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Abstract—Voice spoofing attacks pose an escalating security
concern within the contemporary digital landscape. Attackers
employ techniques such as voice conversion (VC) and text-to-
speech (TTS) to generate a synthetic speech that replicates the
victim’s voice, to illicitly access sensitive data. Detection of these
attacks hinges on identifying anomalies in audio transmission
resulting from these deceptive activities. Anomalies arise from
encoding and transmission conditions that are not commonly
encountered, particularly in situations such as local authenti-
cation or telephony. To address this issue, our study presents a
strategy featuring pivotal enhancement: Attention-based Similar-
ity Weights and Contrastive Negative Attractors. This technique
clusters authentic speeches around multiple speaker attractors
together in a high-dimensional embedding space, effectively
thwarting spoofing attacks across all attractors. Experimental
results substantiate the superiority of our system, yielding a
substantial 1.09% improvement in the equal error rate (EER)
when compared to existing solutions on the ASVspoof 2019 LA
evaluation dataset.

Index Terms—Automatic Speaker Verification, Security, Spoof-
ing Attacks, Voice Anti-Spoofing

I. INTRODUCTION

Automatic speaker verification (ASV) systems have been

widely employed for voice-based authentication in various

applications, such as banking, security, and law enforcement

[1], [2]. One of the most challenging types of spoofing attacks

against ASV systems is logical access (LA) attacks that use

synthetic speeches [3]. LA attacks can be launched with

various levels of knowledge and resources, making them a

serious threat to ASV security. Therefore, developing effective

spoofing countermeasures (CM) systems against LA attacks is

crucial for ensuring the security of ASV systems.

Recent researches in speech anti-spoofing have focused on

exploring various techniques for extracting embeddings from

speech signals. Traditionally, hand-crafted features such as

linear frequency cepstral coefficients (LFCC) [4] and constant-

Q cepstral coefficients (CQCC) [5], [6] have been widely used

for this purpose. However, these methods have limitations

in terms of capturing the complex and subtle variations in

speech signals that are indicative of spoofing attacks. To

overcome these limitations, there has been a tendency towards

developing end-to-end models that use raw waveforms as

input [7], [8]. These models leverage deep neural network

architectures to learn discriminative features directly from

the speech signal and have shown remarkable performance,

achieving state-of-the-art results on benchmark datasets such

as ASVspoof 2019.

Another line of researches that has been explored investi-

gates the training strategies such as data augmentation [9],

[10] and multi-task learning [11]. The main challenge of

these methods is the capacity to generalize to unseen attacks,

specifically spoofing attacks that were not utilized in generat-

ing training data [3]. To address this generalization problem,

Zhang et al. [12] introduced a novel approach, called one-class

learning, to learn a decision boundary that separates genuine

speeches from spoofed speeches rather than trying to classify

different types of spoofing attacks. Nevertheless, compacting

these clusters into a single one may cause the misclassification

of spoofing attacks [13]. In this context, it is important to

explore alternative clustering strategies that can improve the

accuracy and robustness of speaker verification systems.

Recently, Ding et al. [14] proposed a promising method,

called Speaker Attractor Multi-Center One-Class Learning

(SAMO), to address speaker diversity and generalization abil-

ity in one-class learning. However, the SAMO approach faces

challenges in handling diverse speech patterns and charac-

teristics. Its reliance on one-class learning limits adaptability

to various speaker traits and new voices, potentially causing

misclassifications. Additionally, closely resembling spoofing

attacks may yield false positives. Addressing these issues

is crucial for refining and enhancing SAMO, ensuring its

robustness and reliability in real-world scenarios.

We propose a novel method, “Enhancing Voice AntiSpoof-

ing through Attention-based Similarity Weights and Con-

trastive Negative Attractors” (EVA-ASCA), to address the lim-

itations mentioned above. This method aims to enhance speech

spoofing systems by integrating adaptive speaker attractors,

which can better handle the presence of multiple speakers,

and contrastive negative samples, which mitigate the risk of

misclassification due to similar voice characteristics, lead to

improved classification accuracy. Our method has the potential

to advance the field of anti-spoofing and contribute to the

development of more accurate and reliable systems for speaker

verification and authentication.
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Fig. 1. Comparison between previous studies and our proposed method.

II. METHODOLOGY

A. Overview: EVA-ASCA

Our proposed method (EVA-ASCA) aims to enhance

speech spoofing systems by utilizing attention-based similar-

ity weights and contrastive negative attractors. The attention

contrastive loss function module is employed to optimize

the classification model in that it is supported by attention-

based similarity weights that emphasize the most discrimi-

native features for accurate speaker verification. In addition,

the contrastive negative attractor contributes to robustness by

accentuating the importance of separating distinct speakers

within the embedding space.

Fig. 1 illustrates a comparison between our proposed

method and previous approaches. Our method (Fig. 1(c)) is

able to effectively separate unseen spoofing attacks from the

bona fide group, whereas the one-class learning approach (Fig.

1(a)) and SAMO (Fig. 1(b)) are insufficient in addressing

variations in both bona fide and spoofing instances. Here, w0

refers to the optimization direction of target class embeddings,

while ws1 and ws2 represent the average embeddings of the

enrolled utterances of corresponding speakers.

Algorithm 1 describes the pseudo code of module -

“Attention-based Similarity Weights and Contrastive Negative

Attractor Loss Computation”. The details will be elaborated

in the following.

B. Attention-based Similarity Weights

Our anti-spoofing system introduces the novel “Attention-

based Similarity Weights” mechanism, enhancing the speaker

attractor’s function. This attention mechanism, applied as

similarity weights, consolidates bona fide speeches in the high-

dimensional embedding space. Varying weights assigned to

different features effectively deflect spoofing attacks, reinforc-

ing Automatic Speaker Verification (ASV) against advanced

synthesis technologies. The dynamic attention mechanism

adjusts weights based on processed speech features, enabling

adaptive learning to new speaker characteristics and bolstering

resilience against diverse attacks. Furthermore, attention-based

similarity weights play a pivotal role in clustering genuine

speech around multiple attractors, a notable improvement over

prior methods lacking speaker diversity consideration.

In the speaker verification tasks, not all features in the fea-

ture space have equal importance for discriminating between

different speakers. The attention mechanism aims to assign

Algorithm 1 Attention-based Similarity Weights and Con-

trastive Negative Attractor Loss Computation

Input: x, spk, enroll
Output: final scores, contrastive loss

1: w ← initialize the center weights

2: scores← x@w.T (1)

3: if attractor = 1 then
4: att weights← zeros

5: for idx in spk do
6: if spk[idx] is in enroll then
7: att weights[idx]← Similarity(x[idx],

enroll[spk[idx]]) (2)

8: end if
9: end for

10: att weights← Softmax(att weights) (3)

11: final scores← att weights× scores (4)

12: neg indices← Random selection from w (5)

13: neg scores← x@w[neg indices]T (6)

14: contrastive loss← BCE With Logits(scores,

neg scores) (7)

15: end if
16: return final scores, contrastive loss

different levels of importance or weights to these features

based on their significance. The detailed steps are as follows.

1) Initialization: Establish the initial score value and the

attention weights of individual sample ni as:

scores[i] = xi@w.T

att weights[i] = 0,
(1)

where xi is the feature vector of sample ni and w is the

center weights.

2) Weight Calculation: For each sample ni, if its corre-

sponding speaker (‘spk[idx]’) is present in the enroll-

ment list (‘enroll’), a similarity measure is computed

between the sample and enrolled speaker’s feature as:

si =
xi

‖xi‖2 ·
enroll[spk[idx]]

‖enroll[spk[idx]]‖2 , (2)

which will act as the attention weight for that sample.

3) Normalization: The attention weights across all samples

are then normalized using the Softmax function as:

att weights[i] =
esi

∑N
j=1 e

sj
, (3)

where N is the total number of samples. This ensures

that the weights sum to one and emphasizes the weights

of more relevant features.

4) Final Score Computation: The final scores are the

product of the attention weights and original scores:

final scores[i] = att weights[i]× scores[i]. (4)

This gives more importance to the features deemed more

relevant by the attention mechanism.
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C. Contrastive Negative Attractors

The second enhancement of our anti-spoofing system,

Contrastive Negative Attractors, strengthens the classification

function against disruptive samples in the high-dimensional

embedding space. This feature acts as a counterbalance to

spoofing attacks, offering a novel perspective on handling

speaker diversity. Our approach with negative attractors con-

siders diverse speakers, tailoring its classification for improved

performance. Delving deeper, Contrastive Negative Attractors

maintain classification integrity by creating stark contrasts in

the embedding space, facilitating quick and accurate classifi-

cation of spoofed speeches. Working in tandem with attention-

based similarity weights, they form a dual-layered defense

against spoofing attacks.

Contrastive learning aims to learn embeddings such that the

positive pairs (e.g., from the same speaker) come closer in the

embedding space, while the negative pairs (e.g., from different

speakers) move apart. The details are described as follows.

1) Negative Sampling: For each sample in the batch, a

random negative attractor is chosen from the center

weights w. Specifically, the random selection for the i-th
sample is denoted as:

wneg,i = w[random index(0, |w| − 1)], (5)

where |w| is the number of available center weights.

2) Negative Score Computation: A score, denoted as

“neg scores,” is computed between the sample i and

negative attractor wneg,i using the dot product of their

normalized vectors:

neg scores[i] =
xi

‖xi‖2 ·
wneg,i

‖wneg,i‖2 , (6)

as their similarity, and is expected to be minimized for

effective contrastive learning.

3) Loss Computation: Using binary cross-entropy as the

logits function, the loss is calculated from the original

scores and negative scores as:

L = − 1

N

N∑

i=1

(yi log(σ(scores[i]))

+(1− yi) log(1− σ(neg scores[i])),

(7)

where σ is the sigmoid function and yi denotes the

ground truth labels (1 for positive pairs and 0 for nega-

tive pairs). This loss function pushes the embeddings to

cluster positive pairs closely and pushes negative pairs

farther apart in the embedding space.

III. EXPERIMENTS

A. Experimental setup

Dataset. In this study, the performance of our proposed

method was evaluated by comparing it with other novel

approaches on the ASVSpoof 2019 LA evaluation datasets

[15]. The LA subset of the dataset is especially noteworthy,

as it includes both genuine speeches and various types of

TABLE I
COMPARISON OF CM SYSTEMS.

CM System EER (%) min-tDCF

Baseline 1 (AASIST) [16] 1.25 0.042

Baseline 2 (SAMO) [14] 2.17 0.064

Capsule Network [17] 1.97 0.050

LCNN-DA [18] 2.76 0.077

SE-Res2Net50 [19] 2.86 0.060

RawNet2 [20] 3.50 0.090

STATNet [21] 2.45 0.062

Ours 1.09 0.033

spoofing attacks, including text-to-speech (TTS) and voice

conversion (VC) attacks.

Evaluation metric. To verify the performance of anti-

spoofing, we employed the output score, which is referred to

as the Countermeasure (CM) score within the context of an

anti-spoofing system. We used Equal error rate (EER) and

the minimum tandem detection cost function (min t-DCF),

which are commonly adopted in speaker verification systems,

as performance evaluation metrics.

Methods for comparsion. SAMO [14] and AASIST [16]

were adopted as the baselines. To ensure a fair assessment,

we compared the results under the same training conditions.

Both the baselines and our model were trained for 100 epochs,

utilizing a learning rate of 0.0001 with the cyclic learning

rate schedule to optimize the training process for a balanced

convergence rate and overall stability.

B. Experimental results

Comparison with state-of-the-art methods. Table I

presents a comparative result of various Countermeasure (CM)

systems based on EER and min-tDCF. Our proposed system

demonstrates better performance, with the lowest EER at 1.09
and the lowest min-tDCF at 0.033. This performance surpasses

those of both Baseline 1 (AASIST) [16] with an EER of 1.25
and min-tDCF of 0.042, and Baseline 2 (SAMO) [14] with an

EER of 2.17 and min-tDCF of 0.064. While Capsule Network

[17] performs competitively among the other systems, it still

exhibits higher values for both EER and min-tDCF.

Various attention parameter adjustment. Table II shows

the performance of proposed model across different attention

parameter values in terms of α. A smaller α results in a

more uniform attention distribution, while a larger α prioritizes

samples with higher similarities. Given a sample xi and a

weight w, the attention weight Ai before softmax activation

is calculated as:

Ai = α× similarity(xi, w). (8)
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TABLE II
PERFORMANCE OF OUR METHOD UNDER VARIOUS ATTENTION

PARAMETER α.

Attention value α = 0.01 α = 0.1 α = 0.5 α = 1

EER (%) 1.09 1.17 1.21 1.46

min-tDCF 0.033 0.038 0.035 0.047

Upon scaling by α, the attention weights are normalized using

the softmax function as:

att weightsi =
exp(Ai)∑
j exp(Aj)

. (9)

The results illustrate the impact of varying α’s on the perfor-

mance of our CM System. At α = 0.01, the system achieves

the lowest EER (1.09%), suggesting that a subtle attention

mechanism promotes better generalization. As α increases to

0.1 and 0.5, EER rises slightly, indicating a potential trade-off

between attention prominence and performance. However, at α
= 1, EER spikes (1.46%), signaling overfitting. In conclusion,

the parameter α significantly influences the efficiency of

attention mechanism, underscoring the importance of careful

tuning in that extreme values can lead to suboptimal results

in the context of a specific problem and dataset.

Ablation studies. Table III compares countermeasure sys-

tems based on EER and min-tDCF with α = 1. The baseline

system, “SAMO without Enrollment,” has an EER of 2.17%.

“Proposed 1” enhances this with “Contrastive,” reducing EER

to 2.16% and significantly improving min-tDCF to 0.050.

“Proposed 2,” which combines “Contrastive” and “Attention

Mechanism,” achieves a remarkable EER of 1.46% and the

best min-tDCF of 0.047. Thus, it is concluded that combining

both contrastive learning and attention mechanism together

demonstrate notable improvements over the baseline, high-

lighting its potential to enhance countermeasure.

IV. CONCLUSION

We present an enhanced strategy that incorporates attention-

based similarity weights and contrastive negative attractors to

address the escalating threat of voice-spoofing attacks. This

approach bolsters the reliability of spoofing detection even in

the face of unknown encoding and transmission conditions.

Experimental results underscore the superiority of our system,

showcasing a substantial improvement over existing solutions

on the ASVspoof 2019 LA evaluation dataset.
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