obstruction or clot in a blood artery that provides blood to the 
brain [5]. The obstruction can arise from the formation of a 
blood clot (thrombus) within a cerebral blood artery or the 
migration of a clot (embolus) from another part of the body 
to the brain [6]. A hemorrhagic stroke happens when there is 
the presence of blood leakage within or in the vicinity of the 
brain [7]. The occurrence of bleeding can be attributed to 
either a hemorrhage, which is the rupture of a blood vessel, 
or the bursting of an aneurysm, which is a weakened, balloon-
like section in the wall of a blood artery [8].  

Stroke imaging is crucial for detecting the patient's 
condition, ruling out hemorrhagic stroke and other disorders 

that mimic similar conditions, such as benign tumors and 
infections, and initiating thrombolysis therapy [9]. Early 
detection of a cerebral stroke is imperative to preserve the 
patient's life and mitigate any undesirable consequences. 
Magnetic resonance imaging (MRI) and computed 
tomography (CT) are commonly employed medical imaging 
techniques for diagnosing strokes [10]. These instruments use 
distinctive methods to image different anatomical structures 
and abnormalities accurately. [11]. Due to its higher 
availability compared to MRI scanners, CT scanners are 
primary and essential medical imaging devices [12]. In 
addition, there are other medical advantages, such as faster 
image acquisition, improved usability for patients with severe 
injuries, and heightened ability to detect or confirm 
hemorrhagic stroke [13,14]. Additionally, it has the 
capability to do multimodal CT examinations, including non-
enhanced CT, perfusion CT, and CT angiography [15]. 

 

Computer-aided diagnosis (CAD) plays a vital role in 
medical image analysis, enabling radiologists to evaluate and 
interpret abnormalities and facilitating timely therapy 
initiation [16]. Classical machine learning methods have been 
employed in computer-aided diagnosis (CAD) for many years 
to detect, categorize, and differentiate different medical states. 
Furthermore, some computer-assisted techniques and tools 
have been developed during the past decade to identify brain 
abnormalities at the earliest possible stage. Deep Learning is 
commonly used to recognize strokes accurately and 
automatically [17]. This study is focused on detecting and 
classifying brain stroke conditions considering the type of 
brain stroke depending on the radiological features and on set 
time, as shown in the Table I. Significantly, the effectiveness 
of each of the stroke therapies diminishes over time until the 
potential for consequences surpasses their advantages. 
Therefore, the current recommendations impose restrictions 
on the timing of administering some medications. 
Thrombolysis can be administered within 4.5 hours from the 
beginning of symptoms [18]. Hence, a precise understanding 
of time is crucial for stroke treatment. Therefore, two deep 
learning models were developed in which the model 01 is to 
classify brain ischemic, hemorrhagic, and normal conditions, 
and the model 02 is to classify acute, subacute, and chronic 
conditions depending on the on-set time shown in Fig. 1.  
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Further, this study investigated DenseNet-201 transfer 
learning architecture performances concerning radiological 
feature detection on brain CT stroke images. In the DenseNet-
201 architecture, deep layers are anticipated to apprehend 
more sophisticated and advanced characteristics crucial for 
comprehending the elaborate patterns found in medical 
images. Therefore, feature maps from deeper layers can 
capture intricate features and subtle patterns that can indicate 
brain strokes. 

The DenseNet was developed to overcome some 
constraints of conventional designs such as VGG and ResNet. 
Researchers are concerned about the issue of gradient 
vanishing as the number of layers of the network in CNN 
models continues to increase. Batch normalization partially 
mitigates the issue of gradient vanishing [19]. DenseNet 
establishes dense connections by directly linking each layer to 
every other layer in a feed-forward manner. This architectural 
design promotes the reuse of features, decreases the quantity 
of parameters, and improves the flow of gradients throughout 
the training process. DenseNet introduced the concept of 
dense connectivity, composed of dense blocks, bottleneck 
layers, transition blocks, and global average pooling [20]. 

Fig. 1. Brain CT axial image: (a). Normal condition, (b). Ischemic condition, 

(c). Hemorrhagic condition, (d). Ischemic acute condition, (e). Ischemic 
subacute condition, (f). Ischemic chronic condition (Source: Kandy National 
Hospital, GE Medical System- Revolution EVO)  

 

TABLE I. RADIOLOGICAL FEATURES ON NCCT IMAGES BASED ON 
STROKE TYPE AND ON-SET TIME 

Stroke type (on-set time) Radiological features 

Ischemic - acute 
(0-7 days) 

Loss of gray-white matter 
differentiation, hypo attenuation of deep 

nuclei [23] 

Ischemic - subacute 
(1-3 Weeks) 

Attenuation of the cortex, clearly 
demarcated infarcted area, edema mass 

effect (maybe) [23] 

Ischemic - chronic 

(> Weeks) 

Hypodense areas, ventricular 
enlargement, atrophy and 

encephalomalacia (affected areas) [23] 

Hemorrhagic - acute 

(0-7 days) 
Hyperdense with fluid levels, mass 

effect and mid-line shift [24] 

Hemorrhagic - subacute 

(1-3 Weeks) 

Less intense with a ring-like 
appearance, surrounding edema and 

mass effect [24] 

Hemorrhagic - chronic 

(> 3 Weeks) 

Iso dense or confined hypo density, 

atrophy and encephalomalacia (maybe 
developed) [24] 

 

  Lisowka et al. conducted an ischemic stroke detection 
investigation using 170 CT datasets in 2017. The CNN 
technique was employed in this work, and the hinge loss 
function was used in the algorithm development phase. This 
study also used the ADAM optimizer and Keras with the 
Theano framework. The crucial validation step was carried 
out by dividing the data set into 71 participants for training, 
51 individuals for testing, and 48 subjects for validation. The 
accuracy of the study was 96.4% [21].  
 Lo et al. have proposed a classification model that uses 
1254 grayscale CT scans from 96 patients with acute 
ischemic stroke (573 images) and 121 healthy controls (681 
images) of NCCT. The transfer learning method is adopted to 
overcome the limited data size. AlexNet without pre-trained 
parameters achieved an accuracy of 97.12%, a sensitivity of 
98.11%, a specificity of 96.08%, and an area under the 
receiver operating characteristic curve (AUC) of 0.9927. 
[22]. 
 

II. MATERIALS AND METHODS 

 The ethical approval was obtained from the Ethics 
Review Committee, Faculty of Allied Health Sciences, 
University of Peradeniya, and Tokyo Metropolitan 
University, Japan, to gather data and carry out the study. The 
data set was gathered retrospectively from two Sri Lankan 
hospitals during 2017 and 2022, which Anuradhapura 
Teaching Hospital has Aquilion, Toshiba CT scanner, and 
Kandy National Hospital has Revolution EVO, GE Medical 
System. The CT scan images containing artefacts were 
eliminated based on the inclusion and exclusion criteria. The 
study included individuals aged 20 to 80 years whose CT scan 
data were utilized. Patients with conditions other than brain 
stroke were also eliminated based on their medical history. 
The control class of normal brain condition contained CT 
DICOM images ranging from just above the foramen 
magnum to the vertex of the brain. The data set contained 
2819 ischemic stroke conditions, 2548 hemorrhagic stroke 
conditions and 2819 normal conditions of NCCT (non-
contrast-enhanced computed tomography) images.  

 

A. Data Pre-processing 
 The obtained CT brain data were anonymized using the 
Python program as CT DICOM images contained pixels and 
metadata (patient data). CT axial brain data sets were pre-
processed, applying labelling as a supervised learning task, 
intensity normalization, and resampling as data was collected 
from the two different CT scanners in two hospitals and 
windowing. In addition, data augmentation was implemented 
during the model training process. The dataset was divided 
into training (3567 images, 74.82%), test sets (600 images, 
12.58%), and validation (600 images, 12.58%) for model 01. 
Further, the ischemic data set was divided into training (1619 
images, 57.43%), test sets (600 images, 21.28%) and 
validation (600 images, 21.28%) for model 02. The CT 
images of 512×512 matrix sizes were resized to 460×460 
pixels to match the input size of the pre-trained DenseNet 
model. 
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B. DenseNet Architecture, Design and Training 
 The environments in which the two deep learning models 
were developed and implemented are detailed in Table II. 
Two deep learning models were developed, including the 
4767 CT brain images. The two models work as two-step 
deep learning models to classify brain normal, ischemic, and 
hemorrhagic conditions by model 01, while acute, subacute, 
and chronic conditions of ischemic condition by model 02. 
The architecture comprises convolutional layers, max pool, 
dense layers (completely connected layers), and transition 
layers. The model's architecture is executed using the ReLU 
activation function, with SoftMax activation being employed 
for the concluding layer. A 1-cycle policy and FastAI were 
implemented to facilitate faster convergence to the solution 
and attain a higher training rate. 
 
Further, test-time augmentation was applied, which involved 
generating several augmented iterations of every test image 
and feeding each enhanced iteration into the model to obtain 
a prediction. The ultimate forecast for each test image is often 
the meaning of the estimates derived from all the enhanced 
iterations of that image. The final layer of DenseNet was 
modified to get the required output for both models. Each 
model's final layer was changed to obtain the desired output, 
which consists of three classes. The FastAI’s Lerner class 
were set up for the training process, which finds the suitable 
learning rate (Fig. 2) and then trains the model using a 1-cycle 
policy. The following hyperparameters were defined for each 
model, as mentioned in Table II. The following accuracies 
were measured in each model: intrinsic training, validation 
accuracy, test accuracy, test time augmentation accuracy 
(TTA). The model's performance was evaluated using recall, 
precision, accuracy, and F1 score metrics. The Grad-CAM 
(Gradient-weighted Class Activation Mapping) technique 
was applied to the two models to visualize the region of the 
input image that contribute most significantly to the model’s 
predictions.  
   
TABLE II. SPECIFICATIONS OF THE MODEL IMPLEMENTED 
ENVIRONMENT 

Environment Specifications 
Operating system Microsoft Windows 11 Home (22H2) 

Processor Intel(R) Core (TM) i7-9750 
Architecture 64-bit 

Memory 32 GB 
GPU NVIDIA GeForce GTX 1650 

Language Python 

Framework PyTorch, DL 

Libraries used. Pydicom, cv2, os, Matplotlib, 
Pandas, Scikit-learn 

 

TABLE III. HYPERPARAMETER VALUES ASSOCIATED WITH TWO 
DENSENET-201 MODELS 

Hyperparameter Tuned value 
Batch size 32 

Initial learning rate 0.001 

Activation ReLU, SoftMax 

Optimizer Adam 

Loss function Cross Entropy 

III. RESULTS 

In this study, we analyzed brain stroke detection using 
DenesNet201 architecture. The two deep learning models 
were utilized as a two-step process. The model 01 intrinsic 

training accuracy and validation accuracy were 97.03% and 
94. 50% respectively. The intrinsic test accuracy and TTA 
test accuracy for model 01 were 94.50% and 94.50%, 
respectively. In contrast, model 02 test intrinsic training 
accuracy and validation accuracy were 98.02% and 95.67%, 
respectively. The intrinsic and TTA test accuracy for model 
01 was 95.67%.  
 
The learning rates were obtained by learning rate finder 
curves (LR finder) as the steepest descent points were 0.0275 
and 0.0831 for models 01 and 02, respectively (Fig 2). The 
total trainable parameters were 5,763 for both models out of 
18,098,691 parameters. 
 
Training and validation loss per epoch and training and 
validation accuracy per epoch curves were plotted by both 
models in Fig. 4 and Fig. 5 to analyze the underfitting or 
overfitting conditions of the models, and there were no such 
conditions on either model. Therefore models 01 and 02 both 
training and validation loss curves showed consistent pattern 
which suggests that the model is generalizing well to unseen 
data. The model 01 and 02 confusion matrices are shown in 
Fig. 3. The performances of our two models were evaluated 
mainly using confusion matrix and accuracy. In addition to 
that precision, recall and false positive rate (FPR) were 
calculated which is shown in Table IV for both models.  

 

                (a)                                                           (b)  
Fig. 2. Learning rate curve vs loss curve (a). Model 01 curve, (b). Model 02 
curve.   

 
 

                   
Model 01                                       Model 02 

Fig. 3. Confusion matrix of model 01 and model 02. 
  

The confusion matrix was obtained to analyze the 
performances of the two models’ class-wise. Table IV shows 
that model 01 has high accuracy, F1-score, precision, 
specificity, and recall for all three classes, indicating a robust 
overall performance. The confusion matrix was obtained to 
analyze the performances of the two models’ class-wise. 
Table IV shows that model 01 has high accuracy, F1-score, 
precision, specificity, and recall for all three classes, 
indicating a robust overall performance.
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TABLE IV. MODEL’S PERFORMANCES MATRICES 

 

                                                                                                                                                                                                                                                            aHemorrhagic; bIschemic acute; cIschemic subacute; dIschemic chronic 
 

 
 

 
 
                                                          (a)                                                                                                                                   (b)         

Fig. 4. (a). Training and validation loss per epoch, (b). Training and validation accuracy per epoch curves for model 01. 
 

 

 
                                                          (a)                                                                                                                                   (b)      

Fig. 5. (a). Training and validation loss per epoch, (b). Training and validation accuracy per epoch curves for model 02.  
 

Although the model exhibits strong performance across all 
classes, it demonstrates slightly lower precision, recall, and 
FPR performances for ischemic cases compared to 
hemorrhagic and normal brain conditions. In model 01, 
average precision and recall were 94.5%, indicating that false 
positive and false negative have the same impact. Model 01 
average F1-score was 94.41%. Model 02 average accuracy, 
average precision, average specificity, and F1-score were 
97.77%, 95.68%, 97.83%, and 95.66%, respectively, which 
generally outperforms model 01 regarding accuracy, 
precision, specificity, and F1-score.   
     
FPRs were less than 4% for each class in the two models, 
which indicates that less than 4% of the actual negative 

instances were incorrectly predicted as positive. In model 02, 
ischemic acute class FPR is 0.5%.  
  
The receiver operating characteristics (ROC) curves for 
model 01, as shown in Fig. 6, exhibited a value of 0.99 for 
hemorrhagic and ischemic classes and 1.00 for normal 
conditions, indicating that the model has a high true positive 
rate and a low false positive rate for distinguishing between 
positive and negative instances. The ROC curves of model 02 
displayed values of 1.00, 0.99, and 0.99 for acute, subacute, 
and chronic classes, respectively, which indicate that the 
model demonstrates exceptional performance in 
differentiating instances corresponding to different classes, 
with notable sensitivity and specificity. 

Parameter Model 01� Model 02�

Ha Ischemic Normal Average I. Acuteb I. Subacutec I. Chronicd Average 

Accuracy (%) 95.83 96 97.16 96.33 99.16 96 96.16 97.11 

F1-Score (%) 93.5 93.93 95.8 94.41 98.74 93.93 94.32 95.66 

Precision (%) 93.96 94.898 94.63 94.5 98.99 94.89 93.17 95.68 

Specificity 

(%) 
97 97.5 97.25 97.25 99.5 97.5 96.5 97.83 

Recall (%) 93.5 93 97 94.5 98.5 93 95.5 95.66 

False Positive 

Rate (FPR) 
(%) 

3.09 2.5 2.75 2.78 0.5 2.5 3.5 2.16 
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                                                          (a)                                                                                                                                        (b)  

Fig. 6. The AUC curves, (a). Model 01, (b). Model 02. 
 

Figures 7 and 8 show each model's top five losses were 
obtained to analyze the model prediction, actual outputs, and 
its error detection of radiological features. In model 01, four 
incidence errors predict brain hemorrhagic conditions as 
normal condition with high confidence among the top five 
(Table V). In these four cases, hyper-dense areas of the brain 
parenchyma due to blood were detected as normal 
radiological features of the brain. In model 02, adjacent 
subtypes were predicted as wrong predictions, especially 
subacute cases, which were predicted as chronic conditions 
(Table VI).  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Top five losses of model 01.  

TABLE V. EVALUATION OF TOP FIVE LOSSES OF MODEL 01  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Top five losses of model 02. 
 VI. EVALUATION OF TOP FIVE LOSSES OF MODEL 02 

 
Figure 9 shows selected output images of Grad-CAM that 
applied for the final convolutional layer of model-01 
(Denseblock4-Denselayer32-Conv-2).  

   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 9. The Grad-CAM Images extracted from the final convolutional layer 

(denseblock4-denselayer32-conv-2) of model -01: (a). & (c). Normal brain 
conditions, (b) & (d). Corresponding Grad-CAM output of  a & c, (e). & (g). 
Ischemic stroke conditions, (f) & (h). Corresponding Grad-CAM output of  

e & g, (i). & (k). Ischemic conditions, (j) & (l). Corresponding Grad-CAM 
output of  i & k.  

IV. DISCUSSION 

 The overall NCCT data set comprised a total of 4767 
images. Hence, a pre-trained transfer learning architecture 
was employed to address the class imbalance issue due to the 
limited number of reported ischemia acute cases. The 
DICOM file format was utilized as input and subsequently 
transformed into a compatible format for the DenseNet-201 
architecture. The 1-cycle policy was included during the 
implementation phase of the architecture to enhance the 
learning process. It involves starting with a lower learning 

Image Prediction Actual Loss Probability 
(a) Normal Hemorrhagic 3.18 0.96 

(b) Normal Hemorrhagic 3.09 0.95 

(c) Normal Hemorrhagic 2.16 0.79 

(d) Normal Hemorrhagic 2.15 0.86 

(e) Ischemic Normal 2.01 0.66 

Image Prediction Actual Loss Probability 
(a) Chronic Acute 3.12 0.90 

(b) Chronic Subacute 3.07 0.94 

(c) Subacute Chronic 1.81 0.71 

(d) Chronic Subacute 1.62 0.79 

(e) Acute Subacute 1.49 0.41 
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rate, gradually increasing it for the first half, and then 
gradually decreasing it for the second half. The FastAI library 
integrates the 1-cycle policy, facilitating researchers' ability 
to experiment with and deploy cutting-edge deep learning 
models readily. There are some limitations related to this 
work. Stroke data were obtained from two CT scanners in two 
hospitals. Prior research has demonstrated substantial 
variation among scanners and manufacturers. As a result of 
its fundamental 2D nature from CT axial images, the 
performance of the proposed model may be constrained, as it 
is possible that certain aspects cannot be adequately captured 
due to its incapacity to utilize the entire 3D volume. Though 
artefacts containing data were omitted in the inclusion 
criterion phase, no investigation was conducted about the 
noise of the CT data. Inherent electronic noise of the CT 
images would significantly affect the feature extraction 
phase, though the different filters used to process the images 
and electronic noise would lead to misleading radiological 
features on CT images. The acquired Grad-CAM 
visualizations emphasize specific regions linked to brain 
stroke disorders, displaying prominent activation patterns in 
affected areas. In contrast, the Grad-CAM highlights are 
more moderate in normal conditions and distributed 
throughout the corresponding images. 
   

V. CONCLUSIONS AND FUTURE WORKS  

 In this study, we have proposed the multi-class 
classification of brain stroke using NCCT images. Further, 
DenseNet201 architecture was selected as the neural network 
architecture according to the literature, different parameters 
were tested, and evaluation metrics were recorded. The 1-
cycle policy and FastAI were adopted to the network to 
facilitate faster convergence to the solution and attained a 
higher training rate. The DenseNet201 architecture with the 
FastAI technique was more successful than traditional and 
task-specific algorithms. Future endeavors involve 
conducting brain stroke age detection by density changes of 
the brain parenchyma with more clinical validation studies 
and investigating the potential expansion of the model to 
three-dimensional (3D) applications.  
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