
Ethical Practices for Collecting Ground-Truth Food 
Datasets: A Systematic Review 

Grace Ataguba*  
Department of Computer Science  

Dalhousie University, Halifax, Canada  
Grace.Ataguba@dal.ca  

James Daniel 
Department of Computer Science Federal 

University, Lokoja, Nigeria 
daniel.james-pg@fulokoja.edu.ng

Md Riyadh 
School of Information Technology 

Carleton University, Ottawa, Canada  
mdriyadh@cmail.carleton.ca 

Hong-Wei Xiao 
College of Engineering, China Agricultural 

University, Beijing, China 
xhwcaugxy@163.com  

Samuel Ariyo Okaiyeto 
College of Engineering, China Agricultural 

University, Beijing, China 
samuelariyo496@gmail.com  

Rita Orji  
Department of Computer Science    

Dalhousie University, Halifax, Canada 
Rita.Orji@dal.ca 

Abstract— Food image dataset collection for artificial 
intelligence (AI) studies has ethical concerns that are 
underestimated. Thousands and millions of images are collected 
from different sources on the Web, with ethical challenges 
relating to copyright. While it is difficult to collect large amounts 
of food images based on permissions, a small number of datasets 
can affect the performance of the machine learning model 
(MLM). It becomes imperative to consider a balance between 
ethics, data collection, and machine learning model 
performance. We present state-of-the-art ethical considerations 
for collecting food image datasets. A total of 102 papers were 
reviewed, and we found that only a few papers (4) reported on 
the ethical practices they adopted for collecting food image 
datasets. These ethical practices include obtaining permissions 
from data sources such as websites and social media sites and 
obtaining ethical approval for collecting food datasets from 
participants in food logging studies. For future work, we present 
opportunities, challenges, and recommendations for considering 
dataset collection in the food domain. Though there are 
challenges around collecting datasets that are sufficient for 
training MLMs, we provide recommendations to balance the 
trade-off between gathering large datasets ethically and 
improving the accuracy of MLMs. 

Keywords—food, datasets, images, machine learning 
models, ethics, AI 

I. INTRODUCTION  

The use of large datasets, including those containing 
images of food, is common in training machine learning 
models (MLMs). Most of these images are copyright 
protected, others are free to use and adapt. However, ethical 
considerations surrounding Artificial Intelligence (AI) 
datasets are increasingly recognized as a critical aspect of 
responsible AI development [109]. Data privacy and consent, 
copyright, fairness, transparency and accountability are some 
of the major ethical challenges arising in the area of food 
image recognition [111]. For instance, unauthorized use of 
copyrighted material may lead to legal consequences. The 
training data may not be representative, leading to biased 
models that perform poorly on certain types of food or in 
specific cultural contexts. Additionally, lack of transparency 
regarding the sources and composition of training datasets can 
hinder accountability and trust in AI systems [114, 115]. 

Addressing these ethical challenges requires a holistic 
approach that involves collaboration between researchers, 
developers, and the wider community [110]. Which will also 
emphasize the importance of ongoing ethical scrutiny 
throughout the entire lifecycle of the machine learning model, 
from data collection to deployment. For example, Boyd [2] 

reported on ethical challenges with training data collected for 
machine learning studies. In the study, they identified ethical 
violations such as privacy, fairness, and accountability.  

Food image recognition has been the subject of many 
studies, and a lot of progress has been made in creating 
ground-truth datasets [42, 112, 113]. However, the issue of 
training MLM without following proper ethical guidelines is 
a topic that needs to be addressed. In this systematic review, 
we aim to expand on this topic by focusing on food 
recognition systems that rely on data collected from various 
sources. Our goal is to provide the research community with 
insights into the ethical challenges involved in collecting 
ground-truth datasets and explore how ethical standards can 
be applied to these systems in training machine learning 
models. Hence, the following are the contributions of this 
paper: 

� Presenting different sources, study locations, and data 

extraction techniques for collecting ground-truth food 
datasets. 

� Presenting ethical considerations for collecting ground-
truth food datasets. 

� Comparing recent ethical considerations from a related food 
data collection study [1]. 

The rest of this paper is structured as follows: Section 2 
presents the methodology (PRISMA) employed in selecting 
related papers for the review. Section 3 provides significant 
insights from related papers reviewed, such as the different 
sources of food dataset collection, study locations where 
ground-truth datasets were reported, data extraction 
techniques, and ethical practices. Section 4 covers discussion 
on ethical practices and overlapping concepts from the 
different sources of food datasets and data extraction 
techniques. In addition, Section 4 provides significant insights 
on providing a balance between ethical practices, the problem 
of sufficient datasets, and machine learning model accuracy. 
Section 5 presents a conclusion based on insights drawn from 
the review. Also, Section 5 covers recommendations for future 
work on food dataset collection. 

II. METHODOLOGY  

We conducted a thorough review of three widely used 
electronic databases, namely the ACM (Association for 
Computing Machinery) Digital Library, IEEE (Institute of 
Electrical and Electronics Engineers) Xplore and 
ScienceDirect. The ACM Digital Library is a massive 
database covering interdisciplinary areas, primarily related to 
computer science. The IEEE Xplore database contains articles 
on computing and electrical electronics, while the 
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ScienceDirect database is home to articles on computing, 
medical, and scientific research. Although we obtained 419 
search results from the ScienceDirect database, none of them 
were relevant to our paper. Therefore, we did not consider 
these results in our paper selection process. Instead, we 
focused our data collection on the ACM and IEEE databases, 
from where we gathered a total of 1,516 peer-reviewed papers 
published in the last five years (between January 2019 and 
November 2023) from conference proceedings and journals. 
The search was conducted on November 30, 2023. To ensure 
transparency, we followed the PRISMA guidelines in 
reporting our paper selection process, as depicted in Fig. 1. 

 
 

Fig. 1. PRISMA showing review article filtering procedure 

A. Paper Identification 
We conducted our search by using specific keywords and 

logical operators (AND/OR) to look for abstracts, titles, and 
metadata related to food image recognition. This search was 
performed on three electronic databases, and a total of 1,935 
papers were collected. The authors screened all the collected 
papers and found that out of the 419 ScienceDirect articles, 
none were relevant to our review. These articles were 
removed, leaving us with 1,516 papers from ACM (912) and 
IEEE (604). 

B. Paper Selection 
We began with a set of 1,516 papers. After removing 11 

duplicates, we screened out 1,170 papers based on their title. 
Then, we manually evaluated the remaining papers to 
determine if they met our inclusion and exclusion criteria. Our 
inclusion criteria cover the following: 

Our inclusion criteria cover the following: 

� Papers should report on ground-truth food dataset 
collection. 

� The papers should cover food recognition-related studies. 

� The paper should be written in English. 
Based on this inclusion criteria, 121 papers did not meet 

our first criterion, while 110 papers failed to meet our second 
criterion. Additionally, two papers were not in English, which 
failed our third criterion. As a result, we excluded a total of 
233 papers, and included 102 papers in our review. 

Furthermore, we gathered three review articles manually for 
the related work section. 

C. Information Extraction 
We carefully examined the complete texts of the chosen 

papers and gathered information according to various 
categories of findings (listed below). Three researchers 
collaborated to code this information in a coding worksheet. 
In this report, we provide insights based on the information we 
gathered in the following categories: 

� The different sources for collecting ground-truth food 
datasets. 

� The different study locations where ground-truth food 
datasets were collected and reported. 

� Data extraction techniques for a ground-truth food dataset. 

� Ethical practices for collecting food datasets from different 
sources for AI research. 

1. Different ground-truth food data sources: We have 
identified various sources of ground-truth data for each article, 
such as the web, the field (restaurants), social media, 
experiments (food logging apps), and other significant ones. 
Moreover, we have elaborated on specific food data sources 
from the web, field, and social media. Some examples of these 
sources include Google images, restaurants, and Facebook. 

2. Different study locations for ground-truth food dataset 
collection: We identified the various locations where reliable 
food datasets were reported in the articles we reviewed. Our 
analysis revealed how food items have been recorded in 
different countries across the world, including China, 
Indonesia, the USA, and other important nations. 

3. Data extraction techniques for the ground-truth food 
dataset: We reviewed articles using various methodological 
approaches, including crawling, logging, downloading, 
clipping, camera capture, and other related ones. 

4. Ethical practices: We identified various ethical practices 
in the articles we reviewed. This included seeking permission 
from food vendors or web pages. Additionally, we coded 
articles where this information was not explicitly stated as 
N/A or not stated (N/S). 

III. RESULTS 

From the articles we reviewed, we found that food dataset 
collection durations ranged from 3 days to 8 years. On 
average, 60,685 datasets were collected from various sources. 

A. Demographics of Paper Reviewed 
Out of the 102 papers reviewed, 88 were conference 

publications and 14 were journal papers. The majority of these 
articles were published between 2020 and 2022 (Fig. 2). 

 

Fig. 2. Distribution of Articles by Year of Publication. 
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B. Representation of ground-Truth food data collection by 
location  
According to our review of various articles, ground-truth 

food dataset has been collected for 27 countries. The 
distribution of the number of articles is presented in Figure 3. 
The majority of the reviewed articles indicate that China 
(26.47%) has conducted the most studies on ground-truth food 
dataset collection [17-42, 78]. However, India (10.78%) [48-
58], Indonesia (8.82%) [59-67], and Japan (7.84%) [69-76] 
have also conducted significant studies. Nonetheless, other 
countries' foods require further studies in the future. 

 

Fig. 3. Distribution of Articles Reviewed by Country. 

C. Different ground-Truth food data sources 
We found different sources where ground-truth food 

datasets were collected from the web, field, social media, 
others and food logging App (Fig. 4).  There more instances 
(66) of data collected from the web (Fig. 5). Out of the 66 
instances, 18 articles referenced Google images [11, 13, 14, 
19, 21, 31, 38, 60, 68, 78, 81, 82, 84, 86, 92, 93, 104, 105]. 
Fifteen (15) articles did not specify a web source [10, 39, 40, 
45, 46, 47, 48, 49, 56, 62, 75, 77, 89, 106, 107]. Fifteen (15) 
articles primarily used food websites, while 8 articles referred 
to Flickr and another 8 articles used Bing. Additionally, one 
article collected data from Wikipedia, and another one made 
use of Pinterest. We also found that 34 instances of field data 
collection took place, with different categories mentioned in 
Fig. 6. Specifically, 18 articles did not specify a field source, 
7 articles collected data from home settings, 6 from market 
spaces, two (2) from restaurants, and one (1) from an 
underwater source. Furthermore, we observed that 15 
instances of social media data sources were used, with 
different categories mentioned in Fig. 7. Seven articles 
employed Instagram, while four (4) used Facebook. Two 
articles employed Twitter, while one (1) article used Weibo, 
and another one did not mention the type of social media used. 

 
Fig. 4. Sources of Data Collection. 

 
Fig. 5. Web-related data source. 

 
Fig. 6. Field-related data sources. 

D. Data extraction techniques for ground-truth food dataset  
We came across 102 articles that explored various data 

extraction techniques (Fig. 8). Out of these, 36 articles focus 
on the use of cameras [8, 9, 12, 15, 16, 23, 25, 28, 29, 32, 34, 
35, 40, 43, 44, 45, 50, 57, 59, 63, 64, 66, 67, 70, 71, 74, 80, 
84, 85, 89, 91, 94, 95, 96, 98, 100] while 30 articles employed 
crawling and downloading data techniques [18, 19, 20, 21, 24, 
27, 31, 38, 42, 47, 48, 60, 61, 62, 68, 72, 76, 77, 78, 79, 81, 
82, 83, 86, 87, 92, 97, 102, 105, 108]. The data extraction 
techniques in 23 articles were not specified [10, 13, 17, 36, 37, 
39, 46, 49, 51, 52, 53, 54, 55, 56, 58, 65, 73, 90, 93, 103, 104, 
106, 107]. Four (4) articles focus on other forms of data 
extraction, such as using image capture script [14], CIGM tool 
[22], text descriptions [33], and food brands [41]. Three (3) 
instances reported on algorithm-based data extraction [26, 69, 
75], and three (3) instances of food logging were reported in 
the reviewed articles [7, 88, 99]. Two (2) articles reported re-
annotation [30, 101], and one (1) article discussed data 
augmentation for extracting food images from existing food 
datasets [11]. 

 

Fig. 7. Social media-related data sources. 

 

Fig. 8. Data extraction techniques. 
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E. Ethical considerations and Issues 
Overall, we found three (3) ethical issues associated with 

ground-truth food dataset collection. These include 1) issues 
with consent seeking and respect for autonomy, 2) privacy 
concerns, and 3) issues with fairness (bias) in models 
developed based on ground-truth datasets. Consent seeking 
and respect for autonomy ensures that owners of data are 
informed of who is having access to their data and how their 
data will be used [115]. Privacy respects boundaries between 
personal data and its’ use [115]. Fairness ensures that there is 
no bias in data collected or decisions made with such data 
[115].  

1. Issues with consent seeking and respect for autonomy: 
We found that out of 102 articles reviewed, only 4 (4%) of 
them considered consent seeking and respect for autonomy 
[7, 21, 88, 98]. One of the studies, conducted by Jung et al. 
[7], involved a large-scale nutrition study using a food-
logging app (Eat) with 1,027 participants. In order to engage 
participants, ethical approval was obtained to recruit them 
for the experiment. Another study, conducted by Min et al. 
[21], obtained permissions from an online restaurant called 
"Meituan" and collected 1,036,564 food datasets (called 
Food2K). Hossain et al. [98] also obtained ethical approval 
to collect food datasets (3,192) by monitoring participants' 
food intake in real-time. Lastly, Gligoric et al. [88] 
contacted volunteer users of a food logging app 
(MyFoodRepo) for a duration of 4 years (2017–2020) and 
collected a total of 24,120 food datasets. Typically, ethical 
approval addresses consent seeking and respect for 
autonomy. Hence, the percentage covering this aspect for 
consent seeking and respect for autonomy from this study 
(3%) is relatively low. 

2. Privacy concerns: Also, while studies with ethical 
approval also addresses privacy concerns where personal 
data is collected, we found one instance that involve a 
classification of food and non-food related items [98]. In 
view of this, users are to log food and non-food items in real 
time. This implies that the users could upload privacy-
related items.      

3.  Issues with fairness (bias): Another ethical challenge we 
found from the papers we reviewed was some kind of bias 
especially in instances where diverse data were collected, 
most models were biased to certain foods compared to 
others [8, 9, 10, 12, 13, 14, 15, 32, 34, 47, 50, 52, 53, 54, 
57, 60, 62, 66, 68, 71, 72, 77, 81, 85, 86, 90, 91, 94, 95, 96, 
98, 99, 105, 106, 107].  For example, Mao et al [8] trained 
a VGG11 model to predict 16 classes of foods (Apple, apple 
juice, beef, bottle of milk, bread, broccoli, butter, carrot, 
custard, jelly, mashed potato, meatball, pear juice, potato, 
sandwich, and soup). However, the model performed well 
on foods such as bottle of milk, broccoli, custard, meatball, 
and pear juice compared to other foods. In other cases, the 
performance of the model across these foods is not provided 
to understand the transparency of this model [18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 37, 40, 41, 42, 44, 
45, 46, 48, 49, 51, 55, 56, 58, 59, 61, 63, 64, 65, 67, 70, 73, 
74, 75, 76, 78, 80, 82, 84, 92, 93, 97, 100, 101, 102, 103, 
104, 108]. For example, Min et al. [21] developed an 
SGLANet model for classifying western and eastern foods. 
The overall performance of the model was reported to be 
90.98%, however, the performance of this model on the 

 
1 https://creativecommons.org/ 

individual western and eastern foods was not evaluated. 
This becomes important to review these Apps in future to 
enhance fairness. Research has shown that due to bias in AI 
systems, people do not trust them [115]. Though machine 
learning models cannot completely eliminate bias, it should 
be minimal. For example, we found instances where there 
was a slight difference in the performance of the model on 
one class of food compared to others [11, 38, 39]. For 
example, Nguyen et al. [38] explored different classes of 
foods such as Western, Chinese, and Japanese food. In view 
of this, they trained a SibNet model and evaluated the 
performance of individual classes. Results from this study 
revealed that the western food (cookie) attained an accuracy 
of 89.83%, the Chinese food (Dimsum) attained an 
accuracy of 88.99% and Japanese food (Sushi) attained an 
accuracy of 86.53%.     

IV. DISCUSSION  

The study reveals a large number of research projects 
carried out in the field of food image recognition. However, 
given the vast amount of work that still needs to be done 
regarding study location and the data sources used, we present 
our discussion on the ethical challenges associated with these 
sources. In addition, we present discussions on ways to deal 
with ethical challenges emerging from these sources. In view 
of this, we present our discussions under two (2) categories: 
1) Ethical challenges and 2) Recommendations for addressing 
ethical challenges. 

A. Ethical challenges 
Results from our study show the different sources for 

collecting ground-truth datasets and ethical challenges 
including consent, respect for privacy, addressing fairness and 
autonomy. First, we found ground-truth data collection linked 
to privacy challenges especially where foods are logged. For 
example, Hossain et al. [98] reported this privacy challenge 
during the food logging data collection, they found that non-
food images might contain private images.  

Second, it is important to note that images from some of 
the food sources we found from our review are copyright 
protected based on a related work of Ataguba et al. [1]. 
However, most studies did not cover consent seeking prior to 
data collection.  Conversely, we found an instance where Min 
et al. [21] collected creative common license food images 
from Wikipedia. Creative common license images are ethical 
because these images have been consented to be in the public 
domain for attribution to creators1.  

Third, we found some kind of bias especially for instances 
where diverse data were collected, most models were biased 
to certain foods compared to others. This becomes important 
to review these Apps in future to enhance fairness. Research 
has shown that due to bias in AI systems, people do not trust 
them [114]. Though machine learning models cannot 
eliminate bias, it should be minimal as reported in few studies 
[11, 38, 39].   

B. Recommendations 
While it has become important to adhere to ethical 

practices for ground-truth food data collection, we discuss the 
recommendations as follows: 
1. Inform food page owners on the web and engage them in 

participatory designs to help them understand the extent to 
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which their data is used. The need to inform and engage food 
dataset owners in nutrition-related research has been 
emphasized in literature over the years [114]. This will cater 
respect for autonomy on the use of data collected. 
Alternatively, researchers should consider using creative 
common license image sources such as Wikimedia, 
Wikipedia, YouTube videos filtered under the creative 
common license and saving relevant images using relevant 
image capturing tools [1], and Google image search limited to 
creative common license.   
2. While it might be quite challenging to collect a large 
number of data through consent to enhance the performance 
of machine learning models, we recommend that the research 
community provide a balance by following ethical procedure 
in dataset collection and considering the use of pre-trained 
models with data collected ethically (even though they can be 
small). Pre-trained models have been evaluated on millions of 
datasets [4] and have shown a significant performance in the 
development of food recognition models [52, 54, 58, 62, 64, 
65, 77]. Additionally, it will be interesting to explore data 
augmentation techniques with ethically collected datasets to 
enhance the performance of food recognition models. Data 
augmentation techniques are useful for increasing the size of 
datasets by creating new image datasets through rotations, 
translations, rescaling, flipping, cropping, and color 
transformation [56]. This was employed with food data 
collected ethically to enhance the performance of food 
recognition models in some papers we reviewed [10, 56, 89, 
94].  
3. To prevent bias in food recognition models as a result of 
data collected, especially where intercultural or diverse foods 
are considered, it is essential to consider balancing the 
datasets. We found instances from papers we reviewed where 
the performance of the food recognition model across the 
foods collected was considerable [11, 38, 39]. We recommend 
that after seeking appropriate consent from food image owners 
or using ethical sources as creative common license, it is 
essential to balance the food data or fine tune the model to 
reduce the bias on its prediction on individual foods. 
4. In cases where food logging is employed to collect food 
images which might raise privacy concerns, extra effort 
should be put in place to anonymize non-food related images.  

V. CONCLUSION  

 A systematic review was conducted to investigate the 
various ethical practices used for obtaining ground-truth food 
datasets. The study analyzed 102 journal articles and 
conference papers sourced from ACM and IEEE to report on 
the latest trends in this field. The articles covered different 
locations for studying ground-truth food datasets, sources for 
collecting data, and techniques for data collection. The paper 
provides important insights as follows: 

� The need to follow ethical procedure for nutrition-based 
research has attracted the attention of the research 

community. 

� There are ethical challenges with seeking permission and 
consent of food page owners, and respect for autonomy 
while collecting ground-truth food datasets. 

� We recommend that future work combines ethically 
collected data with pretrained models or augmentation 
techniques to enhance the performance of food recognition 

models to cater to the three (3) ethical principles: 1) fairness, 
2) accountability, and 3) transparency. 

� Also, we found bias in how well models predict some 
classes of foods compared to others. While bias is 
completely unavoidable, it would be good to set a threshold 
for which this bias can be minimal (for example, 0.1% cross 
classes). This is significant considering the dietary and 
health implications of foods. 
Hence, following from these insights, the nutrition-based 

research community can benefit from ethical design of food 
recognition systems especially for regions that are yet to be 
explored as we found from our review. 
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