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Abstract—Synthetic data generation has been proposed as a
potential solution to accessing Electronic Health Records (EHRs)
while minimizing the privacy risks associated with real EHRs.
Nevertheless, the practical use of synthetic EHRs rests on their
ability to resemble the quality of real EHRs. Existing evaluations
of synthetic EHRs often focus on assessing them as static
snapshots frozen in time, neglecting temporal dependencies and
varying temporal patterns. Moreover, some of these methods rely
on subjective judgments, are limited to segmentable time-series,
and employ methods that adopt a one-to-one approach. This
study employs a comprehensive approach to evaluating fidelity in
synthetic time-series EHRs to address these challenges. We extend
the functionality of time-series analysis methods such as temporal
clustering, time-series similarity measures, Sample Entropy, and
trend analysis, to evaluate varying temporal patterns in synthetic
time-series EHRs. Our findings provide valuable insights into
how synthetic EHRs align with real EHRs in the temporal
context, considering aspects such as patient groupings, temporal
dynamics, predictability, and directional change. We empirically
demonstrate the feasibility of assessing temporal fidelity with
these methods, offering an understanding of the quality of
synthetic EHRs in capturing the varying temporal patterns
inherent in EHRs.

Index Terms—synthetic data, Electronic Health Records
(EHRs), times-series, fidelity, similarity

I. INTRODUCTION

Electronic Health Records (EHRs), as illustrated in Fig. 1,

comprise a comprehensive health history of a patient recorded

at different points in time. In recent years, synthetic EHR

generation has emerged as an alternative to obtaining real

EHRs, potentially addressing the privacy concerns of using

real medical data [1]. Synthetic EHRs, like their real counter-

parts, are a valuable resource for a wide range of purposes,

including research studies, testing new algorithms, medical

education, developing healthcare systems, and facilitating the

public release of data [3]. For instance, a study [4] investigated

the use of synthetic EHRs as a proxy for real EHRs sourced

from the New York State Department of Health to predict the

length of stay (LOS) of patients in hospitals. Another study [5]

explored using synthetic data to investigate healthcare policies

and make decisions on resource allocations.

Synthetic EHRs are commonly represented in two formats:

static snapshots frozen in time or time-series that portray the

patient’s health status changing over time. Generating static

EHRs involves learning the static features’ statistical proper-

ties to generate new data points that correspond with these

properties. In contrast, generating time-series EHRs is more

challenging, comprising modelling the temporal dependencies

in features within a time frame and across time [6]. To this

end, some recent works [6, 7, 8] have proposed generative

models that capture these temporal correlations. This involves

mapping the time-series data to a latent space that captures

these temporal correlations, thus enhancing the generation

process. Furthermore, these studies employ autoregressive

architectures such as Recurrent Neural Networks (RNNs) to

model sequences of medical events. These models learn the

temporal dependencies within time-series data and use this

learned representation to generate new data. Consequently, the

quality of the synthetic data rests on how well the temporal

dependencies are modelled.

Once generated, synthetic EHRs are evaluated to ascertain

whether the synthetic data preserves the real data’s statistical

and structural properties. This is formally known as fidelity. To

this end, methods that evaluate variable distributions [1], low

dimensional representations, correlations, and statistics [1] at

a single time-point have been employed to assess fidelity. A

drawback of this is that these methods overlook the temporal

dependencies and patterns inherent in time-series EHRs [9] as

they only assess single time points.

A handful of studies have attempted to assess the fidelity of

synthetic EHRs while considering the temporal dependencies

in time-series data. For instance, Li et al. [7] employed

visual inspection, comparing patient trajectories in the real and

synthetic EHRs to evaluate fidelity. However, the subjective

nature of this approach creates inaccurate assessments [9]. An
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Fig. 1: An Electronic Health Record showing a series of clinical events with lab procedures, diagnosis, prescribed medications,

lab results, and clinical notes for a patient over different visits [2]

alternative approach employed by Li et al. [7] employed the

autocorrelation function (ACF) to examine the preservation of

temporal correlations for selected variables in synthetic data.

Additionally, another study [8] employed an approach that

compares the length of sequences and event distributions in

real and synthetic cases.

In assessing temporal fidelity, Dash et al. [10] employed a

methodology to segment the time-series data into meaningful

intervals to calculate and compare the summary statistics

in real and synthetic cases. However, this approach is only

effective when the time-series can be partitioned into intervals.

Pearson’s Correlation, employed in some studies [7] and [9]

revealed limitations in evaluating non-linearly correlated data,

as Pearson’s method assumes independence in all observations

[11].

Furthermore, Bhanot et al. [9] introduced one-to-one metrics

such as Root Mean Squared Error (RMSE), Directional Sym-

metry (DS), and Short Time-series Distance (STS) to assess

fidelity. Like the Euclidean Distance measure, these employ

a lock-step approach that does not account for temporal

misalignments [12].

Given these challenges, our work proposes a comprehensive

approach to evaluating temporal fidelity in synthetic time-

series EHRs. The proposed approach effectively evaluates

varying temporal patterns in synthetic time-series EHRs,

overcoming limitations associated with individual judgments,

one-to-one approaches, and segmentable time-series. Conse-

quently, our work aims to make the following contributions:

1) We extend the functionality of time-series analysis meth-

ods such as temporal clustering, time-series similarity

measures, Sample Entropy, and trend analysis for as-

sessments on fidelity. These methods account for varying

temporal dynamics and patterns.

2) We experimentally demonstrate the feasibility of these

methods for assessing fidelity in three synthetically gen-

erated time-series EHRs. We showcase the effectiveness

of these methods for evaluating synthetic EHRs by

employing two state-of-the-art generators, TimeGAN [6]

and EHR-M-GAN [7], alongside a randomly generated

dataset.

3) Our experiments illustrate the application and interpre-

tation of these methods in the context of the fidelity of

synthetic time-series EHRs. This includes insights into

how these methods effectively discern temporal patterns

and similarities.

The remainder of the paper is organized as follows: Section

II provides a background of the time-series methods employed.

Section III details the data, synthetic data generators, and

methods for assessing temporal fidelity in synthetic EHRs.

Section IV presents the experimental results. Section V pro-

vides a discussion of the findings, and Section VI presents

conclusions and future research directions.

II. BACKGROUND

A. Temporal Clustering

Temporal clustering groups time-series data using a pre-

defined similarity measure [13]. Three main categories of

temporal clustering methods exist hierarchical, model-based,

and partitioning. However, we focus on the commonly used

partitioning methods. As such, two key considerations for

partition-based clustering are the optimal number of clusters

and the cluster quality.

Methods for determining optimal cluster numbers include

statistical (e.g., gap statistic) and direct methods (e.g., Elbow

and Silhouette methods) [14, 15]. To assess cluster quality,

measures like the Silhouette Coefficient, Calinski-Harabasz In-

dex, Davies-Bouldin Index, and Adjusted Mutual Information

(AMI) [16] can be employed, but most require known class

labels except for the Silhouette Coefficient.

B. Time-series Similarity Measures

Time-series similarity measures quantify the degree of sim-

ilarity between time-series sequences. Different types of time-

series similarity measures [12] exist, however, we focus on the

commonly used Dynamic Time Warping (DTW) [17] in this

paper.

DTW in (1) aligns temporal sequences by accommodating

local shifts and differences in speed. Given two sequences

A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn) of length m
and n, DTW finds a warping path, W that maps the elements

in the two sequences such that their distance is minimized

[17]. A warping path is determined by constructing a distance

matrix, d of size m by n, whose entries are the distances

between elements in A and B. The warping path, of length p
is the optimal path between the distance matrix that minimizes

the cost of aligning the two sequences.

DTW(A,B) = min
W

(
p∑

k=1

d(ak, bk)

)
(1)
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C. Sample Entropy (SampEn)

SampEn [18], described in (2) is a measure used to quantify

the regularity or predictability of data in a time-series. It

determines whether similar patterns persist throughout the

time-series. SampEn is characterized by three parameters: N ,

r and m. N is the length of the time-series. r is the tolerance

level for accepting a match between elements in a time-series.

m is the length of sequences to be compared, while C is a

count of patterns of length, m within the tolerance level r. The

resulting entropy is computed by calculating the negative log

probability with which sequences of length m from the time-

series remain similar as the time interval varies. An important

characteristic of SampEn is that it is robust because it is

independent of the length of the time-series, making it suitable

for time-series data of varying lengths [18]. Additionally,

SampEn is not highly insensitive to its hyperparameters as

demonstrated in some studies [19]. Lower values of SampEn

close to 0 indicate low entropy, hence regularity and vice-

versa.

SampEn(m, r) = − ln

(
Cm+1(r)

Cm(r)

)
(2)

D. Trend Analysis

Trend analysis, according to Rae [20], is a method used to

assess how things change over time. This approach involves

identifying patterns or trends to offer insights into the temporal

changes and facilitate predictions about behaviours. As em-

phasized by Ely et al. [21] trend analysis is valuable in cases

where the trend is not apparent, with limited data, or when

there is a large variability in rates from consecutive periods.

This analysis sheds light on whether there is an increasing or

decreasing trend in data.

III. METHODOLOGY

This section presents an overview of the methodology

employed in this paper as illustrated in Figure 2.

We employed temporal clustering, time-series similarity

measures, Sample Entropy, and trend analysis to measure the

similarity between real and synthetic EHR time-series while

paying attention to the inherent temporal patterns.

A. Dataset

We utilized EHRs from the Medical Information Mart for

Intensive Care (MIMIC-IV) data repository. The MIMIC-IV

repository is a publicly accessible database of de-identified

patient records from the Beth Israel Deaconess Medical Centre

from 2001 to 2012 [22]. We specifically extracted EHRs

containing vital signs and corresponding lab measurements

from the emergency department (ED) module. The module

contains measurements of vital signs documented for patients

during their stay in the ED. This corresponds to real data.

Table I provides an overview of the variables utilized in our

study. We define our dataset, S as a collection of m patients.

Each patient, denoted as ai is characterized by a tuple of n
vital sign recordings taken over several observations:

S = {a1, a2, . . . , am}
Where each ai is defined as:

ai = (v1, v2, . . . , vn)

We imputed missing values for the initial preprocessing stage

using the mean value in a day’s recording. Subsequently, we

aggregated visits on the same day and retained the initial ten

visits for each patient. Lastly, we normalized the values to the

same scale.

B. Assessment of Fidelity

In assessing fidelity, we first employ k-means clustering

with DTW to group the real EHRs, examining whether the

synthetic EHRs exhibit similar clustering patterns. The optimal

number of clusters for the real EHRs is determined using

the Silhouette Coefficient. We combine the real dataset with

each synthetic dataset, assigning labels to distinguish real from

synthetic records. Subsequently, each combined dataset is clus-

tered, and fidelity is assessed by determining the proportion of

real and synthetic records in each cluster, with the algorithm

executed multiple times for result consistency.

Secondly, DTW distances are computed over patient se-

quences for selected variables from a cohort from the real

and synthetic sets. Multiple separate DTW comparisons are

conducted, each between a sequence in one set and all other

sequences in the other set. A heatmap derived from the

distance matrix illustrates the similarity between the patient

sequences. To compare the heatmaps, we adopt a similar

approach in this study [7] and compare summary statistics

(mean, maximum, and minimum) over the distance matrices.

This approach aims to determine whether synthetic datasets

accurately capture patterns from real records and provide

insights into the overall characteristics of the dataset.

Thirdly, we employ SampEn to assess the predictability

of the real data and compare it to the synthetic data. We

computed SampEn with the parameters for m and r as 2 and

0.3, respectively. For each patient sequence in each variable

in the real and synthetic cohorts, we individually compute

SampEn values, quantifying the entropy of each patient’s time-

series. Subsequently, we aggregate the SampEn values for

all patients, visualizing the distribution of SampEn in the

different cohorts from the synthetic data generators. To assess

fidelity, we compare the distributions of SampEn in the real

data against the synthetic sets. Additionally, we calculate the

mean of the distributions per variable. The comparison of

SampEn distributions and the mean values provides insights

into whether the predictability in the real data is accurately

replicated in the synthetic data.

Lastly, we assess fidelity by extracting the trend and exam-

ining how the patient sequences change over time. For each

patient sequence in each variable, we fit a polynomial regres-

sion model of degree two for each variable. Subsequently, we

aggregate the calculated slope for each patient and compute

the mean of the slopes across the real and synthetic cohorts.
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Fig. 2: Overiew of the methodology: Synthetic EHRs are generated from TimeGAN, EHR-M-GAN, Randomness and evaluated

using time-series analysis methods

TABLE I: Description of variables used in the experiments

Variable Description Range Type
heartrate Heart rate (beats per minute) 40–140 Discrete
sbp Systolic Blood Pressure (mmHg) 90–200 Continuous
dbp Diastolic Blood Pressure (mmHg) 60–200 Continuous
o2sat Oxygen saturation (%) 75–120 Continuous
resprate Respiration rate (breaths per minute) 9–40 Discrete
sodium Sodium levels (mEq/L) 130.0–155.0 Continuous
potassium Potassium levels (mEq/L) 3.0–6.0 Continuous

We assess fidelity by comparing the direction and magnitude

of the slopes for the real and synthetic sets.

C. Synthetic Data Generators

1) TimeGAN: TimeGAN [6] is a state-of-the-art time-series

synthetic data generator comprising a GAN with four network

components: an embedding function, recovery function, se-

quence generator, and sequence discriminator. According to

Yoon et al., [6], this architecture enables the generation of

realistic time series and static data that preserve temporal

dynamics. We employ the default parameters for TimeGAN.

2) EHR-M-GAN: EHR-M-GAN [7] comprises a GAN

framework capable of generating high-fidelity multivariate

synthetic EHRs. This is accomplished by mapping the data

into a shared latent through a dual Variational Autoencoder

(dual-VAE). Consequently, a sequentially coupled generator

built upon a coupled recurrent network (CRN) captures the

temporal correlations and generates synthetic data. We employ

the default parameters for EHR-M-GAN.

3) Random Data: We introduce a third synthetic EHR

dataset by deriving random values between the minimum and

maximum values of the different variables in the real EHR

dataset.

IV. EXPERIMENTAL RESULTS

A. Temporal Clustering

We determined the optimal number of clusters for the real

EHRs as two, as indicated in Table II. The silhouette score 0.45

obtained for two clusters suggests two true patient groups in

the real data.

TABLE II: Silhouette Scores for different numbers of clusters

Clusters 2 3 4 5 6 7 8
Silhouette Score 0.45 0.26 0.17 0.13 0.12 0.1 0.1

Fig. 3 shows a visual representation of the presence of two

main clusters based on the systolic blood pressure variable.

In the first cluster, we observe values between 0.2 and 0.9. In

contrast, in the second cluster, we observe average to lower

systolic blood pressure values. Fig. 3 also suggests that the

variance of the synthetic data from TimeGAN and EHR-M-

GAN closely matches that of the real data in the two clusters.

This contrasts the findings for data generated by randomness,

where the variance differs significantly from the real data.

Table III shows the assignment of patient records to the dif-

ferent clusters. C1 and C2 refer to clusters 1 and 2 respectively.

In the ideal case, where the fidelity of the synthetic EHRs

matches the real data, there should be a balanced proportion

of the number of records from the real and synthetic sets

in the different clusters. From the table, in the TimeGAN

case, we observe, that clusters 1 and 2 have a more balanced

proportion of real and synthetic records. In the EHR-M-GAN

and Random case, we see that across the two clusters, there

is a highly uneven distribution of records from the real and

synthetic cases. We also observed an extreme case where the

synthetic records make up only 0.35 percent of the records in

cluster 2 for the EHR-M-GAN data.

B. Time-series Similarity Measures

Fig. 4 illustrates a heatmap for DTW distance matrices

for patients in the real and synthetic cohorts for the systolic
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(a) TimeGAN (b) EHR-M-GAN (c) Random

Fig. 3: Results showing cluster assignments (k=2) for real and synthetic EHRs for systolic blood pressure. Real data is

represented in black, synthetic data is depicted in blue

TABLE III: Percentage of records assigned to the different

clusters in the real and synthetic cases

C1 C2

TimeGAN Real 44.73 53.92
Synthetic 55.27 46.08

EHR-M-GAN Real 22.67 99.65
Synthetic 77.33 0.35

Random Real 79.38 20.22
Synthetic 20.62 79.78

blood pressure variable. We selected a cohort of patients

with consecutively high blood pressure readings, defined as

a systolic blood pressure exceeding 140 mm/HG, within both

the real and synthetic datasets. In Fig. 4a, we illustrate the

similarity in the real vs. real case, representing the ideal

scenario where records in the real data are compared against

each other, resulting in a symmetric matrix. Figures 4b, 4c,

4d show the similarity between the records from the real

compared against each of the synthetic data. Each coloured el-

ement represents the distance or cost of aligning two patients’

sequences concerning their systolic blood pressure. The darker

shades represent high dissimilarity, while the lighter shades

represent similarity.

From Fig. 4, we see that the regions of similarity and

dissimilarity in the data from the synthetic cohorts vary from

that of the real cohort. Figures 4c and 4b depict slightly similar

patterns to the real data. To compare the overall characteristics

of the datasets for preserving temporal dynamics, we compute

the maximum, minimum, and mean values over the DTW

matrix for patients in both the real and synthetic sets in Table

IV. TimeGAN and EHR-M-GAN generated sequences with

similar temporal dynamics to the real EHRs. This is evident

in the similar values for the maximum, minimum, and mean

values. The random data exhibits the highest dissimilarity, as

expected.

TABLE IV: Statistics from the DTW matrix in the real and

synthetic sets over systolic blood pressure

Real TimeGAN EHR-M-GAN Random
Max 1.52 1.74 1.16 2.39
Min 0.00 0.01 0.02 0.04

Mean 0.30 0.25 0.26 0.67

C. SampEn

Fig. 5 shows the distribution of SampEn for heartrate in the

real and synthetic EHRs. The expected distribution is seen

in the real case where we have a peak between SampEn

values of 0. Notably, in the EHR-M-GAN case, the data

closely resembles the distribution of real data. For TimeGAN,

the generated data has more patients with regular heart rates

than real data, as evident in the longer peak around SampEn

values of 0. Conversely, the randomly generated data displays

a slightly different pattern, with fewer patients with regular

heartrates.

We further compute the SampEn for the remaining variables

for each patient record in the real and synthetic EHRs and

compare the mean of the distributions of SampEn in Table

V. The closest match is seen in heartrate from EHR-M-GAN

and systolic blood pressure in the case of the random data.

For the rest of the variables under consideration, we observe

significant discrepancies in the amount of predictability based

on the mean of the distribution of SampEn between the real

and synthetic data.

TABLE V: Mean of SampEn recorded over all the variables

in the real and synthetic sets

Variable Real TimeGAN EHR-M-GAN Random
heartrate 0.09 0.02 0.08 0.13
sbp 0.14 0.04 0.11 0.13
dbp 0.06 0.10 0.09 0.09
o2sat 0.03 0.22 0.09 0.17
resprate 0.03 0.06 0.05 0.10
sodium 0.02 0.08 0.11 0.11
potassium 0.02 0.11 0.05 0.17

D. Trend Analysis

Table VI presents the mean of the slopes of the different

variables for the real and synthetic cohorts. We observe several

discrepancies across all the slopes of all the variables pre-

sented. First, for the heartrate, the real and synthetic cohorts,

except the Random data show positive trends. Secondly, for the

blood pressure (sbp and dbp), the patients in the real cohorts

have a negative trend, while the synthetic cohort either has

a positive trend or a negative trend with varying magnitudes.

For the other variables, oxygen saturation, resprate, sodium,

and potassium, the real data generally shows positive trends

for o2sat and potassium, with negative trends for resprate

and sodium. In contrast, the synthetic cohorts display diverse
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(a) Real (b) TimeGAN

(c) EHR-M-GAN (d) Random

Fig. 4: DTW distance matrix for the real and synthetic sets over systolic blood pressure

Fig. 5: Distribution of SampEn for the heartrate of patients in real and synthetic EHRs

patterns, capturing some trends but deviating notably in the

data from EHR-M-GAN.

TABLE VI: Mean of the distribution of slope over all the

variables in the real and synthetic sets

Variable Real TimeGAN EHR-M-GAN Random
heartrate 0.0026 0.0012 0.0759 -0.0020
sbp -0.0028 0.0031 -0.0227 -0.0042
dbp -0.0020 -0.0003 0.0189 0.0002
o2sat 0.0014 0.0008 -0.0401 -0.0007
resprate -0.0004 0.0022 0.0592 0.0037
sodium -0.0006 0.0009 0.0206 -0.0050
potassium 0.0021 0.0071 0.0834 -0.0009

V. DISCUSSIONS

In this study, we investigated the application of time-

series analysis methods to evaluate temporal fidelity in time-

series synthetic EHRs. These methods aimed at evaluating

fidelity by identifying temporal patterns and dependencies.

The findings from this study have several notable implications

on the fidelity of synthetic EHRs from the aspects of patient

groupings, temporal dynamics, predictability, and directional

change. We discuss these in the subsequent sections.

A. Patient Groupings

Temporal clustering with DTW identified distinct patient

groupings in the real data. Notably, in the case of the systolic

blood pressure variable, we observe patients that share com-

mon characteristics, with some demonstrating higher values,

and others featuring average to lower values. Despite the

clear patient groups in the real data, the synthetic cohorts

present a few discrepancies in their groupings. These findings

indicate that the temporal patterns in the real data are not
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accurately captured in the synthetic datasets. Various factors

could contribute to these discrepancies, including limitations

in the generator’s inability to generate data that captures the

temporal characteristics in the real data.

B. Temporal Dynamics

The DTW distance matrix revealed similarities and dis-

similarities in patient records between the real and synthetic

cohorts concerning capturing temporal dynamics. In contrast

to one-to-one methods [9] which are sensitive to temporal

variations, DTW aligns temporal sequences by accommodat-

ing local shifts and differences in speed through a one-to-

many approach. We observe that the synthetic data captures

the temporal variation suggesting a similarity to real EHRs,

except for randomly generated data. This suggests a degree

of effectiveness in capturing the diverse temporal variations

inherent in real EHR data.

C. Predictability

Predictability focuses on the consistency of patterns in the

time-series records. SampEn is a measure used to capture the

regularity or predictability of the time series. The findings

reveal that the predictability of heartrate from the real data

is not accurately replicated in the synthetic data. We have a

case, where the synthetic datasets have more or fewer patients

with regular vital signs. A plausible reason for this can be

attributed to the challenges in synthesizing realistic temporal

patterns in synthetic data generators.

D. Directional Change

Trend analysis identified the direction and strength of the

different variables in the real and synthetic cases. Positive

slopes indicate increasing trends over time, while negative

trends indicate the opposite. Likewise, the higher the mag-

nitude of the slope, the more variations there are in data

and vice-versa. From the findings, the synthetic data did not

accurately capture the direction and change observed in the

real data. It occasionally indicated negative trends as positive

trends, or it indicated lower magnitudes as high magnitudes.

This indicates that the generators have trouble accurately

replicating how the data changes over time, including the

magnitude and direction of such changes.

E. Influence of the architecture of the synthetic data generator

The fidelity of the generated EHRs may also be influenced

by the architecture of the data generators, particularly in

the case of TimeGAN and EHR-M-GAN. The choice of

architecture can significantly impact the generators’ ability to

capture temporal patterns present in real EHRs. For instance,

GANs often face challenges in modelling mixed data types

[7, 23] such as continuous and discrete variables. The real data

contained both discrete and continuous values. This hetero-

geneity in the data can contribute to the observed discrepancies

in fidelity.

Furthermore, using a latent space-based generator can ef-

fectively contribute to the fidelity of the generated EHRs.

Latent spaces are a lower-dimensional representation of the

original data that captures the underlying structure of the

data. TimeGAN and EHR-M-GAN employed latent space

representations to capture the temporal correlations in the real

data to enhance the generation process. However, as noted

by Fonseca and Bacao [24], defining the architecture of a

model that learns the appropriate latent space representation

is not an intuitive task. The method employed to derive latent

representation and the structure or quality of the latent space

representation in these models can potentially influence the

quality of synthetic data and impact fidelity.

F. Criteria for choosing the optimal synthetic data generator

The selection of the optimal synthetic data generation

method depends on the specific use case for which the syn-

thetic EHRs were generated. The ideal data generator essen-

tially captures the directionality, patient groups, predictability

and temporal dynamics inherent in real EHRs.

For instance, consider a use case to study patients whose

vital signs deteriorate over time. In this context, the optimal

generator should generate synthetic EHRs that accurately

reflect the temporal dynamics and directional changes of the

real EHRs. Similarly, in the context of using synthetic EHRs

for resource planning, which involves identifying patients

who require prioritized care, it is crucial that the groupings

of patients in the synthetic EHRs align with those in real

EHRs. Alternatively, some studies [25] have explored assign-

ing weights and using ranking mechanisms based on specific

use cases to determine the optimal synthetic data generator.

However, generating synthetic EHRs that satisfy these cri-

teria is challenging in the current state of synthetic EHR

generation due to the inherent complexities of EHRs. Ad-

dressing these challenges requires continued research efforts

in generating high-fidelity synthetic EHRs.

While this study offers insights into the fidelity of synthetic

EHRs, some limitations exist. Firstly, the methods employed

do not comprehensively evaluate the multivariate fidelity of

synthetic EHRs. Additionally, the analysis focuses on struc-

tured EHRs.

VI. CONCLUSION AND FUTURE DIRECTIONS

Synthetic EHRs offer a promising alternative to real EHRs,

potentially alleviating the risks associated with using real

EHRs. The practical utilization of synthetic EHRs rests on

their ability to resemble the statistical and structural properties

of real EHRs. Assessing the temporal fidelity of synthetic

EHRs is crucial to ensure that they accurately resemble real

EHRs in all aspects. In this paper, we employed time-series

analysis methods to evaluate the fidelity of synthetic time-

series EHRs. Our findings highlight the potential of these

methods for assessing fidelity and reveal how the generated

EHRs align with real EHRs concerning patient groups, tempo-

ral dynamics, predictability, and directional change. Future re-

search in this domain will explore methodologies for selecting

the optimal synthetic data generation methods. Additionally,
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an unexplored avenue exists in evaluating multivariate fidelity

in synthetic time-series EHRs.
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