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Abstract—Autonomous Unmanned Aerial Vehicles (UAVs) have
become essential tools in defense, law enforcement, disaster
response, and product delivery. These autonomous navigation
systems require a wireless communication network, and of late
are deep learning based. In critical scenarios such as border
protection or disaster response, ensuring the secure navigation
of autonomous UAVs is paramount. But, these autonomous UAVs
are susceptible to adversarial attacks through the communication
network or the deep learning models - eavesdropping / man-in-
the-middle / membership inference / reconstruction. To address
this susceptibility, we propose an innovative approach that
combines Reinforcement Learning (RL) and Fully Homomorphic
Encryption (FHE) for secure autonomous UAV navigation. This
end-to-end secure framework is designed for real-time video
feeds captured by UAV cameras and utilizes FHE to perform
inference on encrypted input images. While FHE allows com-
putations on encrypted data, certain computational operators
are yet to be implemented. Convolutional neural networks, fully
connected neural networks, activation functions and OpenAI
Gym Library are meticulously adapted to the FHE domain to
enable encrypted data processing. We demonstrate the efficacy of
our proposed approach through extensive experimentation. Our
proposed approach ensures security and privacy in autonomous
UAV navigation with negligible loss in performance.

Index Terms—Autonomous Unmanned Aerial Vehicles, Fully
Homomorphic Encryption, Privacy, Reinforcement Learning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly referred to

as drones, are defined as aircrafts that operate without any

human onboard. UAVs have brought about transformative

changes across various industries, providing unmatched capa-

bilities in surveillance, reconnaissance, disaster response, and

product delivery [1]. As the demand for more complex tasks

performed by UAVs grows, so do the challenges in their devel-

opment, particularly in striving for fully autonomous operation

with minimal human intervention. Effective deployment of

autonomous UAVs requires intricate path planning, obstacle

detection, intelligent maneuverability and a wireless commu-

nication network. Research efforts on autonomous navigation

in UAVs for visual mapping, obstacle detection, and path

planning have gravitated towards deep neural networks [2] [3]

[4] [5]. In critical scenarios such as surveillance and disaster

response, a secure wireless communication network to ensure

secure navigation is imperative. In addition to susceptible

* First two authors contributed equally to this work.

wireless networks, deep neural networks in drones are also

vulnerable to adversarial attacks [6] [7].

Autonomous drones are exposed to various adversarial

threats, such as - eavesdropping, traffic analysis, man-in-

the-middle, and backdoor access [8]. From a deep learning

perspective, attacks can be broadly classified into our types:

membership inference, reconstruction, property inference, and

model extraction [9]. In our research, we specifically address

the scenario where an attacker can intercept communication

between the drone and its navigation server, posing a potential

risk to the UAV’s secure operation. Our primary focus is on

establishing secure and private communication channels for

autonomous drone navigation.

Previous works have explored computer vision-based au-

tonomous UAV systems [2], whereas, recent efforts take a

Reinforcement Learning (RL) approach [3] [4] [5]. In our

work, we adopt the Actor-Critic model with Proximal Pol-

icy Optimization (PPO) as the policy gradient algorithm to

demonstrate a solution addressing the privacy and security

challenges in autonomous UAVs. We propose a novel end-

to-end framework combining RL and Fully Homomorphic

Encryption (FHE) to perform secure inferencing on homomor-

phically encrypted inputs. Using FHE in our proposed method

ensures that the navigation result is only disclosed to autho-

rized parties with the secret key for Homomorphic Encryption,

and inputs themselves are secured through encryption during

the navigation process. We show through our experiments

that, with FHE, the navigation results are unaffected while

guaranteeing utmost security.

When implemented properly, FHE helps achieve a high

level of security. However, its implementation of mathematical

operations is limited. To this end, in this paper, we adapt

the RL model to the encrypted domain to facilitate the

processing of encrypted real-time images captured by UAV

cameras (Fig. 1). Key aspects of our approach include trans-

forming convolutional layers into spectral domain operations,

utilizing generalized matrix multiplication in fully connected

layers, and customizing activation functions as polynomial

approximations/comparators. Since the RL framework utilizes

OpenAI Gym Library to derive the navigational steps from

the extracted image features, we adapt the Library to the

encrypted domain as well. A simple multi-layer perceptron is

trained to replicate the OpenAI Gym library and its weights are
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Fig. 1: Overview: In an ordinary scenario the UAV is vulnerable to snooping attacks, as the attacker can directly steal the

information. Or, query the model to infer target information, launching a model inversion attack. In our approach, the input

is encrypted and the inference happens in the encrypted domain. Hence, the attacker is unable to exploit any meaningful

information from the system.

used during inferencing in the encrypted domain. Remarkably,

our end-to-end secure framework shows a negligible loss in

performance.

The rest of the paper is organized as follows - Section

II covers the basics of FHE and Section III touches on the

related work in this field. Section IV highlights how each

component of the deep learning model is uniquely adapted for

encrypted data handling. Sections V and VI detail the Mean

Absolute Errors (MAEs) and time taken for each block in our

novel framework. This work not only addresses immediate

privacy and security concerns associated with UAVs but also

lays the foundation for a new paradigm in autonomous aerial

systems. By prioritizing privacy and security through FHE,

our approach paves the way for deploying UAVs in sensitive

domains where data confidentiality is paramount.

II. FHE BASICS

Homomorphic Encryption (HE) is a cryptographic system

that enables computations on encrypted data without the

need for decryption. In this system, two key components are

utilized: public key pk and secret key sk. Encryption and

decryption operations are denoted by E and D, respectively.

Consider plaintext values x and y, and their corresponding

ciphertexts, denoted as x′ = E(x, pk) and y′ = E(y, pk). HE

empowers the computation of various operations directly on

encrypted ciphertexts. For instance, the addition of encrypted

values D(x′+y′) is approximately equivalent to the addition of

the original plaintext values x+y. Likewise, the multiplication

of encrypted values D(x′ ∗ y′) is approximately equivalent to

x ∗ y.

Among various HE schemes, Fully Homomorphic Encryp-

tion (FHE) can support computations on ciphertexts of any

depth and complexity. This unique characteristic makes FHE

the preferred choice for scenarios requiring advanced privacy-

preserving computations and secure data processing.

Numerous FHE cryptosystems have been proposed, includ-

ing the BFV, BGV, and CKKS schemes [10]. Notably, BFV

and BGV schemes support integers, while the CKKS scheme

extends its support to floating-point decimals. In our research,

we have employed the CKKS scheme due to its compatibility

with floating-point operations.

To enhance computational efficiency, we choose to pack

our input into arrays of size 2n before encryption. If the input

sizes are not perfect powers of 2, we pad the data with 0s.

Although these ciphertexts support Single Instruction Multiple

Data (SIMD) operations [11], they do not provide direct access

to individual elements within the ciphertext.

Our research utilizes HEAAN to enable secure autonomous

UAV navigation using Deep Learning. While FHE allows

computations on encrypted data, certain computational opera-

tors are yet to be implemented. In this paper, we elucidate
intelligent adaptations in the encrypted domain to make
encrypted data processing feasible.

III. RELATED WORK

Numerous surveys have delved into the privacy and security

challenges specific to UAVs. Works such as [12] and [13]

highlight the vulnerability landscape in UAV communica-

tion networks, emphasizing the delicate trade-off between

robust security and the imperative for lightweight, efficient

operations. These discussions underscore the crucial role of

encryption in fortifying UAV systems against multifaceted

threats, as presented by the authors in [14]. Our research aims

to build upon these foundational insights, contributing to the

ongoing discourse on UAV security.

Homomorphic Encryption has been employed in prior work

to secure computations in the context of UAV navigation. For

instance, in [15], the authors propose an extra key genera-

tion encryption technique using the Paillier Cryptosystem to

secure the public key. Another approach proposes a secure

and efficient method with Secure Homomorphic Encryption

(SHE) for third-party UAV controllers to process client data

[16]. Additionally, Cheon et al. (Cheon et al., 2020) propose

secure autonomous UAVs without relying on deep learning for
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autonomy, employing Linearly Homomorphic Authenticated

Encryption (LinHAE).

While prior works have made significant strides in ad-

vancing autonomous systems and encryption methodologies

for various applications, a comprehensive solution seamlessly

integrating end-to-end encryption into a fully autonomous

RL-based drone system remains elusive. Existing research

has notably contributed to the field but often falls short in

providing a holistic approach to ensure complete security.

This study aims to bridge these gaps by introducing a novel

framework that leverages RL for autonomy and integrates

FHE, thereby, achieving a secure end-to-end autonomous UAV

navigation system.

Fig. 2: Architecture Overview of our Deep Learning frame-

work implementing the Actor-Critic algorithm.

IV. PROPOSED METHOD

The drone is trained using the Actor-Critic Proximal Policy

Optimization (PPO) RL algorithm [17]. During training, both

Actor and Critic networks are utilized, whereas, only the Actor

network is leveraged during inferencing. The model architec-

ture can be divided into two segments - Feature Extractor and

Fully Connected Network as shown in Fig. 2. The Feature

Extractor consists of 3 convolution blocks and 1 linear block

as shown in Fig. 3. The Fully Connected Network segment

consists of 2 shared linear blocks (shared between Actor and

Critic) and an output linear block as in Fig. 4.

Fig. 3: Feature Extractor segment of our Deep Learning

framework.

Computations within the Fully Homomorphic Encryption

(FHE) domain introduce several limitations - the absence of

individual element access in encrypted arrays, high latency,

and the absence of inherent support for operators like com-

parators. Consequently, we choose to train the Actor-Critic

model in the unencrypted domain with data generated in a

simulated environment, employing Microsoft’s AirSim library

and Unreal Engine. Subsequently, we leverage the model

weights for inference within the encrypted domain. To achieve

this, we carefully adapt each component of the RL framework

to seamlessly operate within the FHE domain, addressing

specific challenges presented by FHE.

The following components have been adapted to the FHE

domain: (i) Input images; (ii) 2D convolution; (iii) Flattening

layer; (iv) Fully connected network; (v) ReLU activation

function; (iv) Tanh activation function; and (v) OpenAI Gym

Library.

Fig. 4: Fully Connected Network segment of our Deep Learn-

ing framework.

A. Input images

The drone’s input comprises of three consecutive images,

each captured from the AirSim simulator, with dimensions

50x50 (based on the simulated environment configuration).

These images are concatenated to form a single input image

with dimensions 50x150. HEAAN [18] exclusively supports

the encryption of array with sizes as powers of 2. We address

this constraint by padding each row of the image with zeros,

extending the width to 256. Since HEAAN supports Single

Instruction Multiple Data (SIMD) operations [11], we try to

pack as many pixel values as possible in a ciphertext. The most

feasible way is to pack each row of the image as a ciphertext.

Thereby, we achieve a vector of ciphertexts that represents our

input image in the encrypted domain.

B. Convolution Layer

Performing regular convolution in the encrypted domain

is computationally inefficient. In our research, we take a

frequency-domain approach for convolution leveraging the

Discrete Fourier transform (DFT). The DFT of encrypted data

is performed using Homomorphic Fourier transform (HFT) -

inspired by Cooley-Tukey matrix factorization [19].

The following steps are performed to achieve 2D convolu-

tion efficiently:

1) HFT on each ciphertext (representative of each row in

the image) as in [20]

2) Transpose the result based on the method in [21]

3) Perform HFT again on the transposed ciphertexts

4) Transpose the ciphertexts again

5) Compute the convolution output y[n] using element-wise

multiplication in the frequency domain and Inverse DFT

(Inverse HFT in the encrypted domain), as expressed in

Equation 1.
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G−1 denotes the Inverse 2D DFT, and H[u, v] and F [u, v] are

the 2D DFT of the ciphertext and filter, respectively.

y[m,n] = G−1 {H[u, v] · F [u, v]} (1)

H[u, v] =

M−1∑

m=0

N−1∑

n=0

h[m,n] · e−j 2π
M um · e−j 2π

N vn (2)

To achieve convolution with stride, a rotational manipulation

is applied to the resulting ciphertext after regular convolution.

We apply left rotation on the resulting ciphertext by (N − (2∗
padding))%N and down rotation by 2 ∗ padding, where N
represents the size of the ciphertext and padding represents the

padded value used to extract DFT convolution output. Then,

this result is multiplied by an array containing 1s and 0s to

obtain appropriate convolution based on the stride value, as

illustrated in Fig. 5.

C. Flattening layer

The flattening operation is defined as the conversion of a 2D

representation of features into a 1D representation. This is usu-

ally performed on the convolution outputs and before a dense

layer. In the encrypted domain, our convolution outputs are

represented as a vector of ciphertexts. Since HEAAN does not

allow the concatenation of ciphertexts, the flattening operation

is a computationally expensive task without decrypting and re-

encrypting the ciphertexts. To perform flattening, we execute

element-wise multiplication of the weights and convolution

output. Element-wise multiplication is an extremely time-

consuming operation as it involves multiplication, addition,

and left rotation. The entire process can be summarized in

3 steps - (i) Multiply each ciphertext with its corresponding

weight vector; (ii) Add it to a temporary ciphertext initialized

to zeros; (iii) Perform summation on the ciphertext elements

through repetitive left rotation and addition N-1 times.

D. Fully connected network

The fully connected network is adapted to FHE as a

matrix multiplication of ciphertext inputs and plaintext weight

matrices. Each row of weight matrix is multiplied with the

ciphertext and the elements of the ciphertext are summed

through left rotation.

E. ReLU

HEAAN lacks built-in support for comparison operations

and instead uses polynomial approximations for such func-

tions [22]. The CompG method is one such approximation,

specifically tailored for the −1 to 1 range, proposed in [23]

to approximate the sign function.

Normalization of input values is essential to enable the use

of the CompG method to approximate ReLU. We scale down

the input values to fit in the range of [−1, 1] using the observed

maximum absolute value during training (in the plaintext

domain). The maximum value can be derived by the following

formula, max(|maxValue| , |minValue|). The implementation

of ReLU leverages the composite approximation technique

for comparison, comparing the input value a against zero and

encoding the output as 1 for a > 0, 0 for a < 0, and 0.5

for a = 0. The ReLU output is calculated by multiplying

this result by the input value a. After ReLU, the values are

upscaled to their original range using the inverse of the scaling

factor.

F. Tanh

We use an 8-degree polynomial approximation of Tanh

in FHE owing to the limitations of FHE in implementing

exponential functions. As done in ReLU, normalization of

inputs is an essential step before using the polynomial approx-

imation. We restrict the input to the range [−2, 2] to achieve a

closer approximation. The performance of this approximation

is measured through the relative error of 2000 points in the

range [−2, 2], as shown in Fig. 6.

G. OpenAI Gym Library

OpenAI Gym Library cannot be adapted directly to the

encrypted domain due to the limitations of FHE in modeling

probability distributions. Instead, we train a 3-layer neural

network as in Fig. 7 to replicate the Open AI Gym Library

for our task. The neural network learns to map the final 64-

dimension latent vector to the desired action output. Since the

model is trained in the unencrypted domain, its weights can

be used for inferencing in the FHE domain.

V. RESULTS

Experiments were performed in the encrypted domain on a

subset of randomly selected samples from the testing set of the

plaintext domain. We compared the outcomes obtained from

our FHE-enabled RL framework with those expected from the

RL framework operating in the unencrypted domain. Table

I depicts the mean absolute error (MAE) across each block

in the network within the encrypted domain compared to its

plaintext counterpart. As evident from Table I, the regression-

based prediction output remained consistent between the FHE

version and the plaintext counterpart for the tested samples. In

addition to low MAE scores, we also achieve an R-squared
score of 0.9631 with the end-to-end FHE-based Reinforce-

ment Learning framework, in comparison with results in the

unencrypted domain. Further, Table II presents the average

processing time across each block in the network. These

findings substantiate the efficacy of our FHE-adapted network,

showcasing the viability of FHE in preserving model accuracy

while ensuring data confidentiality.

VI. CONCLUSION

In this paper, we propose to use a combination of FHE

and deep neural networks to enable the secure navigation

of autonomous UAVs. We show that navigation results from

communication networks can be strictly secure without a loss

in performance. We demonstrate our approach by adopting an

RL framework for autonomy. Since FHE cannot perform all

mathematical operations, we detail the adaptation of each layer
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Fig. 5: 2D Convolution in FHE Domain. Different stride-based convolutions can be extracted by multiplying appropriate vectors.

The ciphertext (representative of a row of the input image) is subjected to Homomorphic Fourier Transform (HFT) because it

operates in the encrypted domain. On the other hand, the convolution filter is subjected to Fast Fourier Transform because it

is in the plaintext domain.

Fig. 6: Relative error
|f(x)−Tanh(x)|

|Tanh(x)| of f(x) over the interval

[-2, 2]. f(x) corresponds to the 8-degree polynomial approxi-

mation of Tanh(x).

Fig. 7: A neural network trained to replicate the OpenAI Gym

Library to facilitate its adaptation to FHE.

of the RL framework to FHE - input images, convolutional

layers, fully connected networks, activation functions, and the

OpenAI Gym Library. Evaluations of the proposed framework

Fig. 8: Relative percentage errors of actions (navigational

results) after adapting the OpenAI Gym Library to FHE.

demonstrate minimal mean absolute error (MAE) across each

block in the network and a high R-squared score, showcasing

no discernible accuracy loss when compared to its plaintext
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TABLE I: Mean Absolute Error (MAE) between plain-text

and FHE model intermediate outputs for each block in the

network.

Layer MAE

Convolution Block 1 0.0741

Convolution Block 2 0.0971

Convolution Block 3 0.0626

Linear Block 1 0.0105

Linear Block 2 0.0184

Linear Block 3 0.0098

OpenAI Gym Library Blackbox 0.0210

TABLE II: Time taken by each block in the FHE-adapted

network.

Layer Inference Time (seconds)

Convolution Block 1 9471.27

Convolution Block 2 280831.67

Convolution Block 3 716034.24

Linear Block 1 12069.36

Linear Block 2 790.5

Linear Block 3 802.62

OpenAI Gym Library Blackbox 4754.82

counterpart. Since FHE guarantees are based on strong theo-

retical principles, privacy and security are ensured, and only

authorized individuals with the secret key will be able to access

the results from the FHE computation. Future efforts will be

directed towards substantially decreasing inference time.
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