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Abstract—Deploying machine learning in open environments
presents the challenge of encountering diverse test inputs that dif-
fer significantly from the training data. These out-of-distribution
samples may exhibit shifts in local or global features compared to
the training distribution. The machine learning (ML) community
has responded with a number of methods aimed at distinguishing
anomalous inputs from original training data. However, the
majority of previous studies have primarily focused on the output
layer or penultimate layer of pre-trained deep neural networks.
In this paper, we propose a novel framework, Multitesting-based
Layer-wise Out-of-Distribution (OOD) Detection (MLOD), to
identify distributional shifts in test samples at different levels
of features through rigorous multiple testing procedure. Our
approach distinguishes itself from existing methods as it does
not require modifying the structure or fine-tuning of the pre-
trained classifier. Through extensive experiments, we demonstrate
that our proposed framework can seamlessly integrate with
any existing distance-based inspection method while efficiently
utilizing feature extractors of varying depths. Our scheme effec-
tively enhances the performance of out-of-distribution detection
when compared to baseline methods. In particular, MLOD-Fisher
achieves superior performance in general. When trained using
KNN on CIFAR10, MLOD-Fisher significantly lowers the false
positive rate (FPR) from 24.09% to 7.47% on average compared
to merely utilizing the features of the last layer.

Index Terms—Out-of-Distribution Detection, Multiple Hypoth-
esis Testing, Feature Fusion

I. INTRODUCTION

Many deep learning systems have achieved state-of-the-art

recognition performance when the training and testing data

are identically distributed. However, neural networks make

high-confidence predictions even for inputs that are completely

unrecognizable and outside the training distribution [49], lead-

ing to a significant decline in prediction performance or even

complete failure. Therefore, the detection of out-of-distribution

testing samples is of great significance for the safe deployment

of deep learning in real-world applications. This detection

process determines whether an input is In-Distribution (ID) or

Out-of-Distribution (OOD). OOD detection has been widely

utilized in various domains, including medical diagnosis [45]

, video self-supervised learning [53] and autonomous driving

[6].

*These authors contributed equally.
†Correspondence to: LST050505@126.com

Recent advancements in representation learning have led to

the development of distance-based OOD detection methods.

These methods map a testing input into a suitable feature

space and utilize a distance-based score function to determine

if the testing input belongs to the ID or OOD category

based on its relative distance to the training data [35], [54],

[58], [60]. These methods commonly depend on a pre-trained

encoder, which maps the test input to an embedding space

while preserving the dissimilarity between the test input

and the training data. Typically, the pre-trained encoder is

a sub-network extracted from a pre-trained classifier, with

most existing methods employing feature mapping from the

input layer to the penultimate layer. These extracted features

are generally considered as high-level semantic features that

exhibit strong relevance to the corresponding labels.

However, existing methods tend to overlook the feature

representations extracted in shallow layers. In this work, we

argue that these low-level features, which capture local and

background information, might contain valuable and crucial

information for reflecting the dissimilarity between the test

input and the training data. We formulate the OOD detection

task as a hypothesis testing problem:

H0 : x∗ ∼ Px v.s. H1 : x∗ ∼ Q ∈ Q. (1)

Here Px is the training distribution, Q is a set of distributions

and Px is not included in Q. In the open world scenario, the

distributions within the set Q exhibit diversity, and changes in

the distribution between Px and Q ∈ Q can occur at any level

of features, including both high-level semantic features and

low-level localized features. Consequently, fully leveraging the

features extracted from different layers of the neural network

can provide a wealth of comprehensive signals to aid the out-

of-distribution detection method in identifying distributional

shifts.

Several studies have highlighted the effectiveness of utiliz-

ing multi-scale features extracted from different intermediate

layers for OOD detection [18], [39], [72]. For example,

MOOD [39] adaptively selects intermediate classifier outputs

for OOD inference based on the complexity of the test inputs.

However, in the case of MOOD, the primary motivation for

adaptively selecting the optimal exit is to reduce computational

costs rather than enhance the OOD detection accuracy. In an-
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other recent study [18], the authors propose treating the scores

computed on the features of each layer as a type of functional

data and identifying out-of-distribution samples by integrating

changes in functional trajectories. Nevertheless, a potential is-

sue with this approach is that not all features extracted from the

intermediate layers are relevant for OOD detection. There are

multiple options available for aggregating the feature scores

extracted from each layer. These options include selecting

feature similarity scores for each layer and determining the

metric for score trajectory differences. However, the selection

and determination of these aggregation methods are currently

open issues in the field. The Multi-scale OOD detection

(MODE, [72]) is an attention-based method that utilizes both

global visual information and local region details of images

to enhance OOD detection. It introduces a trainable objective

called Attention-based Local Propagation, which utilizes a

cross-attention mechanism to align and emphasize the local

regions of the target objects in pairwise examples. However,

the aforementioned methods necessitate modifications in the

pre-training method or the backbone network, as well as the

selection of similarity metrics for the score trajectories.
In this paper, we propose a novel and general framework,

called Multitesting-based Layer-wise Out-of-Distribution

Detection (MLOD) to enhance the performance of detecting

samples that the MLOD has not encountered during training.

Our proposed approach utilizes commonly used pre-training

methods and models and leverages p-values to normalize the

detection output at each layer. It aims to determine whether

there exists a layer of features in a multi-layered pre-trained

MLOD that can effectively detect distributional shifts between

the test sample and the training data. To accomplish this, our

approach calculates p-values based on the empirical distribu-

tion of the score function across different layers and employs

multiple hypothesis testing techniques to control the True

Positive Rate (TPR). Additionally, our framework can identify

the layer that can detect the presence of distributional shifts

between the test sample and the training data. Considering

the potential high correlation between features extracted from

different layers of a pre-trained neural network, we adopt

five multiple hypothesis testing methods to adjust the p-value.

These methods include the Benjamini-Hochberg procedure

[8], adaptive Benjamini-Hochberg procedure [9], Benjamini-

Yekutieli procedure [10], Fisher’s method [16], and Cauchy

combination test [41]. We conduct systematic experimental

comparisons to illustrate the practical advantages of MLOD on

several benchmarks. On CIFAR10, the MLOD-Fisher method

significantly reduces the False Positive Rate (FPR) from

24.09% to 7.47% on average and consistently outperforms the

other methods on five OOD datasets.
Our main contributions are summarized as follows:

• We propose a novel OOD detection framework from

the perspective of the multi-layer feature of deep neural

networks, namely Multitesting-based Layer-wise Out-of-

distribution Detection.

• We provide a comprehensive evaluation of the effective-

ness of MLOD through both theoretical understanding

and experimental verification, focusing on multiple com-

binatorial tests. The main multiple test methods that we

consider in our evaluation include BH, adaptiveBH, BY,

Fisher method, and Cauchy method.

• Extensive experiments demonstrate that MLOD outper-

forms post-hoc methods that solely rely on the feature of

the final output layer, as well as enhance the performance

of various existing OOD scores. These experiments were

conducted using the current benchmarks, and the results

indicate a significant improvement in performance.

II. PRELIMINARIES

The primary aim of OOD detection is to ascertain whether

a given input is sampled from the training distribution or not.

Let X and Y denote the input and label space, respectively.

The training distribution over X × Y is denoted as Pid,

while the marginal distribution on X is denoted as Did. After

training a neural network on the training data derived from

Pid, the feature extractor is represented as φ(x), which is a

sub-network of the pre-trained neural network. The feature-

based OOD detector uses a decision function to determine

whether a test input belongs to the ID or OOD sample. The

decision function is defined as follows:

G(x∗, φ) =

{
ID if S(x∗, φ) ≥ λφ;

OOD if S(x∗, φ) < λφ.
(2)

Here, x∗ denotes the test input, and S(x∗, φ) is a scoring

function to quantify the similarity between the test input x∗

and the training data on the embedding space derived by

the feature extractor φ. The threshold λφ acts as a tuning

parameter that regulates the probability of misclassifying an

ID sample, also known as the True Positive Rate (TPR). To

maintain TPR a desired level of 1 − α, the threshold λφ is

selected based on the α-quantile of the empirical distribution

of {S(xi, φ)}ni=1. This is given by

F̂ (s;φ) =
1

n

n∑
i=1

I
{
S(xi, φ) ≤ s

}
, (3)

where I{·} represents the indicator function, and {xi}ni=1

corresponds to a validation set consisting of n ID inputs.

Therefore, λφ = F̂−1(α;φ) = infs∈R{s : F̂ (s;φ) ≥ α}.
III. CHALLENGES

Consider a pre-trained neural network f with m layers. The

network can be represented as the composition of functions:

f(x) = h ◦ gm ◦ · · · ◦ g2 ◦ g1(x), (4)

In this equation, h represents the top classifier which operates

on the features extracted from the m-th layer. Similarly, g1
denotes the feature mapping function from the input to the

first layer of features. For 2 ≤ i ≤ m, gi is the transformation

function from the (i−1)-th layer to the i-th layer. We introduce

the notation φ1(x) = g1(x), and define the mapping function

from the input layer to the output of the i-th layer as:

φi(x) = gi ◦ · · · ◦ g1(x). (5)
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In the case of OOD samples, distribution shifts can arise at any

feature layer. Consequently, we can leverage the hierarchical

structure of the MLOD f across its layers to maximize its po-

tential for OOD detection. This allows us to reformulate OOD

detection as a layer-wise assessment of similarity between the

test input and the training data.

A naive approach to implement layer-wise detection is

expressed as follows:

G(x∗; f) =

{
ID if S(x∗, φi) ≥ λφi

, ∀φi;

OOD if S(x∗, φi) < λφi
, ∃φi.

(6)

In this approach, the test input x∗ is classified as ID only if all

detectors G(x∗, φi) agree that x∗ is an ID sample. Conversely,

if there exists a layer of features φi(x
∗) for which G(x∗, φi) =

OOD, then x∗ is determined to be an OOD sample.

However, this simple approach suffers from a significant

drawback: the True Positive Rate (TPR) deteriorates, rendering

the final outcome of the layer-wise OOD detection unreliable.

It is important to note that each detector G(x∗, φi) has a

probability α of misclassifying an ID sample as an OOD

sample. When aggregating the results from multiple layers, the

probability of committing this error accumulates. Specifically,

the probability can be expressed as 1 − (1− α)
m

, assuming

that the feature mappings {φi}mi=1 are independent. As the

number of layers in the pre-trained neural network increases,

the TPR can approach zero. This observation indicates that the

detector presented in Equation (6) fails to maintain the TPR

at the desired level.

IV. METHODOLOGY

To address the aforementioned issues and challenges, our

proposed detection framework aims to achieve the following

objectives:

1. Applicability to general pre-trained models: The frame-

work should be applicable to a wide range of pre-trained

models without the need for re-training or the use of

specialized model architectures.

2. Standardization of layer scores: The framework should

ensure that the scores from each layer are standardized,

avoiding any bias in decision-making caused by the

varying ranges of score distributions in the intermediate

layers.

3. Fusion of layer results while maintaining desired TPR

level: The framework should be able to effectively fuse

the results from each layer while ensuring that the TPR

remains within the desired range.

To achieve Objective 1, our framework is designed to be

compatible with various types of detection scores, including

output-based scores, logits-based scores, and feature-based

scores. By accommodating these different types of detection

scores, our framework ensures its applicability to a wide range

of pre-trained models without the need for re-training or the

use of specific model architectures.

To achieve Objective 2, we employ the p-value [2] to

standardize the distribution of scores across different layers.

For a test input x∗, its p-value is defined by

p = P (S(x, φ) ≤ S(x∗, φ)|x ∼ Did) (7)

In fact, when the sample size n is large enough, the decision

rule {x : S(x, φ) < λφ} in Equation (2) is equivalent to the

decision rule {x : p-value of x < α}.

Proposition 1. For a given input x∗, using the p-value is
equivalent to using the hard threshold S(x∗) < λ.

Sketch of Proof: We denote {(xi,yi)}ni=1 as validation data

drawn from the ID distribution, and sort their detection scores

in an ascending order: S(1) ≤ S(2) ≤ ... ≤ S(n). Since the

threshold λφ is chosen to guarantee 1 − α1 TPR, we have

S([αn]) ≤ λ ≤ S([αn]+1), where [·] is the floor function. On

the other hand, the p-value of x∗ less than 0.05 implies that

P
(
S(x, φ) ≤ S(x∗, φ)

∣∣x ∼ D̂id

) ≈ 0.05 where D̂id is the

empirical distribution of {xi}ni=1. Hence S(x∗, φ) � S[αn]+1.

Proposition 2. If x∗ is drawn from the ID distribution, the
p-value of x∗ follows a uniform distribution U [0, 1].

Sketch of Proof: Let p∗ represent the p-value of x∗, s∗ =
S(x∗, φ), and denote F (s;φ) as the cumulative distribution

function of S(x, φ) with x ∼ Did. We have

p∗ = P
(
S(x, φ) ≤ s∗

∣∣x ∼ Did

)
= F (s∗, φ).

By the continuity of S(x∗) and Lemma 21.1 of [1]:

P (p∗ < α)= 1− P
(
F (s∗, φ) ≥ α

)
= 1− P

(
s∗ ≥ F−1(α;φ)

)
= α.

To achieve Objective 3, we employ the technique of multiple

hypothesis testing in statistics to adjust the p-value in order to

make TPR within the desired target range. We consider five

specific methods for multiple hypothesis testing:

• The Benjamini-Hochberg procedure [8]: This procedure

controls the false discovery rate (FDR) while controlling

the proportion of false positives among the rejected

hypotheses.

• The adaptive Benjamini-Hochberg procedure [9]: This

procedure is an adaptive version of the Benjamini-

Hochberg procedure that provides a more powerful con-

trol of the FDR when the number of hypotheses tested is

large.

• The Benjamini-Yekutieli procedure [10]: This procedure

is a modification of the Benjamini-Hochberg procedure

that controls the false discovery rate under arbitrary

dependency structures.

• The Fisher’s method [16]: This method combines the

p-values from multiple hypothesis tests using Fisher’s

combining function to obtain an overall p-value.

• The Cauchy combination test [41]: This method utilizes

the Cauchy combination test to combine p-values from

multiple hypothesis tests, providing a robust and powerful

approach for multiple hypothesis testing.
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TABLE I
RESULTS ON CIFAR10. COMPARISON WITH BASELINE METHODS THAT ONLY UTILIZE THE LAST LAYER FEATURES AND MOOD. THE PRE-TRAINED

CLASSIFIER IS MSDNET [24]. THE BEST RESULTS ARE IN BOLD. ALL VALUES ARE PRESENTED AS PERCENTAGES. THE DOWNWARD ARROW INDICATES

THAT LOWER VALUES ARE PREFERABLE, AND VICE VERSA.

Detection
Score Method

OOD Dataset
SVHN LSUN iSUN Texture LSUNR Average

FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑

MSP
Layer@last 54.72 91.43 34.38 95.27 52.27 92.30 59.15 88.11 50.49 92.51 50.20 91.92
MOOD 53.92 91.91 33.89 95.38 53.29 92.22 60.59 88.01 51.79 92.41 50.70 91.99
MLOD-BH 61.01 90.77 29.99 96.04 47.98 93.50 61.38 89.03 47.43 93.55 49.56 92.58
MLOD-adaBH 60.82 83.15 31.76 90.02 47.27 89.56 61.49 85.39 46.65 88.01 49.60 87.23
MLOD-BY 61.03 63.57 31.09 67.84 47.88 68.54 61.42 72.33 47.36 66.37 49.76 67.73
MLOD-Fisher 58.52 91.28 31.91 95.69 46.88 93.69 60.72 89.67 45.98 93.74 48.80 92.81
MLOD-Cauchy 60.10 91.21 32.70 95.65 46.59 93.68 60.51 89.43 46.28 93.71 49.24 92.74

Energy
Layer@last 34.09 92.82 5.91 98.73 33.30 93.59 55.14 82.35 31.57 93.77 32.00 92.25
MOOD 30.88 93.99 5.72 98.75 33.78 93.84 58.12 82.48 32.30 93.97 32.16 92.61
MLOD-BH 45.63 93.22 4.28 99.01 25.85 95.80 58.87 85.79 23.57 96.00 31.64 93.96
MLOD-adaBH 44.46 86.03 4.19 95.43 23.25 91.43 58.76 79.74 21.93 90.38 30.52 88.60
MLOD-BY 45.70 62.57 25.29 73.47 29.63 69.12 58.87 64.38 32.01 66.65 38.30 67.24
MLOD-Fisher 40.02 93.75 3.95 99.04 22.69 96.30 57.92 86.76 21.04 96.47 29.12 94.46
MLOD-Cauchy 44.78 93.55 3.85 99.03 22.94 96.28 58.26 85.95 21.11 96.44 30.19 94.25

ODIN
Layer@last 39.68 91.10 5.72 98.75 28.62 94.40 54.36 81.76 26.79 94.54 31.03 92.11
MOOD 35.66 92.69 5.32 98.79 28.59 94.66 57.23 82.01 27.00 94.76 30.76 92.58
MLOD-BH 49.95 92.73 3.46 99.10 20.21 96.60 56.68 86.22 17.82 96.76 29.62 94.28
MLOD-adaBH 48.64 85.18 3.74 95.69 18.36 93.02 56.00 80.21 16.30 91.75 28.61 89.17
MLOD-BY 45.70 62.57 25.29 73.47 29.63 69.12 58.87 64.38 32.01 66.65 38.30 67.24
MLOD-Fisher 44.59 93.28 3.56 99.11 17.38 97.05 55.75 87.10 16.09 97.18 27.47 94.74
MLOD-Cauchy 48.86 93.08 3.48 99.10 17.60 97.03 56.21 86.31 16.09 97.15 28.45 94.53

We combine the proposed framework, MLOD, with these five

methods, which are denoted as MLOD-BH, MLOD-adaBH,

MLOD-BY, MLOD-Fisher, and MLOD-Cauthy respectively.
Recall the difinition of φi in Equation (5). Given a test

input x∗, we compute the score value S(x∗;φi) and obtain

corresponding p-values denote as pi. After going through all

φi, we obtain m p-values: {p1, ..., pm}. Let the desired level

of TPR is 1−α. The details of the five methods are described

below:
MLOD-BH. We use the idea of the Benjamini-Hochberg

procedure. Sort m obtained p-values in ascending order:

p(1) ≤ p(2) ≤ · · · ≤ p(m). We identify the test input x∗ as an

OOD sample if there exists an integer 1 ≤ k ≤ m such that

p(k) ≤ αk
m , otherwise x∗ is classified as an ID sample.

MLOD-adaBH. We sort the p-values in ascending order:

p(1) ≤ p(2) ≤ · · · ≤ p(m). If p(i) ≥ αi
m , 1 ≤ i ≤ m, then x∗

is classified as an ID data, otherwise continue to calculate

Si = (1− p(i))/(m+ 1− i).

Set i = 2, proceed as Si ≥ Si−1 until for the first time Sj <
Sj−1 . Then compute m̂0 = min([1/Sj + 1],m). We identify

the test input x∗ as an OOD sample if there exists an integer

1 ≤ k ≤ m such that p(k) ≤ αk
m̂0

.
MLOD-BY. Based on the idea of Benjamini-Yekutieli pro-

cedure, we also sort m obtained p-values in ascending order:

p(1) ≤ p(2) ≤ · · · ≤ p(m) and define k = max{i|p(i) ≤
αi

mf(m)}, where f(m) =
∑m

i=1
1
i . We identify the test input x∗

as an OOD sample if there exists an integer 1 ≤ k ≤ m such

that p(k) ≤ αk
m , otherwise x∗ is classified as an ID sample.

MLOD-Fisher. Fisher’s method combines m p-values and

constructs a new test statistic: F =
∑m

i=1 −2ln(Pi). If F >
χ2(1−α, 2m), then the test input x∗ is classified to be OOD,

where χ2(1−α, 2m) is the upper α quantile of the chi-square

distribution with degrees of freedom of 2m.

MLOD-Cauchy. Cauchy combination test also combines m
p-values and establishes the Cauchy combination test statistic:

T =
∑m

i=1 wi tan (0.5− pi)π, where the weights wi’s are

nonnegative and
∑m

i=1 wi = 1. If T > t1−α, then the test

input x∗ is defined to be an OOD sample, where t1−α is the

upper α quantile of the standard Cauchy distribution.

V. EXPERIMENTAL SETTING

Datasets. For the evaluation on CIFAR Benchmarks, we utilize

CIFAR-10 and CIFAR-100 as the in-distribution datasets,

respectively. Additionally, we assess the OOD detector on

a total of 5 OOD datasets: LSUN (crop) [71], SVHN [48],

Textures [13], iSUN [67], and LSUN (resize) [71]. All images

are resized to 32×32.

Models. We ran experiments with three models. A MSDNet

[24] pre-trained on ILSVRC-2017 with over 5M parameters

and achieves a top-1 accuracy of 75%. A ResNet-18 [19]

model with top-1 test set accuracy of 70% and over 11M

parameters. A ResNet-34 [19] model with top-1 test set

accuracy of 74% and over 21M parameters. We download all

the checkpoints weights from PyTorch [50] hub. All models

are trained from scratch on CIFAR10 or CIFAR100.

Evaluation Metrics. Our evaluation of OOD detection meth-

ods utilizes two metrics: (1) the false positive rate (FPR)
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TABLE II
RESULTS ON CIFAR. COMPARISON WITH BASELINE METHODS THAT ONLY UTILIZE THE LAST LAYER FEATURES. THE PRE-TRAINED CLASSIFIER IS

RESNET-18 [19]. THE BEST RESULTS ARE IN BOLD. ALL VALUES ARE PRESENTED AS PERCENTAGES. THE DOWNWARD ARROW INDICATES THAT LOWER

VALUES ARE PREFERABLE, AND VICE VERSA.

CIFAR10 Method
OOD Dataset

SVHN LSUN iSUN Texture LSUNR Average
FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑

KNN

Layer@last 27.95 95.49 18.48 96.84 24.65 95.52 26.7 94.97 22.67 96.07 24.09 95.78
MLOD-BH 10.07 93.23 5.11 85.91 9.69 87.42 20.71 65.27 8.03 90.42 10.72 84.45
MLOD-adaBH 9.56 93.33 4.70 85.98 9.25 87.48 20.35 65.05 7.62 90.50 10.30 84.47
MLOD-BY 10.02 93.28 5.02 85.97 9.55 87.40 20.61 64.58 7.99 90.43 10.64 84.33
MLOD-Fisher 6.20 97.32 1.48 97.77 6.61 97.18 18.19 94.66 4.86 97.44 7.47 96.87
MLOD-Cauchy 8.52 98.16 3.76 98.72 8.64 98.05 19.8 95.50 6.95 98.35 9.53 97.76

CIFAR100 Method
OOD Dataset

SVHN LSUN iSUN Texture LSUNR Average
FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑

KNN

Layer@last 56.35 86.49 77.66 78.29 71.11 83.45 67.27 83.31 66.79 85.29 67.84 83.37
MLOD-BH 47.12 91.20 58.08 91.25 42.32 91.52 34.38 77.94 46.17 91.98 45.61 88.78
MLOD-adaBH 43.59 91.55 56.42 91.11 38.80 92.17 32.80 77.59 42.33 92.76 42.79 89.04
MLOD-BY 46.97 90.09 57.96 91.05 42.23 90.84 34.34 76.14 45.91 91.32 45.48 87.89
MLOD-Fisher 40.01 92.05 50.34 92.99 25.99 94.73 30.40 91.85 27.07 94.74 34.76 93.27
MLOD-Cauchy 43.79 91.96 55.18 92.11 36.63 93.88 32.59 92.45 39.94 93.65 41.63 92.81

of OOD data when the true positive rate (TPR) of the in-

distribution (ID) data is approximately 95% (referred to as

FPR95); and (2) the area under the receiver operating charac-

teristic curve (AUC).

Detection Score. We consider five OOD detection scores:

MSP [20], ODIN [38], Energy [40] and KNN [58]. MSP [20]

regards the maximum softmax probabilities as the detection

score. ODIN [38] utilizes temperature scaling and adds small

perturbations to distinguish the softmax scores between ID

and OOD samples. The energy-based model [33] maps a test

input to a scalar that is higher for OOD samples and lower

for the training data. Liu et al. [40] propose an energy score

that utilizes the logits outputted by a pre-trained classifier.

KNN [58] is a distance-based detector that utilizes the feature

distance between a test input and the k-th nearest ID data. In

this paper, we set the hyperparameter k to be 50.

Baselines. In this paper, we consider two baseline approaches.

The first approach involves OOD detection using the out-

puts (probabilities or logits) of pre-trained classifiers or the

penultimate layer of features. This approach is commonly

used in existing OOD detection methods. By comparing our

proposed framework with the approach that solely relies on

the information from the last layer, we demonstrate that

our method effectively utilizes information from intermediate

feature layers to enhance OOD detection performance. The

second baseline approach is MOOD [39]. MOOD utilizes a

pre-trained model with multiple exits, such as MSDNet, and

performs supervised learning of the classification task on all

features in the middle layer. In order to improve the sensitivity

of OOD detection, we compare our method with MOOD. The

comparison reveals that our feature layer selection, which is

based on the detection task, outperforms the approach based

on input complexity.

VI. RESULTS AND DISCUSSION

Main Results. The performance of MLOD on CIFAR10

and CIFAR100 benchmarks using ResNet-18 is evaluated. We

compare our method against a baseline method that utilizes

only the penultimate layer of features. The OOD detection

performance for each OOD test dataset, as well as the average

across all five datasets, is presented in Table II. Based on

the results, MLOD-Fisher and MLOD-Cauthy consistently

outperform the baseline method. We also consider MOOD

[39] as a baseline method and employ MSDNet [24] as the

pre-trained classifier. In Table I, we compare our method

against MOOD and present the OOD detection performance

for each OOD test datasets, as well as the average across all

five datasets. On the average results, our method outperforms

MOOD.

MLOD-Fisher achieves consistent improvements on
FPR95. In our comparison of MLOD with the baseline

method using different multiple testing methods, we observed

thatMLOD-Fisher based on KNN performed better than the

baseline methods on average for FPR95. Specifically, we

found that the MLOD-Fisher based on KNN method signif-

icantly reduced FPR95 from 24.09% to 7.47% on average.

This method exhibited consistently better performance for the

SVHN, LSUN, iSUN, Texture, and LSUNR datasets.

MLOD-Cauchy achieves consistent improvements on AUC.
In our comparison of MLOD with baseline methods, we found

thatMLOD-Cauchy based on KNN achieved best performance

in terms of AUC. On the other hand, MLOD-adaBH and

MLOD-BY methods have weaker performance in terms of

AUC compared to the baseline methods on average. They still

offer advantages in terms of their ability to control the false

discovery rate and handle arbitrary dependency structures.

MLOD method demonstrates excellent scalability. The
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MLOD method is equally applicable in pre-trained deep neural

networks with multiple exits. We use default MSDNet [24]

with k = 5 blocks with 4 layers each and use the default

growth rate of 6, with scale factors [1, 2, 4] to apply our

approach. The results of CIFAR10 are shown in Table I.

On average, compared to the state-of-the-art MOOD method,

MLOD-FIsher reduces FPR by 2.8% and improves AUC by

1.39% for CIFAR10 dataset.

MLOD leverages the fusion of multi-layer features. The

majority of previous studies have primarily focused on the

output layer or penultimate layer of pre-trained deep neural

networks. We cite the results of the competitors reported in

MOOD [39] and show the average results between MLOD

vs. single layer feature and MOOD based on MSDNet with

Energy score on 8 OOD datasets in Table III. MLOD uses

the feature information of multiple layers of pre-trained deep

neural networks to improve performance compared with the

single layer.

TABLE III
PERFORMANCE COMPARISON BETWEEN MLOD VS. SINGLE LAYER

FEATURE AND MOOD BASED ON MSDNET WITH ENERGY SCORE.
NUMBERS ARE AVERAGED RESULTS WITH CIFAR-100 BENCHEMARKS.

AUC↑ FPR95↓
Exit@1 77.69 70.83
Exit@2 83.13 57.19
Exit@3 84.71 57.76
Exit@4 85.31 57.12
Exit@5 84.51 59.15
MOOD 86.21 55.26

MLOD-BH 86.74 52.72
MLOD-adaBH 78.45 52.24
MLOD-BY 57.56 58.40
MLOD-Fisher 87.19 50.84
MLOD-Cauchy 86.64 51.95

VII. RELATED WORK

The investigation into OOD detection within deep neu-

ral networks has been undertaken through diverse perspec-

tives, primarily spanning density-based, distance-based, and

classification-based methods. Density-based methods explic-

itly model in-distribution samples using probabilistic mod-

els, flagging test data in low-density regions as OOD. As

exemplified in the study by [35], class-conditional Gaussian

distributions are utilized to model the distributions of multiple

classes within in-distribution samples. [75] introduces a more

expressive density function based on deep normalizing flow.

Recent approaches have delved into novel OOD scores, with

likelihood regret [66] proposing a score applicable to varia-

tional auto-encoder (VAE) generative models.

Distance-based methods operate on the premise that OOD

samples should exhibit relatively greater distances from the

centers of in-distribution samples. In [35], OOD detection

is achieved by evaluating the Mahalanobis distance between

test samples and their nearest class-conditional distributions.

Another non-parametric approach [58] involves computing the

k-nearest neighbors (KNN) distances between the embeddings

of test inputs and training set embeddings. In addition, several

studies make use of the spatial separation between the em-

bedding of the input and the centroids of respective classes

[17], [25], [61]. Other works such as SSD+ [52] have adopted

off-the-shelf contrastive losses for OOD detection. However,

this approach results in embeddings that exhibit insufficient

inter-class dispersion. CIDER [42] specifically addresses this

issue by optimizing for substantial inter-class margins, thereby

yielding more favorable hyperspherical embeddings.

In the domain of classification-based methods, a founda-

tional benchmark was set using maximum softmax probability

(MSP) from pre-trained networks [20]. ODIN [37] refined

this baseline by integrating temperature scaling and input

perturbation to bolster the distinction between ID and OOD

samples. Generalized ODIN [22] furthered this progression

by introducing a specialized network for learning temperature

scaling and a strategy for selecting perturbation magnitudes.

Addressing challenges of overconfident posterior distributions

in OOD detection using softmax scores, [40] introduced a

novel approach utilizing the energy score derived from logit

outputs for OOD detection. ReAct [56] proposed a simple and

effective technique aimed at mitigating model overconfidence

on OOD data. Outlier Exposure (OE) methods [21] utilized

a set of collected OOD samples during training to assist

the learning of ID/OOD discrepancy. However, such outlier

exposure approaches hinge on the availability of OOD training

data. In the absence of such data, efforts have been made to

synthetically generate OOD samples. VOS [15] proposed the

synthesis of virtual outliers from the low-likelihood region

in the feature space, which is more tractable given lower

dimensionality. Noteworthy contributions from MOS [27] have

advocated for OOD detection in large-scale settings, aligning

more closely with real-world applications.

Recent research has advanced OOD detection by generating

auxiliary datasets or optimizing network structures. HOOD

[29] employs an intervention process to generate both malign

and benign OOD datasets, enhancing model robustness. DAL

[63] reduces distributional differences by forming a set of

distributions within Wasserstein spheres. EVIL [28] improves

generalization by identifying subnetworks through the explo-

ration of parameters sensitive to distribution changes, demon-

strating novel approaches to model resilience and detection

capabilities.

VIII. CONCLUSION

In this work, we introduces the MLOD framework, which

leverages multitesting-based layer-wise feature fusion for

OOD detection. The proposed framework is applicable to

various pre-trained models and is supported by a comprehen-

sive experimental analysis that evaluates the performance of

various methods. This analysis demonstrates the efficacy of

MLOD in improving OOD detection.
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