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Abstract—Facing the challenges of biped robot walking
control, this study introduces an innovative multi-mode PD-PI
(Proportional-Differential Proportional-Integral) controller. The
design of this controller is inspired by human-simulated intelli-
gent control, aiming to enhance the accuracy and stability of joint
motion. The setting of the parameters of the controller results in a
complex multi-objective optimisation problem. To effectively tune
the controller, this study incorporates a combination of entropy
weight method and simulated annealing algorithm. Simulation
experiments performed on the traditional PD controller and
on the proposed PD-PI demonstrate that the optimised PD-PI
controller significantly improves upon the traditional PD per-
formance in terms of control precision and joint stability. These
improvements highlight its potential advantages in advancing the
gait of robots.

Index terms— Human-simulated intelligent control,

biped robots, multi-mode control, entropy weight method,

simulated annealing

I. INTRODUCTION

In the field of biped robots, the Proportional-Derivative

(PD) algorithm is widely favored for its simplicity and effec-

tiveness [1–3]. However, this method has limitations in terms

of control precision, and tuning parameters for optimising per-

formance poses a challenge. To address these issues, human-

simulated intelligent control (HSIC) algorithm was proposed

to enhance existing (Proportional-integral-differential) PID

and PD control systems [4–6]. This algorithm employs the

concept of multi-mode control, allowing it to flexibly choose

the most suitable control method based on real-time error

feedback. Such flexibility not only enables the control system

to respond more accurately to different operating conditions

but also contributes to improving overall control precision.

HSIC, by mimicking human decision-making and con-

trol strategies, can effectively enhance the performance of

traditional PD control systems. The distinguishing feature

of such control methods lies in their multi-mode capability,

allowing flexible switching of different control strategies based

on the system’s feedback state to optimise overall control

effectiveness. Researchers can design specific control algo-

rithms for different operating states according to the specific

requirements of practical applications. This not only provides

a high degree of design freedom but also enhances system

adaptability and flexibility. Building on these advantages, this

study proposes a novel multi-mode PD-PI controller that

combines the multi-mode control philosophy of HSIC with

the robustness of traditional PD and PI control. However,

parameter tuning for PD and PI control typically requires

extensive experience and expertise, especially in multi-mode

PD-PI control systems where different parameters for different

modes make manual tuning a complex and time-consuming

task.

In practical applications, the optimal control of robots

often involves the optimisation of multiple simultaneous and

conflicting objectives, necessitating the identification of a suit-

able trade-off. Furthermore, these multi-objective optimisation

problems are often computationally expensive, making the use

of complex algorithms impractical, for example, those em-

ploying large populations of candidate solutions. A population

based multi-objective approach such as the non-dominated

sorting genetic algorithm - II (NSGA-II) would often not be

a viable option since handling a population and checking the

dominance would result into an excessive computational cost

of the optimisation process, see [7].

Based on these considerations, we propose in this study

the application of the simulated annealing (SA) algorithm.

SA is a popular algorithm for global optimisation used in

many engineering applications [8–11]. SA perturbs a single

solution and allows the acceptance of a worse solution with a

probability that decreases over time. This logic enables the ex-

ploration of multimodal fitness landscapes. For multi-objective

optimisation, scalarization methodsmethods that transform the

multi-objective optimisation problem into a single-objective

problem through the linear combination of the objective func-

tion valuesare often ineffective. This is because such methods

require an a priori human-driven decision on the importance

of each objective, resulting in an arbitrary modification of

search and objective spaces. To address this issue, we employ

the entropy weight method [12–15]. Through normalising the

objective functions and calculating entropy values, it automat-

ically derives weights, reducing the bias of subjectively setting
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weights and better reflecting the trade-off relationships among

objectives in multi-objective problems. Therefore, entropy

weight simulated annealing (EWSA) algorithm is used in this

paper to optimise the parameters of PD-PI controller.

The main contributions of this paper are:

1) Based on HSIC, a multi-mode PD-PI controller is

designed for the motion of biped robots, aiming at

improving control accuracy and joint stability.

2) The entropy weight method is integrated into SA to

address the multi-objective and multi-parameter optimi-

sation problem of the controller. The entropy weight

method can determine the weight coefficient adaptively

based on the importance of each objective. This adapt-

ability ensures that the relative importance of multiple

optimisation objectives is effectively considered, leading

to further improvements in the performance of the

controller.

The remainder of this article is organised in the following

way. Section II introduces the dynamic model of a biped robot.

Section III describes the proposed PD-PI controller. Section IV

provides the details of the proposed optimisation algorithm and

its application to the tuning of the PD-PI controller. Section V

presents and comments on the numerical results of this study.

Section VI provides the conclusion to this study.

II. DYNAMIC FRAMEWORK OF A BIPED ROBOT

In this section, we introduce the dynamic model for a

biped robot characterized by an n-degree of freedom (n-DOF)

system. The dynamics of the robot are captured using a hybrid

model, which encompasses both the continuous dynamics of

a single-leg support phase (SSP) and the discrete dynamics

associated with impact events. In this model, one degree of

freedom is removed from the robot’s model. If we consider

gravity, the dynamic equation of a joint can be formulated

exploiting Lagrange’s method [1]:

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1)

where τ ∈ Rn is the torque applied to each robot’s joint;

q, q̇, q̈ ∈ Rn represent position, velocity, and acceleration of

the joint (they are vectors as each joint is in a 3D space);

D(q) ∈ Rn×n and C(q, q̇) ∈ Rn×n denote the inertia matrix

and the Coriolis and centripetal forces; at last G(q) formalises

the effect of gravity on the robot.

In the Lagrangian framework, a discontinuity is observed

in the model when the leg of the robot makes contact with

the ground. Consider a function H that represents the vertical

distance between the end of the robot’s swinging leg and

the ground. The set S = {(q, q̇) | H(q) = 0,�H(q)q̇ < 0}
defines the state (q, q̇) at the moment of ground contact by

the swinging leg.

Drawing from the work presented in [1], the model

describing the impact is:{
q(t+) = q(t−)
q̇(t+) = Z(q(t−))q̇(t−),

(q(t−), q̇(t−)) ∈ S (2)

In this context, (-, +) represent the states immediately before

and after the impact, respectively, and Z is the transition

matrix.

The robot’s entire dynamic model is thus constituted by

the combination of equations (1) and (2).

III. HUMAN-SIMULATED PD-PI CONTROLLER

In control engineering some standard controllers include

proportionate-derivative (PD), proportional-integral (PI) and

proportional-integral-derivative (PID). PD controllers are suit-

able to control the present state and rate of change of a

system. PI controllers are appropriate when it’s necessary to

eliminate any steady-state error in the system. PID controllers

are versatile and suitable, being able to address both present

and past errors as well as predict future behavior. Furthermore,

a PD-PI controller is a hybrid or combination controller

that incorporates elements of both PD and PI controllers.

With respect to the PID, the PD-PI controller benefits from

the fast dynamic response offered by the PD. In the biped

robot control, the PID response would not be fast enough to

guarantee a high dynamic performance. For this reason we

propose here the use of a PD-PI controller and we propose

the human-simulated implementation illustrated in the PD-PI

controller in Fig. 1 and Table I.

The proposed controller employs PI control when the

error state is ψ1 and switches to PD control when the error

state is ψ2 or ψ3. In situations with large errors, PD control

is capable of achieving a rapid response. For smaller errors,

the integral term in PI control aids in eliminating steady-state

errors, thereby providing more accurate control. Additionally,

at lower error speeds, the integral term contributes to smooth

control, preventing excessive oscillations and enhancing the

joint stability.

IV. ENTROPY WEIGH SIMULATED ANNEALING

ALGORITHM: OPTIMISATION APPROACH AND

APPLICATIONS

In this section, the multi-mode PD-PI controller is applied

to the joint control of the biped robot BHR-6s, and the entropy

weighted simulated annealing (EWSA) algorithm is employed

to optimise the parameters of this controller.

A. Entropy weight method

The entropy weight method is a multi-criterion decision

method used to determine the weight coefficients of multiple

criteria [16]. The basic idea is to determine the relative impor-

tance of each criterion according to its information entropy, so

as to obtain the weight coefficient.

Specifically, the entropy weight method first calculates

the information entropy of each criterion, which is an indicator

to measure the degree of information dispersion within the

criterion. The larger the entropy value, the more dispersed the

information within the criterion, the smaller the weight. On the

contrary, the smaller the entropy value, the more concentrated

the information inside the criterion and the greater the weight.
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TABLE I
HUMAN-SIMULATED PD-PI CONTROL ALGORITHM

Feature Condition Control Algorithm Remark

ψ1 : |eq| ≤ δ1
⋂
|ėq| ≤ δ1 Kpeq + Ki

∫
eqdt PI

ψ2 : eq > δ1
⋃
(0 ≤ eq ≤ δ1 ∩ |ėq| > δ1) Kpeq + Kdėq PD

ψ3 : eq < −δ1
⋃
(−δ1 ≤ eq ≤ 0 ∩ |ėq| > δ2) Kpeq + Kdėq PD

Then, the weight coefficient is calculated according to the

information entropy of each criterion. The calculation process

of the weight coefficient is to divide the information entropy

of each criterion by the sum of the information entropy of all

criteria to obtain the relative weight of each criterion.

The workflow for determining weights using the entropy

weight method is as follows:

1) Input the original multi-objective evaluation data.

2) Normalise the data.

To eliminate the effects of data dimensions and numer-

ical magnitude, the original data must first be standard-

ized. In eq. (3), yij represents the original data value of

the ith evaluation object on the jth evaluation criterion.

yij =
yij −min {yi1, yi2, ..., yin}

max {yi1, yi2, ..., yin} −min {yi1, yi2, .., yin}
(3)

3) Calculate the entropy of each objective.

For each evaluation criterion, compute its entropy value

ej . Here, k = 1/lnn, where n is the number of

evaluation objects.

ej = −k

n∑
i=1

yij lnyij (4)

4) Compute the divergence redundancy based on the en-

tropy values.

To obtain the weight of each evaluation criterion, it’s

necessary to first compute its divergence redundancy.

dj = 1− ej (5)

5) Determine the weight of each objective using the diver-

gence redundancy.

Lastly, determine the weights ωj of each evaluation

criterion based on their divergence redundancy. Here,

r represents the number of evaluation criteria.

ωj =
dj∑r

j−1
dj

(6)

B. Simulated annealing algorithm

SA is a single solution heuristic optimisation algorithm

used in both combinatorial and continuous spaces. Its fun-

damental concept is inspired by the annealing process of

solids, simulating the random movement of particles in a solid

by gradually lowering the temperature to eventually reach a

stable state. This is a probability-based stochastic optimisation

algorithm that, during the process of searching for the global

optimum, not only accepts better solutions but also, based

on the Metropolis criterion, probabilistically accepts worse

solutions, as illustrated in the equation below.

P =

{
1 f(i+ 1) ≤ f(i)

exp
(
− f(i+1)−f(i)

Ti

)
f(i+ 1) > f(i)

(7)

where, f(i) is the function value of generation i, and Ti
is the current temperature. As the algorithm approaches the

global optimal, the probability P gradually approaches 0, and

accepting the poor solution makes it possible for the algorithm

to jump out of the local optimal and search for the global

optimal solution.

The working steps are as follows:

1) Choose an initial solution s and set a high initial

temperature T0.

2) For each temperature, that is, Ti, a new solution s′ is

generated from the current solution s (add a small random

disturbance), and it is decided whether to accept the new

solution according to equation (7).

3) Lower the temperature T in some way, and the method

of this paper is as follows:

Ti+1 = α× Ti (0 < α < 1) (8)

4) Iterate until the termination condition is reached, such

as when the temperature falls below a preset threshold, or a

certain number of iterations have been completed, and then

output the optimal solution s.

C. Human-simulated PD-PI controller parameter optimisa-

tion

In this section, entropy weight method is combined with

SA, and it is applied to the parameter optimisation process of a

biped robot (see Figure 1). This paper focuses on a biped robot

with four active joints, each corresponding to a controller.

Among these four controllers, the parameters to be optimised

are Kp : (kp1, kp2, kp3, kp4), Ki : (ki1, ki2, ki3, ki4), Kd :
(kd1, kd2, kd3, kd4), and the threshold value δ1. To evaluate

the performance of the controller, we employ a multi-objective

fitness function, which encompasses two key metrics: joint

angle error and the stability of the joint (based on joint angular

velocity error). The weight parameters for these two metrics

are ω1 and ω2, respectively.

Figure 2 illustrates the process of optimising the param-

eters of a PD-PI controller for a biped robot using the EWSA

algorithm. Initially, the parameters to be optimised, including

Kp, Ki, Kd and δ1, are extracted from the robot’s controller.

x = (kp1, kp2, kp3, kp4, ki1, ki2, ki3, ki4, kd1, kd2, kd3, kd4, δ1)
(9)

x′i = xi +Δxi (i = 1, 2, ..., 13) (10)
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Fig. 1. Overall scheme of the proposed robotic control system comprising EWSA, the PD-PI controller and the biped robot.
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Fig. 2. EWSA to optimise the parameters of PD-PI controller.

where, xi represents each parameter in x, Δxi is a small

random perturbation, and x′i denotes each parameter after

adding the perturbation.

Δxi = ri ×md ×
T

T0
(11)

in this case, ri is a number randomly drawn from a uniform

distribution, typically within the range [−1, 1]. md is the

maximum amplitude of the perturbation, a predetermined

parameter that determines the maximum range of perturbation

at the highest temperature. T is the current temperature, while

T0 is the initial temperature.

The entropy weight method is then introduced, it takes

motion data from the robot and, through normalizing the ob-

jective function and computing entropy values, automatically

derives weight parameters. This reduces subjective biases in

weight assignment.

Next, the multi-objective optimisation problem is trans-

formed into a single-objective problem (see eq.(14)), consid-

ering both joint angle error and joint stability as key indicators

and incorporating entropy weight parameters into the objective

function. Through the SA algorithm, the system searches

for the optimal solution in the solution space, continuously

updating parameter values to maximize the objective function.

After a series of iterative optimisations, the obtained optimised

parameters are applied to the PD-PI controller of the biped

robot, aiming to enhance its gait control performance.

f1 =

4∑
i=1

(qi − qri)
2 (12)

f2 =

4∑
i=1

q̇2i (13)

where, fitness1 is the joint error fitness, qi is the actual

joint angle, qri is the target joint angle. fitness2 is the joint

stability fitness, q̇i is the actual joint angular velocity, and the

target joint angular velocity is zero.

f = ω1 × f1 + ω2 × f2 (14)

fitness is the normalized fitness, and ω1+ω2 = 1. Algorithm

1 highlights the functioning of the optimiser.

Algorithm 1 Functioning of the optimiser to determine the

best control parameters.

1: Require: Initial base solution x =
(kp1, kp2, kp3, kp4, ki1, ki2, ki3, ki4, kd1, kd2, kd3, kd4, δ1), parameters

T0, md, α.

2: Run a simulator of the biped robot for a given task with the control parameters x.

Collect the simulation data.

3: With the collected simulation data calculate f1 and f2 according to eq. (12) and

(13)

4: Use entropy weight method described in Section IV-A to determine ω1 and ω2

5: Calculate f according to eq. (14)

6: while budget conditions are not satisfied do

7: Perturb each element of x according to eq.s (10) and (11)

8: Select the new base solution x according to eq. (7)

9: Update the temperature according to eq. (8)

10: end while

Output: The best individual x.
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V. NUMERICAL RESULTS

To verify the effectiveness of the proposed method,

we constructed a numerical simulation model based on the

dynamics model of the biped robot BHR-6s in the Matlab

environment. The model parameters are shown in Table II.

We applied the EWSA method to optimise the parameters of

the PD and PD-PI controllers and conducted a comparative

analysis with PD and PD-PI. In the experiments, we set the

target velocity of the robot to be 0.4 m/s, with a duration

of 4 s, and a target displacement of 1.6 m. Our optimisation

strategy targeted two main objectives: minimizing the error in

joint angles and ensuring the stability of joint motions (i.e.,

minimizing the error in joint angular velocities).

TABLE II
PARAMETER SETTINGS FOR BHR-6S SIMULATION

Biped
Mass

(kg)

Length

(m)

Inertia

(kg ·m2 )

Torso 5.580 0.257 0.043320

Thigh 0.548 0.401 0.000680

Shank 0.813 0.300 0.000034

After the optimisation process, we obtained the optimal

parameters for both controllers, as shown in Table III. At the

same time, the weight coefficients obtained through the opti-

misation process are ω1 = 0.67 and ω2 = 0.33, respectively.

We apply the four sets of optimised parameters to the

walking control of the robot. Through simulation tests, we

obtain the average value and standard deviation of the joint

angle error for each parameter set, as well as quantitative

indicators representing stability, as shown in Table IV. From

the results, it is evident that the method proposed in this study

outperforms its competitor in these two key indicators. This

not only demonstrates the improvement in control accuracy

but also emphasizes its high level of stability.

TABLE III
OPTIMISATION OF CONTROLLERS PARAMETERS OF DIFFERENT

METHODS

Methods Parameter Joint 1 Joint 2 Joint 3 Joint 4

PD
Kp 950 950 250 180

Kd 95 95 25 18

PD-PI

Kp 500 500 300 150

Ki 37 37 21 7

Kd 50 50 30 15

δ1 1.0 1.2 1.8 1.8

EWSA-PD
Kp 330 180 363 199

Kd 33 18 25 17

EWSA-PD-PI

Kp 450 240 400 220

Ki 37 17 32 16

Kd 45 24 40 20

δ1 1.2 1.8 2.3 2.6

Fig. 3 presents the joint angle control tracking curves

for the PD, PD-PI, EWSA-PD, and EWSA-PD-PI methods. A

comparison reveals that PD-PI demonstrates superior control

precision compared to PD. After applying EWSA optimisa-

tion, both methods exhibit varying degrees of improvement,

with EWSA-PD-PI showing the best performance. On the

other hand, in Fig. 4, angular velocity curves representing

joint stability are provided. Comparative analysis indicates that
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the angular velocity variation is the smallest for the EWSA-

PD-PI method, further emphasizing its superiority in terms of

joint stability. Figs. 5 and 6 show the comparison between

the centroid velocity and displacement of the robot. From

the figures, it is clear that the EWSA-PD-PI method exhibits

more stable velocity control and more accurate displacement

control, while the orther control methods exhibit significant

velocity oscillations leading to displacement far from the
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Fig. 5. The velocity of the center of mass under different methods.
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TABLE IV
JOINT ANGLE ERROR AND STANDARD DEVIATION WITH DIFFERENT OPTIMISATION CONTROLLERS

Mean Standard Deviation

Joint 1 Joint 2 Joint 3 Joint 4 Joint 1 Joint 2 Joint 3 Joint 4

Joint error

PD -0.1156 -0.0094 -0.1447 -0.1886 0.1440 0.0575 1.1984 0.2463

PD-PI -0.1011 -0.0057 -0.1423 -0.1047 0.1234 0.0110 0.2768 0.2235

EWSA-PD 0.1152 0.0644 0.0252 0.1445 0.1365 0.0157 0.2573 0.1861

EWSA-PD-PI 0.0075 0.0034 -0.0122 -0.0205 0.0935 0.0445 0.2155 0.2089

Joint stability

PD 0.9282 -1.5990 1.8112 1.2725 2.8172 2.6486 4.0014 3.3784

PD-PI 0.6836 -1.2603 1.3609 1.0054 1.8431 1.8673 2.3510 2.2884

EWSA-PD 0.8189 -1.6492 1.8627 1.4692 2.3523 2.3274 3.1808 2.2455

EWSA-PD-PI 0.5932 -1.2153 1.2363 0.8956 1.6436 1.0431 1.5663 1.7905
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Fig. 6. The displacement under different methods.

target position. In conclusion, through this series of simulation

experiments, we have demonstrated the excellent performance

of the EWSA-PD-PI controller in ensuring the joint stability

and accuracy of the robot’s walking.

VI. CONCLUSION

In this paper, a human-simulated multi-mode PD-PI con-

troller for biped robots was designed based on HSIC, aiming

to improve the joint accuracy and stability of traditional PD

algorithms. By introducing a multi-mode control strategy, we

can better adapt to different control states, thereby achieving

superior control performance. Additionally, to optimise the

controller parameters, we combine the entropy weight method

with SA to solve the complex optimisation problem with mul-

tiple objectives and parameters. The entropy weight method

can adaptively determine the weight coefficients based on the

importance of each objective, while the SA can globally search

the parameter space to find the optimal solution. Through this

combination optimisation method, we can obtain more rea-

sonable and optimised controller parameters. Finally, through

a series of tests and simulation experiments, we verify the

superiority of EWSA-PD-PI, demonstrating the effectiveness

of our proposed control method in improving the joint stability

and accuracy of biped robot walking.
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