
Exploring viability of Test-Time Training:
Application to 3D segmentation in Multiple

Sclerosis

Benoı̂t Gérin∗1 Maxime Zanella∗1,2 Maxence Wynen1,3

Saı̈d Mahmoudi2 Benoı̂t Macq1 Christophe De Vleeschouwer1
1ICTEAM, UCLouvain, Belgium 2ILIA, UMons, Belgium 3NIL, UCLouvain, Belgium

Abstract—Test-Time Training (TTT) is an unsupervised do-
main adaptation technique employing a self-supervised task
performed by an attached branch model. While justification of
key design choices are often neglected in the literature, we explore
the viability of TTT in a real-case scenario and conduct an
extensive evaluation of key hyperparameters in TTT, including
the choice and the placement of the auxiliary task, the type
of normalization layer, and the model parameters to adapt.
We carry out this study in Multiple Sclerosis (MS) diagnosis
relying on focal lesions visible in conventional MRI. Manual
lesion segmentation based on automated methods face significant
challenges in clinical integration due to MRI domain shifts, i.e.
discrepancies between training and deployment data, notably
due to different acquisition settings. We apply TTT to each
patient individually, offering an effective strategy to mitigate
domain shift without the need of additional annotated data or
data from other patients. We ground our experiments on real-
world distribution shifts using three distinct MS datasets. Finally,
we propose general guidelines to apply TTT in practice. Code
available at github.com/Gerin-Benoit/ttt-for-multi-sclerosis.

Index Terms—test-time training, unsupervised domain adap-
tation, multiple sclerosis, lesion segmentation, 3D MRI

I. INTRODUCTION

Recently introduced, Test-Time Training (TTT) is a sub-

field of domain adaptation, which is a promising research

direction that studies solutions to adapt a model trained on

a source (i.e., in-distribution) dataset in order to improve its

performance on a target (i.e., out-of-distribution) dataset [1].

TTT addresses this specific question by using an auxiliary

task in a self-supervised manner [2] to gain information on

the target distribution. TTT has proven to bring significant

improvement on numerous tasks without expensive labeling

procedure requirement [2]–[6]. While simple in essence, the

practical implementation of TTT is hindered by the difficult

task of hyperparameters selection, especially when no valida-

tion set is available.

These domain adaption challenges arise particularly in

Multiple Sclerosis (MS) lesion segmentation [7]–[12]. MS

is a common neurodegenerative disease [13] characterized

by focal lesions in the central nervous system, mainly in

the white matter, grey matter and spinal cord [14]. Detected

through magnetic resonance imaging (MRI), these lesions

∗ Equal contribution and corresponding authors: {benoit.gerin,
maxime.zanella}@uclouvain.be

Fig. 1: Comparative magnified views of FLAIR images and

segmentation masks. From left to right: original FLAIR,

segmentation by expert consensus, model output before test-

time training (TTT), and after TTT. All segmentations are

highlighted in red. We can observe that TTT helps (a) finding

missed lesions, (b) enhancing the contour of lesions or (c)

improving the coverage of complex regions.

play a crucial role in the current criteria for MS diagnosis

[14] and prognosis [15]. Historically, expert neuroradiologists

have been entrusted with the complex task of MS lesion

segmentation, an approach that is not only labor-intensive but

also prone to errors [16]. While numerous automated methods

have emerged to assist experts in this task [17], [18], their use

in everyday clinical practice remains limited [19]. One major

obstacle is domain shifts — discrepancies between training

and deployment data — that often negatively affect model

performance [20]. In the context of MS lesion segmentation,

these shifts primarily arise due to variations in data acquisition

parameters [9], [11], [12], [21]. Still, TTT in MS lesion seg-

mentation remains unexplored despite the potential observed in

other application fields. We aim to fill this gap and investigate

the viability of TTT in MS lesion segmentation using Fluid

Attenuated Inversion Recovery (FLAIR) images. We conduct

this study on a per-patient basis to align with the clinical

562

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00110

practice of individualized patient care. Some benefits of such

methods are depicted on Figure 1 where results before and

after using our solution are compared.

The contributions of this paper can be summarized as

follows: (i) the application of the TTT paradigm to real-world

domain shifts occurring in medical imaging, (ii) a comparative

study of several auxiliary tasks within the TTT framework for

MS lesion segmentation, (iii) a comprehensive examination of

TTT hyperparameters, which are often either arbitrarily chosen

or lack robust empirical grounding, and (iv) guidelines to apply

TTT in MS lesion segmentation.

II. RELATED WORK

Unsupervised domain adaptation aims to enhance model

performance when faced with domain shifts. Conventional

approaches often focus on aligning feature distributions using

discrepancy loss mechanisms [22] or through adversarial train-

ing techniques [23]. A more recent work proposes to freeze

the classifier head while encouraging the model to produce

source-like, or more confident, predictions [24].

Test-time adaptation offers a practical setting where the

source data is not accessible during testing. A strong baseline

is to rely solely on the adaptation of the batch normalization

layer statistics without additional training [25]. Another com-

mon method introduces an additional entropy minimization

term, forcing the model towards more confident predictions

[26]. This approach can be extended to segmentation, for

example, by incorporating shape descriptors to guide the

adaptation process [27].

Test-time training incorporates an auxiliary task, such as

rotation prediction, to guide model adaptation [2]. Subsequent

work gives insights on the importance of aligning the auxiliary

task with the primary one [3]. Various auxiliary tasks have

been proposed, including input reconstruction with a masked

autoencoder [4], feature distribution realignment via normaliz-

ing flows [5], and meta-learning combined with a contrastive

loss [6].

TTT in 3D segmentation is an emerging area of study. It

has been used to improve knowledge transfer from synthetic

CT images through reconstruction-based tasks [28]. Addition-

ally, it can facilitate adaptation from different scanners and

protocols by leveraging transferable spatial relations inherent

to the human body structure [29], or by artificially degrading

segmentation masks during training to produce more plausible

predictions at inference [30].

While previous works in the literature propose highly tuned

methods for specific cases, there is no clear study on how to

chose hyperparameters to deploy TTT in practice: the branch

position can be located at the beginning or in the middle of the

model [2]–[6], [28]–[30], the parameters to adapt are either

the affine parameters of the normalization layer or all the

parameters [2], [3], [5], [26]–[29], and the number of iterations

before stopping the adaptation is not precisely discussed [4],

[5], [28]. In our work, we carefully address these flaws by

making an extensive study on the key design choices of TTT

Fig. 2: Training and adaptation pipeline. Arrows indicate

forward flow for core model training (red), branch training

(blue) and test-time training (green). For each case, locks

indicate which layers are not modified. Best view in color.

and highlighting the performance gain brought by TTT on a

real domain shift scenario.

III. METHOD

This section formally describes our test-time training pro-

cedure. A core model is trained on a prediction task (e.g.,

semantic segmentation) and a second model — the branch

— learns to solve an auxiliary task. During TTT, the branch

model is used to adapt the core model.

Core model training (Source). Let the core model be

the concatenation of a feature encoder encθ and a decoder

decφ with parameters θ and φ respectively. The encoder

parameters are the union of K successive groups of layer

parameters {θ1, θ2, . . . , θK}. The kth latent representation

zk = encθ1:k
(x) of the input volume batch x is extracted with

the concatenation of the k-first layer groups of encθ . The core

model prediction is denoted ŷ = decφ ◦ encθ(x).
θ and φ are trained by minimizing a supervision error function

l for n volume batches {xi}ni=1 and labels {yi}ni=1:

min
θ,φ

1

n

n∑

i=1

l(xi,yi;θ,φ) (1)

Branch training (Source). We plug in an auxiliary branch

bω with parameters ω, which is designed to solve an auxiliary

task. This so-called branch model is connected to the kth

encoder layer and outputs auxiliary prediction ŷaux = bω ◦
encθ1:k

(x). The branch parameters are trained by minimizing

the auxiliary task error laux while keeping the encoder param-

eters frozen:

min
ω

1

n

n∑

i=1

laux(xi,y
aux
i ;θ1:k,ω) (2)

Test-time training (Target). For each patient, the branch

is used to retrain some parameters to produce a new latent

representation zk by solving the auxiliary task. Following

previous works [5], [24], [28], [29], only the k-first group

563

Fig. 3: Illustration of the auxiliary tasks: (a) original patch;

(b) rotation prediction; (c) relative patch location; (d) jigsaw;

(e) inpainting. One of these auxiliary tasks is performed by

the branch.

of layers are adapted by minimizing the auxiliary task loss

laux:

min
θ1:k

1

n

n∑

i=1

laux(xi,y
aux
i ;θ,ω) (3)

where the parameters θk+1:K , φ and ω are kept frozen during

the adaptation. For an overview of our pipeline, we refer the

reader to Figure 2.

IV. EXPERIMENTAL SETTING

Datasets. Based on the Shifts 2.0 challenge [21], we use

three datasets (namely best, msseg and ljubljana) orig-

inating from five acquisition centers across six MRI scanners

with varying spatial resolutions. We alternatively regard one

dataset as source for core model and branch training, while

the others are considered as targets for TTT evaluation.

In our experiments, a partition is defined as a source dataset

and two target (i.e., out-of-distribution) datasets. Each target

dataset is further divided into a validation set of 10 patients

and a test set including the remaining patients. This procedure

leads to three distinct partitions, one per source dataset.

Auxiliary tasks. We study four different self-supervised

tasks, summarized on Figure 3.

• Rotation prediction (Fig. 3b) consists in predicting the

angle of a randomly rotated input patch. We choose the

hyperparameters of this task following [31].

• Relative patch location (Fig. 3c) divides a patch into

a grid, wherein a sub-volume is randomly selected. This

task consists of predicting the location of the selected

sub-volume with respect to the center sub-volume. We

choose the hyperparameters of this task following [31].

• Jigsaw (Fig. 3d) divides a patch into a grid and shuffles

the created sub-volumes according to a randomly selected

permutation from a predefined set. The objective of the

task is to determine which of these permutations was

applied. We choose the hyperparameters of this task

following [31].

• Inpainting (Fig. 3e) consists in reconstructing a ran-

domly masked input patch. We choose the hyperparame-

ters of this task following [32].

Evaluation protocol. We assess each combination of aux-

iliary task and set of hyperparameters on each partition with

the three following main steps:

1) We first train a core model, then a branch model on the

source dataset.

2) For a given source, the key hyperparameters — namely,

learning rate, number of iterations, parameters to adapt

— are determined with the target validation sets. This

approach is more clinically realistic: individually tuning

TTT hyperparameters for each patient would be imprac-

tical in the absence of ground truth data.

3) We evaluate on the corresponding test sets of the current

partition. Average Dice Similarity Coefficient (DSC)

across test sets is reported accordingly.

Implementation details. Inspired by the work of [33], we

opt for a 3D UNet as our core model architecture, which is

widely employed in the literature [18]. Its encoder consists

of three successive trainable layer groups corresponding to

k = 1, 2 and 3 in Equation 3. We also compare two normaliza-

tion layer types for the core model: Batch Normalization (BN)

which is often considered in domain adaptation settings [25],

and Instance Normalization (IN) [34]. The branch is composed

of a series of upsampling convolutional layers for inpainting,

or a convolutional projector to reduce feature dimensions

followed by three fully connected layers for the other tasks.

The training of each model is performed for a maximum

of 300 epochs with a batch size of 4. Patches of size 963

are cropped in FLAIR images in the same fashion as [21].

The core model and the branch are trained separately using

Adam optimizer with a cosine scheduler. The learning rate

is decreased from 5e-4 to 1e-5, or 1e-4 to 1e-5 depending

on the best performing model or branch. Test-time training

is performed for 150 epochs with Adam optimizer at constant

learning rate among 7 possible values ranging from 1e-5 to 1e-

2 equally spaced in log-scale depending on the best validation

DSC.

Study scope. We investigate several aspects of the test-time

training framework. Specifically, our study focuses on:

• The type of normalization layer to use in the core model

(BN or IN).

• The location of the branch model (at level k = 1, 2 or

3).

• The subset of parameters in the core model to adapt

(either all preceding parameters leading up to the branch

or solely the preceding affine parameters of the normal-

ization layers).

• The type of auxiliary task to solve (rotation prediction,

relative patch location, jigsaw, or inpainting).

• The number of adaptation iterations to perform (from 0

to 150).

564

Source

Self best msseg ljub.

Target
best 0.722 0.0% -18.2% -19.9%

msseg 0.726 -26.1% 0.0% -9.0%

ljub. 0.616 -25.4% -3.7% 0.0%

(a) Batch Normalization.

Source

Self best msseg ljub.

Target
best 0.736 0.0% -18.8% -21.5%

msseg 0.763 -51.6% 0.0% -13.9%

ljub. 0.659 -43.8% -4.8% 0.0%

(b) Instance Normalization.

TABLE I: Cross-dataset relative degradation of DSC performance. The Self column reports DSC value of the core models

on their own source test set. For each cell (i, j), relative degradation of core model trained on source dataset j is compared

to performance of core model trained on dataset i. For example, core model with BN trained on best suffers a decrease

to 0.616 ∗ (100 − 25.4%) = 0.460 DSC when evaluated on ljubljana with respect to the performance of the core model

trained on ljubljana.

Partition best → targets msseg → targets ljubljana → targets

Train. parameters Affine All Affine All Affine All

k (branch level) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

No adapt. (DSC) 0.498 0.592 0.619

BNA [25] +1.0% +1.8% +2.0% +1.0% +1.8% +2.0% +0.7% +0.7% +0.7% +0.7% +0.7% +0.7% -0.2% -0.2% -0.3% -0.2% -0.2% -0.3%

TENT [26] +4.8% +8.2% +8.8% +1.0% +2.5% +2.5% -1.9% -0.2% -0.2%

TTT w/ Rotation +3.4% +10.0% +8.6% -22.7% -99.4% +9.2% +2.2% +2.5% - +0.7% -5.9% - -1.9% -1.5% 0.0% -1.6% -11.0% 0.0%

TTT w/ RPL +9.4% +11.4% +10.8% +13.5% +11.8% +9.8% -0.2% +0.7% - -96.1% -83.4% - -3.9% -0.3% 0.0% -98.7% -2.6% 0.0%

TTT w/ Jigsaw +6.2% +6.8% +7.4% +12.9% +5.4% +6.8% +1.4% +2.9% - +1.7% +2.0% - -2.3% 0.0% 0.0% -0.6% 0.0% 0.0%

TTT w/ Inpainting -1.2% +5.0% +13.1% -4.6% +11.8% +6.6% +1.4% +4.7% +2.7% +1.7% +5.4% +4.1% +1.1% 0.0% 0.0% -2.4% 0.0% 0.0%

(a) Batch Normalization.

Partition best → targets msseg → targets ljubljana → targets

Train. parameters Affine All Affine All Affine All

k 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

No adapt. (DSC) 0.370 0.613 0.618

TENT [26] +4.1% +4.1% +4.1% 0.0% 0.0% -0.2% 0.0% 0.0% 0.0%

TTT w/ Rotation +24.9% +16.8% +19.7% -97.8% -80.3% -98.4% -3.3% 0.0% +1.1% +1.0% -32.3% -90.2% 0.0% -0.2% - +0.2% -4.4% -

TTT w/ RPL +50.3% +41.4% +31.9% -96.5% +27.0% +50.0% +0.8% +2.0% -0.1% -88.7% -90.9% -90.7% -0.8% 0.0% - -2.6% +0.5% -

TTT w/ Jigsaw +51.1% +51.9% - +34.3% +24.9% - 0.0% 0.0% - +0.8% 0.0% - -2.4% -2.8% - 0.0% 0.0% -

TTT w/ Inpainting +52.2% +30.5% +47.3% +20.5% +25.4% +32.4% 0.0% +0.2% +0.5% 0.0% -0.7% +0.35% +0.5% +0.6% +2.6% +0.6% -0.2% +0.2%

(b) Instance Normalization.

TABLE II: Summary of results for each method with best hyperparameters on validation set. Relative improvement in

comparison to baseline (in gray) is reported in percentage (%). Green indicates improvement and red degradation, with intensity

scale proportional to significance. ”-” corresponds to inability to train the branch in the hyperparameters range.

V. RESULTS AND DISCUSSION

This section aims at presenting the results across the domain

shifts induced by the three partitions. We follow the Eval-

uation protocol and report the DSC for the best-performing

hyperparameters on the validation set. We compare with the

adaptation of BN statistics only (BNA) [25] and entropy

minimization (TENT) [26] methods. Qualitative results are

shown on Figure 1.

Domain shift. As shown in Table I, baseline models suffer

DSC drops when tested on non-source datasets, indicating

domain shifts between source and target distributions. This

is the case for every partition and especially for best→
targets. Moreover, models trained on ljubljana or msseg
are more robust when evaluated on msseg or ljubljana,

respectively, suggesting that the knowledge transfer between

these two datasets is less impacted by the domain shift.

Finally, Table II shows that TTT applied on a per-patient basis

effectively improves model performance when the domain

shift is significant.

Hyperparameters. Table I indicates that core models with

BN layers perform more robustly without adaptation compared

to their IN counterparts, which was first proposed to preserve

instance-specific mean and covariate shift [34]. However, after

adaptation, both types of normalization layer achieve similar

DSC performance on the target datasets. In Table II, the

best-performing configuration for partition 1 shows a relative

improvement in DSC of +13.1% for BN and +52.2% for IN.

For partition 2, the improvement is +5.4% for BN and +2%

for IN. No significant improvement is observed for partition
3. This suggests that the prevailing consensus in the literature,

565

Fig. 4: Performance of application of TTT on core model trained on best with the different auxiliary tasks compared to

model without adaptation (Source), BNA [25] and TENT [26] for (a) BN core model and (b) IN core model. Hyperparameters

choice follows the proposed guidelines (1, 3, 4).

Fig. 5: best → targets partition performances for jigsaw

auxiliary task and k = 1 with validated hyperparameters.

which favors the use of BN layers in test-time adaptation and

training [2], [3], [25], [26], could be interesting to reevaluate.

In addition, the optimal stopping epoch is frequently not

validated in the literature, and several studies only present test

set performance over a limited number of iterations [4], [5],

[28]. Figure 5 illustrates that performance does not consistently

improve over time, underscoring the complexity of identifying

the optimal number of iterations to perform.

Parameters to adapt. The choice of branch location is

rarely justified in the literature. Some works plug in the branch

in the middle of the core model [2], [5] or at the end of the

feature encoder [3], [4], [6]. In semantic segmentation, the

branch is sometimes placed at the beginning of the network

[30], after the feature encoder [29], or at the end of the decoder

[28]. Without a clear trend for the choice of k, we still observe

that TTT along with BN layers works better for k = 2, 3,

suggesting that adapting deeper layers for BN networks can

be promising whereas k = 1 is a reasonable choice for IN.

Regarding the parameters to adapt, some approaches focus

solely on the affine parameters of the normalization layers,

a common practice in test-time adaptation [26], [27]. In

comparison, it is more common to adapt all parameters in test-

time training [2], [3], [5], [28], [29]. We observe that training

all parameters is generally a dangerous option since it can lead

to performance degradation or model collapse while training

only the affine parameters for both BN and IN layers is more

stable and almost always leads to better results for IN.

Guidelines. To summarize our observations, we propose

several guidelines to help with the implementation of TTT in

practice. We further assess the final performances following

our guidelines over the most severe domain shifts occurring

in our datasets on Figure 4.

Guidelines for Test-Time Training in MS

1. Applying TTT is useful only when the model is facing

a large domain shift/significant performance drop. In

other cases, it can lead to non significant gains or even

deterioration at the cost of additional computation time.

2. If the normalization of the core model can be chosen,

using Instance Normalization layers is preferable to

Batch Normalization if core model is adapted with TTT.

Prefer BN otherwise.

3. Adapting only the affine parameters is the best choice

in almost every case, leading to better and more stable

results.

4. Adapting only shallower layers with Instance Normal-

ization is preferable while adapting deeper layers with

Batch Normalization can lead to better results.

5. On average, using Relative Patch Location (RPL)

as the auxiliary task is a good choice, with consistent

improvement for both normalization layers.

566

VI. CONCLUSION

MS lesion segmentation models tend to fail when the do-

main shift is pronounced. Nonetheless, TTT can significantly

improve their performance even for single-patient adaptation.

Our work offers a comprehensive study and provides insights

into the practical challenges associated with applying TTT. We

outline both the positive and negative aspects, along with the

potential degradation that may arise from the misuse of these

techniques. We hope that our work will contribute to a deeper

investigation of the various aspects of TTT, particularly in its

utilization in real-world scenarios.

ACKNOWLEDGMENT

This work was partly supported by the Walloon Region

(Service Public de Wallonie Recherche, Belgium) under grant

n°2010235 (ARIAC by DigitalWallonia.ai). The present re-

search benefited from computational resources made available

on Lucia, the Tier-1 supercomputer of the Walloon Region,

infrastructure funded by the Walloon Region under the grant

agreement n°1910247.

REFERENCES

[1] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, “Dataset shift in machine learning,” 2008.

[2] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-
time training with self-supervision for generalization under distribution
shifts,” in Int. Conf. Mach. Learn. (ICML). PMLR, 2020, pp. 9229–
9248.

[3] Y. Liu, P. Kothari, B. Van Delft, B. Bellot-Gurlet, T. Mordan, and
A. Alahi, “Ttt++: When does self-supervised test-time training fail or
thrive?” Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 34, pp. 21 808–
21 820, 2021.

[4] Y. Gandelsman, Y. Sun, X. Chen, and A. Efros, “Test-time training
with masked autoencoders,” Adv. Neural Inf. Process. Syst. (NeurIPS),
vol. 35, pp. 29 374–29 385, 2022.

[5] D. Osowiechi, G. A. V. Hakim, M. Noori, M. Cheraghalikhani,
I. Ben Ayed, and C. Desrosiers, “Tttflow: Unsupervised test-time training
with normalizing flow,” in IEEE Winter Conf. Appl. Comput. Vis.
(WACV), 2023, pp. 2126–2134.

[6] A. Bartler, A. Bühler, F. Wiewel, M. Döbler, and B. Yang, “Mt3: Meta
test-time training for self-supervised test-time adaption,” in Int. Conf.
Artif. Intell. Stat. (AIStat). PMLR, 2022, pp. 3080–3090.

[7] S. Valverde, M. Salem, M. Cabezas, D. Pareto, J. C. Vilanova, L. Ramió-
Torrentà, À. Rovira, J. Salvi, A. Oliver, and X. Lladó, “One-shot domain
adaptation in multiple sclerosis lesion segmentation using convolutional
neural networks,” NeuroImage: Clinical, vol. 21, p. 101638, 2019.

[8] A. Ackaouy, N. Courty, E. Vallée, O. Commowick, C. Barillot, and
F. Galassi, “Unsupervised domain adaptation with optimal transport in
multi-site segmentation of multiple sclerosis lesions from mri data,”
Frontiers in computational neuroscience, vol. 14, p. 19, 2020.

[9] S. Aslani, V. Murino, M. Dayan, R. Tam, D. Sona, and G. Hamarneh,
“Scanner invariant multiple sclerosis lesion segmentation from mri,” in
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).
IEEE, 2020, pp. 781–785.

[10] T. Varsavsky, M. Orbes-Arteaga, C. H. Sudre, M. S. Graham, P. Nachev,
and M. J. Cardoso, “Test-time unsupervised domain adaptation,” in
Medical Image Computing and Computer Assisted Intervention–MICCAI
2020: 23rd International Conference, Lima, Peru, October 4–8, 2020,
Proceedings, Part I 23. Springer, 2020, pp. 428–436.

[11] R. A. Kamraoui, V.-T. Ta, T. Tourdias, B. Mansencal, J. V. Manjon,
and P. Coupé, “Deeplesionbrain: Towards a broader deep-learning gen-
eralization for multiple sclerosis lesion segmentation,” Medical Image
Analysis, vol. 76, p. 102312, 2022.

[12] S. Cerri, O. Puonti, D. S. Meier, J. Wuerfel, M. Mühlau, H. R. Siebner,
and K. Van Leemput, “A contrast-adaptive method for simultaneous
whole-brain and lesion segmentation in multiple sclerosis,” Neuroimage,
vol. 225, p. 117471, 2021.

[13] C. Walton et al., “Rising prevalence of multiple sclerosis worldwide:
Insights from the atlas of ms,” Multiple Sclerosis Journal, vol. 26, no. 14,
pp. 1816–1821, 2020.

[14] A. J. Solomon, R. T. Naismith, and A. H. Cross, “Misdiagnosis of
multiple sclerosis: Impact of the 2017 mcdonald criteria on clinical
practice,” Neurology, vol. 92, no. 1, pp. 26–33, 2019.

[15] V. Popescu et al., “Brain atrophy and lesion load predict long term dis-
ability in multiple sclerosis,” J. Neurol. Neurosurg. Psychiatry (JNNP),
vol. 84, pp. 1082–1091, 2013.

[16] C. Egger et al., “Mri flair lesion segmentation in multiple sclerosis: Does
automated segmentation hold up with manual annotation?” NeuroImage:
Clinical, vol. 13, pp. 264–270, 2017.

[17] O. Commowick, B. Combès, F. Cervenansky, and M. Dojat, “Automatic
methods for multiple sclerosis new lesions detection and segmentation,”
Frontiers in Neuroscience, vol. 17, p. 1176625, 2023.

[18] C. Zeng, L. Gu, Z. Liu, and S. Zhao, “Review of deep learning
approaches for the segmentation of multiple sclerosis lesions on brain
mri,” Frontiers in Neuroinformatics, vol. 14, p. 610967, 2020.

[19] Y. Ma, C. Zhang, M. Cabezas, Y. Song, Z. Tang, D. Liu, W. Cai,
M. Barnett, and C. Wang, “Multiple sclerosis lesion analysis in brain
magnetic resonance images: techniques and clinical applications,” IEEE
Journal of Biomedical and Health Informatics, vol. 26, no. 6, pp. 2680–
2692, 2022.

[20] E. A. AlBadawy, A. Saha, and M. A. Mazurowski, “Deep learning for
segmentation of brain tumors: Impact of cross-institutional training and
testing,” J Med Phys., vol. 45, no. 3, pp. 1150–1158, 2018.

[21] A. Malinin et al., “Shifts 2.0: Extending the dataset of real distributional
shifts,” arXiv preprint arXiv:2206.15407, 2022.

[22] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in Int. Conf. Mach. Learn.
(ICML). PMLR, 2015, pp. 97–105.

[23] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in Int. Conf. Mach. Learn. (ICML). PMLR, 2015,
pp. 1180–1189.

[24] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source
data? source hypothesis transfer for unsupervised domain adaptation,”
in Int. Conf. Mach. Learn. (ICML). PMLR, 2020, pp. 6028–6039.

[25] Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and
J. Snoek, “Evaluating prediction-time batch normalization for robustness
under covariate shift,” arXiv preprint arXiv:2006.10963, 2020.

[26] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent:
Fully test-time adaptation by entropy minimization,” in Int. Conf. Learn.
Represent. (ICLR), 2021.

[27] M. Bateson, H. Lombaert, and I. Ben Ayed, “Test-time adaptation
with shape moments for image segmentation,” in Med. Image Comput.
Comput. Assist. Interv. (MICCAI). Springer, 2022, pp. 736–745.

[28] F. Lyu, M. Ye, A. J. Ma, T. C.-F. Yip, G. L.-H. Wong, and P. C. Yuen,
“Learning from synthetic ct images via test-time training for liver tumor
segmentation,” IEEE Trans. Med. Imaging (TMI), vol. 41, no. 9, pp.
2510–2520, 2022.

[29] S. Fu, Y. Lu, Y. Wang, Y. Zhou, W. Shen, E. Fishman, and A. Yuille,
“Domain adaptive relational reasoning for 3d multi-organ segmentation,”
in Med. Image Comput. Comput. Assist. Interv. (MICCAI). Springer,
2020, pp. 656–666.

[30] N. Karani, E. Erdil, K. Chaitanya, and E. Konukoglu, “Test-time
adaptable neural networks for robust medical image segmentation,” Med.
Image Anal. (MedIA), vol. 68, p. 101907, 2021.

[31] A. Taleb et al., “3d self-supervised methods for medical imaging,” Adv.
Neural Inf. Process. Syst. (NeurIPS), vol. 33, pp. 18 158–18 172, 2020.

[32] Y. Tang et al., “Self-supervised pre-training of swin transformers for
3d medical image analysis,” in IEEE/CVF Conf. Comput. Vis. Pattern
Recogn. (CVPR), 2022, pp. 20 730–20 740.

[33] F. La Rosa et al., “Multiple sclerosis cortical and wm lesion segmen-
tation at 3t mri: a deep learning method based on flair and mp2rage,”
NeuroImage: Clinical, vol. 27, p. 102335, 2020.

[34] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

567

