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Abstract—Federated learning (FL) has garnered considerable
attention due to its privacy-preserving feature. Nonetheless, the
lack of freedom in managing user data can lead to group fairness
issues, where models are biased towards sensitive factors such as
race or gender. To tackle this issue, this paper proposes a novel
algorithm, fair federated averaging with augmented Lagrangian
method (FFALM), designed explicitly to address group fairness
issues in FL. Specifically, we impose a fairness constraint on
the training objective and solve the minimax reformulation
of the constrained optimization problem. Then, we derive the
theoretical upper bound for the convergence rate of FFALM.
The effectiveness of FFALM in improving fairness is shown
empirically on CelebA and UTKFace datasets in the presence
of severe statistical heterogeneity.

Index Terms—federated learning, group fairness, convergence
rate, augmented Lagrangian

I. INTRODUCTION

Federated learning (FL) [1] is a distributed machine learning

approach that enables model training on potentially sensitive

data from different entities without the necessity for data

sharing. This technique is promising in diverse domains such

as computer vision (CV) as it can facilitate training of models

on a large-scale, diverse set of data while preserving data pri-

vacy. However, a direct implementation of existing federated

algorithms may violate group fairness [2], which refers to

the equitable treatment of different groups in a population.

Group fairness is required by law such as in Europe [3],

enforcing that the decision making by predictive models does

not exhibit bias towards any particular sensitive group, such

as race or gender. For example, an AI model used in a hiring

process may have been trained on historical data that reflects

biased hiring patterns, leading to discriminatory outcomes for

underrepresented groups in the workforce. There are more

examples [4] that further motivate raising awareness in training

fair deep learning models.

The sources of group unfairness or bias mainly come

from dataset, which may reflect measurement or historical

bias from the annotators, and the training algorithm, which

may learn unwanted biased features from such dataset. The
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aforementioned sources also induce statistical heterogeneity.

Under severe heterogeneity, the trained model may have poor

task performance and biased model. Finding FL algorithms

that are fair and robust to statistical heterogeneity or non-

identical and independently distributed (non-iid) data is an

arduous task, and currently it is an open problem [5].

A. Contributions

Since we have little control on the clients data in FL,

efforts to mitigate bias from the federated algorithm are

important. Therefore, the focus of this paper is to improve

group fairness in binary classification tasks, involving binary

sensitive attributes, which is common in fairness literature

[6]. In particular, we propose a new federated algorithm

that is effective in reducing bias while maintaining similar

task performance as existing federated algorithms. The main

contributions are summarized below.

● We propose a fairness-aware algorithm, fair federated

averaging with augmented Lagrangian method (FFALM).

Firstly, we formulate a constrained minimization problem

on the global loss function satisfying a fairness metric.

Inspired by augmented Lagrangian method [7], we solve

the problem by leveraging the local training as a sub-

solver to find the optimal model parameters given dual

iterates. Then, the dual iterates are locally updated given

the updated model parameter, and they are aggregated

using weighted average.

● We propose a theoretical upper bound for the convergence

rate of FFALM over a nonconvex-strongly-concave objec-

tive function, which is O( 1
T 2/3 ).

● We empirically assess the proposed method on pub-

licly accessible CV datasets (CelebA and UTKFace)

containing sensitive attributes (gender and skin color

respectively) based on two common fairness metrics:

demographic parity difference (DPD) and equal oppor-

tunity difference (EOD). Experimental results show that

FFALM improves DPD by 10% and EOD by 14% in the

attractiveness prediction task, and DPD by 6% and EOD

by 5% in the youth prediction task compared to FedAvg

under severe data heterogeneity.
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II. RELATED WORK

There have been some engaging results in tackling the

fairness issues in deep-learning models. In the following, we

categorize some prior related works based on how the training

is conducted, either centralized or federated.

A. Ensuring fairness in centralized learning

In centralized learning, it is not uncommon to modify the

training framework to achieve a suitable degree of group

fairness. The authors of [8] decorrelated the input images and

the protected group attributes by using adversarial training.

Knowledge transfer techniques and multi-classifiers can also

be adopted as a debiasing method [9]. Augmenting each image

sample with its perturbed version generated from genera-

tive models can potentially reduce biases as well [10]. The

aforementioned works require additional components to the

model, thus increasing the computation cost. This might not

be suitable for FL. A possible alternative is to alter the loss

function to take into account group fairness. The authors

of [11] introduced a loss function obtained from the upper

bound of the Lagrangian based on a constrained optimization

formulation from a finite hypothesis space perspective.

B. Ensuring fairness in FL

Some prior works considered group fairness in FL. Due to

system constraints, most innovations came from the objective

formulation to include fairness or more information exchange

between the server and the clients. The example for the latter

is FairFed [12], where the client coefficients are adaptively

adjusted during the aggregation phase based on the deviation

of each client’s fairness metric from the global average. Along

the line of the objective formulation, FCFL [13] proposed a

two-stage optimization to solve a multi-objective optimization

with fairness constraints, which demands more communication

rounds. FPFL [14] utilized differential multipliers optimization

method to solve main objective by taking into account fairness

as a constraint, which is similar to this work. FedFB [15]

adjusted the weight of the local loss function for each sensitive

group during the aggregation phase. The objective formulation

of FPFL, however, is not smooth, which may hinder the

convergence of gradient-based learning. Moreover, the theoret-

ical convergence guarantee is missing for the aforementioned

works.

III. PRELIMINARIES

In this section, we introduce some mathematical notations

and group fairness notions. After that, we briefly describe the

framework of minimax FL.

A. Notations

Throughout this paper, we primarily focus on supervised

binary classification tasks with binary sensitive attributes. The

dataset is denoted as D =X×Y ×S with size ∣D∣ constituting of

an input image X , a label Y = {0,1}, and a sensitive attribute

S = {0,1}. We slightly abuse the notation of D, X , Y , and

S to represent both the set and the distribution. The datasets

can also be partitioned based on sensitive attributes, Ds0 =
X × Y × S0 and Ds1 =X × Y × S1.

Some mathematical notations are stated as follows. [N] de-

notes {1,2, ...,N}, ∥.∥ represents the �2-norm, and � denotes

the indicator function. We use W ⊆ Rd and Λ to represent the

parameter spaces of the model w and an additional learnable

training parameter λ, respectively. Denote fw ∶ X → Y
as a deep-learning model parameterized by w, taking X as

an input, and outputting the predicted label Y , and denote

qw ∶X → R
2 as the logits of the model, where the first element

corresponds to Y = 0 and the second element corresponds to

Y = 1.

B. Group Fairness Metrics

To evaluate the group fairness performance of a machine

learning model f , there are various notions based on how

likely the model predicts a favorable outcome (Ŷ = f(X) = 1)

for each group. Demographic parity (DP) [16] is commonly

used for assessing the fairness of the model. f satisfies DP if

the model prediction of favorable label is independent of S,

i.e.,

EX ∣S=0[f(X) = 1] = EX ∣S=1[f(X) = 1]. (1)

Another way to define the notion of group fairness is accuracy
parity (AP) [17]. To satisfy this notion, f conforms to the

following equality

EDs0 [�f(X)≠Y ] = EDs1 [�f(X)≠Y ]. (2)

In some use cases where the preference of users belonging to

a sensitive group is considered, it is amenable to adopt equal
opportunity (EO) [18] of positive outcomes for each sensitive

attribute as a fairness notion, mathematically written as

EX ∣S=0,Y =1[f(X) = 1] = EX ∣S=1,Y =1[f(X) = 1]. (3)

In practice, it is difficult to achieve perfect fairness imposed by

aforementioned fairness notions. To measure how close f is to

satisfy DP, we employ demographic parity difference metric(ΔDP ) on favorable label, which is defined as

ΔDP = ∣EX ∣S=0[�f(X)=1] −EX ∣S=1[�f(X)=1]∣. (4)

Similarly, the closeness measure to satisfy EO condition, equal

opportunity difference (ΔEO) is defined as

ΔEO = ∣EX ∣Y =1,S=0[�f(X)=1] −EX ∣Y =1,S=1[�f(X)=1]∣. (5)

These two closeness metrics are commonly used for assessing

group fairness in machine learning models. Since only samples

rather than the true data distribution are available, the metrics

are estimated using the samples.

C. Minimax FL Framework

For a FL system with N clients and one server, the goal is to

train a global deep learning model fw on each client datasetDi (i ∈ [N]) without sharing their datasets. In addition, an

additional learning parameter (e.g. Lagrangian dual) λ ∈ Λ
that aids the training can be exchanged between the server

and clients, and processed on the clients and the server. Its
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Fig. 1: The minimax FL framework. In each communication

round, there are four steps in FL training: 1. Broadcasting

phase 2. Local training phase 3. Client-to-server communica-

tion phase 4. Aggregation phase.

generic procedure consists of four phases. Firstly, the clients

receive the global model from the server (broadcasting phase)

and train the model on their own dataset (local training phase).

After that, the clients send their model update and the dual

parameter update to the server (client-to-server communication

phase), and the server aggregates the received updates from

each participating client to get an updated model (aggrega-

tion phase). This process is repeated until convergence or a

specified communication round, as illustrated in Fig. 1.

During local training phase, each client aims to minimize

their local risk function Fi(w,λ) to update their model.

At the same time, it maximizes the local risk function to

update λ, in contrast to the conventional FL framework.

For any regularization-based federated algorithms, the explicit

formulation for the true local risk function of the i−th client

represented by a loss function l(fw(x), y) = l(x, y;w) and a

regularization function g is given by

Fi(w,λ) ∶= E(xj ,yj)∼Di
[l(xj , yj ;w)] + g(Di;λ,w), (6)

and the corresponding empirical risk function is given by

Fi,S(w,λ) ∶= 1

∣Di∣ ∑
(xj ,yj)∼Di

l(xj , yj ;w) + g(Di;λ,w). (7)

The ultimate goal is to solve the following minimax objective

of the true global risk function F (w,λ)
min
w

max
λ

F (w,λ) ∶= N∑
i=1

piFi(w,λ), (8)

where pi is the client coefficient with ∑N
i=1 pi = 1 and pi ∈[0,1]. In FedAvg, the coefficient is set to the proportion of the

samples from each client. Since the clients only have access

to samples rather than the data distribution, the objective is

replaced with the global empirical risk function defined as

FS(w,λ) ∶= N∑
i=1

piFi,S(w,λ). (9)

IV. FFALM

We first introduce the problem formulation for FL with

group fairness constraints. Subsequently, we describe the pro-

posed algorithm to achieve the objective. Lastly, we offer the

convergence rate of the proposed algorithm.

A. Solving Group Fairness Issue

1) Problem formulation: The objective of this work is to

ensure group fairness on the FL-trained binary classification

model. We tackle the problem by enforcing fairness during the

local training. Specifically, the local training aims to minimize

the local risk function while satisfying a notion of fairness. The

strategy is to reformulate the local risk function as a sum of

the main objective, which is related to the task performance,

and the term related to fairness constraint, weighted with a

learnable λ. In this way, we can use minimax FL framework

as described in the previous section.

One of the essential requirements of minimax FL framework

is to have a smooth local risk function. Since the indicator

functions appearing in the fairness notions in Section III-B are

not differentiable functions with respect to the model parame-

ters, we need to replace all indicator functions with their corre-

sponding surrogate continuous functions. In the case of AP, the

choice of such continuous functions is readily available, which

is cross entropy loss CE(y, qw(x)) = − logσ(qw(x)y), where

σ(x) = 1
1+e−x

is a sigmoid function. This is similar to how 0-1

loss (ED[�Ŷ ≠Y ]) in the basic gradient-based learning can be

replaced with cross-entropy loss [19]. The only difference in

the formulation of AP is that it is conditioned on each sensitive

attribute.

To this end, we write the objective of the local training of

the i-th client as a constrained optimization

min
w

LS(w,Di) s.t. μ(w,Ds0
i ) = μ(w,Ds1

i ), (10)

where LS(w,D) ∶= 1
∣D∣ ∑(xj ,yj)∼D l(xj , yj ;w) and μ(w,D) ∶=

1
∣D∣ ∑(x,y)∈D CE(y, qw(x)). It is worth mentioning that we

also estimate (2) from the samples, as shown in the definition

of μ(w,D).
2) Local training phase: This problem can be approxi-

mately solved by following similar techniques from the aug-

mented Lagrangian approach [7] by treating the constraint as

a soft constraint. Specifically, it seeks a saddle solution of

an augmented Lagrangian function LS parameterized by a

suitable choice of penalty coefficient (β)

LS(wt, λt−1,Di)∶= LS(wt,Di) + β

2
Δμ(wt,Di)2

+λt−1Δμ(wt,Di), (11)

where Δμ(wt,Di) ∶= μ(wt,Ds0
i )−μ(wt,Ds1

i ) by introducing

a sub-optimizer O to seek wt such that ∥∇wLS(wt, β,Di)∥
is sufficiently small. Afterwards, λt−1 is updated to close the

infeasibility gap, and the process is repeated. If the algorithm

converges to the solution (w∗, λ∗) of (11) that satisfies second-

order sufficient conditions [7], w∗ is the global solution to

(10).
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Translating this view into FL, we can assign the sub-

optimizer O to the local training and the iteration index t to

the communication round. Hence, we can formulate the local

training of i-th client as a two-stage process

wi,t=min
w

Fi,S(w,λt−1) =min
w
LS(w,λt−1,Di) (12)

λi,t= λt−1 + ηλ,tΔμ(wt,Di). (13)

Note that in the original augmented Lagrangian method, ηλ,t
is set to β. As shown later in the experiment results section,

this proposed two-stage optimization gives more competitive

results in terms of fairness performance.

Stochastic gradient descent is used to solve (12), similar to

FedAvg. Specifically, the i-th client computes the stochastic

gradient of L(t,k)i = LS(w(t,k)i , λi,t,Bi) at communication

round t and local iteration k from its batch samples Bi sampled

from its local distribution Di as

∇wL(t,k)i = ∇w(LS(w(t,k)i ,Bi) + λΔμ(w(t,k)i ,Bi)
+β
2
Δμ(w(t,k)i ,Bi)2). (14)

3) Aggregation phase: The server receives model updates,

wi,t, as well as the dual updates, λi,t, from the clients.

Following FedAvg, the received dual update from each client

is aggregated by weighted average with the same client coef-

ficient (pi) as model aggregation

wt = N∑
i=1

piwi,t and λt = N∑
i=1

piλi,t. (15)

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 FFALM Algorithm

1: Inputs: N , {Di}Ni=1, β, ηw,t, the number of local iteration

E, and the maximum communication round T .

2: Randomly initialize the global model w0 and set λ0 = 0
on the server side

3: for t = 1 to T do
4: Broadcast wt−1 and λt−1 to all clients

5: for each i ∈ [N] do
6: w

(t,0)
i ← wt−1

7: for k = 1 to E do
8: Randomly sample the batch Bi from Di

9: Compute ∇wL(t,k−1)i from (14)

10: w
(t,k)
i ← w

(t,k−1)
i − ηw,t∇wL(t,k−1)i

11: end for
12: Compute λi,t from (13)

13: Send wi,t = w(t,E)i and λi,t to the server

14: end for
15: Update ηw,t using a LR scheduler

16: Aggregation phase to obtain wt and λt following (15)

17: end for

B. Theoretical Convergence Guarantee

The proposed algorithm can be viewed as solving a minimax

problem with FS(w,λ) = ∑N
i=1 piLS(w,λt−1,Di). We provide

the upper bound of the convergence rate based on how close

the empirical primal risk function RS(wt) ∶= maxλL(wt, λ)
is to the optimal. Before presenting the result, we list several

definitions and key assumptions.

Definition 1. Define a function h ∶ W × Λ → R. h(⋅, ⋅) is L-
smooth if it is continuously differentiable and there exists a
constant L > 0 such that for any w,w′ ∈ W , λ,λ′ ∈ R, and
ξ ∈ D,

∥(∇wh(w,λ; ξ) − ∇wh(w′, λ′; ξ)∇λh(w,λ; ξ) − ∇λh(w′, λ′; ξ))∥ ≤ L∥(
w −w′
λ − λ′ )∥ .

Definition 2. h(w, ⋅) is ρ-strongly convex if for all w ∈ W and
λ,λ′ ∈ Λ, h(w,λ) ≥ h(w,λ′) + ⟨∇λh(w,λ′), λ − λ′⟩ + ρ

2
∥λ −

λ′∥2.

Definition 3. h(w, ⋅) is ρ-strongly concave if −h(w, ⋅) is ρ-
strongly convex.

Assumption 1. For randomly drawn batch samples ξ
and for all i ∈ [N], the gradients ∇wFi,S(w,λ; ξ) and∇λFi,S(w,λ; ξ) have bounded variances Bw and Bλ re-
spectively. If gi,w(w,λ∣ξ) ∶= ∇wFi,S(w,λ; ξ) is the un-
biased local estimator of the gradient, Eξ[∥gi,w(w,λ∣ξ) −∇wFi,S(w,λ)∥2] ≤ B2

w, and the case for λ is similar but
bounded by B2

λ.

Assumption 2. For all i ∈ [N], the stochastic gradient of
Fi,S(w,λ) is bounded by a constant D. Specifically, for all
w ∈ W and λ ∈ Λ, we have ∥∇wFi,S(w,λ)∥ ≤D.

Definition 4. A function h(⋅, λ) satisfies the PL condition if
for all λ, there exists a constant μ > 0 such that, for any
w ∈ W , 1

2
∥∇h(w)∥2 ≥ μ(h(w) −minw′∈W h(w′)).

Definition 1 and Assumption 1 are commonly used for fed-

erated learning [20]. Definition 3 for h = L is satisfied

because it is a linear function. Assumption 2 is satisfied when

the gradient clipping method is employed. Lastly, the PL-

condition of L(⋅, λ) is shown to hold on a large class of neural

networks [21].

For simplicity, we assume full participation and the same

number of local iterations for each client. The minimum

empirical primal risk is R∗S =minw RS(w). The upper bound

of the convergence rate of FFALM is given by the following

theorem.

Theorem 1. Define κ = L
μ

. Let ηw,t = 2
μt

and ηλ,t =
16κ2

μt2/3
. Given that Assumption 1 and Assumption 2 hold,

each Fi,S(w,λ) is L-smooth, each Fi,S(⋅, λ) satisfies μ-PL
condition, and each Fi,S(w, ⋅) is ρ-strongly concave, we have

ERS(wT+1) −R∗S = O(Γ +B
2
w +B2

λ

T 2/3
),
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after T communication rounds, where Γ ∶= F ∗S −∑N
i=1 piF

∗
i,S , F ∗S ∶= minw maxλ FS(w,λ) and F ∗i,S ∶=

minw maxλ Fi,S(w,λ).
Proof: Due to space constraints, the proof is omitted, and

can be found in the Arxiv version [22].

Note that Γ quantifies statistical heterogeneity of the FL

system. In the case of strong non-iid, the saddle solution of the

global risk function is significantly different from the weighted

sum of each saddle local risks.

V. EMPIRICAL STUDY

In this section, we evaluate the effectiveness of FFALM

based on three important performance metrics: the prediction

accuracy, DPD, and EOD on real-world datasets. We provide

the results and comparison with other existing FL algorithms.

A. Datasets and Tasks

We want to investigate how the classification model trained

in FL, which is designed to further increase the prediction

accuracy on specific domain, influences the fairness perfor-

mance. In particular, two datasets from CV domain are used

in this study: CelebA [23], and UTKFace [24], and ResNet-18

[25] models are used for both datasets. The task of CelebA

dataset is a binary classification for predicting attractiveness

in images with gender as the sensitive attribute, and the task

of UTKFace dataset is to determine whether the age of a

person from an image is above or below 20 with skin color

as the sensitive attribute. The favorable labels for CelebA and

UTKFace are attractive and age below 20 respectively. Each

dataset is split into three categories: training set, validation set,

and testing set.

B. FL Setting

There are 10 clients participating in FL training. We synthet-

ically simulate statistical heterogeneity by introducing label

skews, which can be implemented using Dirichlet distribution

parameterized by α on the proportion of samples for a given

class and client on a given centralized samples [26]. The case

of severe data heterogeneity is investigated in this experiment

by setting α = 0.3. Each experiment is repeated 10 times with

different seeds. The FL training ends after 70 communication

rounds.

C. Baselines

The following are the baselines used for the comparison

study.

1) FedAvg. It is the universal baseline in FL which trains

the model locally without considering fairness and ag-

gregates all model updates by weighted average.

2) FairFed [12]. The server receives the local DP metrics,

and based on them and the global trend, the server

adjusts the value of pi adaptively before averaging the

model updates.

3) FPFL [14]. It enforces fairness by solving the con-

strained optimization on the sample loss function LS

with two constraints. These constraints ensure that the

absolute difference between the overall loss and the

loss of each sensitive group (δμ0,i = [L(wt,Di) −
μ(wt,Ds0

i )]+ and δμ1,i = [L(wt,Di) − μ(wt,Ds1
i )]+,

where [x]+ ∶= max(0, x)) does not deviate from a spe-

cific threshold. We set this threshold to be zero. Hence,

we reformulate it as a local constrained optimization

with

g(Di;λ,w)= λ0δμ0,i + λ1δμ1,i + β

2
(δ2μ0,i + δ2μ1,i).

(16)

TABLE I: Comprehensive list of hyperparameter values used

in the experiments on CelebA and UTKFace datasets for

baselines and FFALM.

Hyperparameters Algorithms Values

Batch size all 128
Gradient clipping on w all 1.0
LR of w decay step size all 50
LR or w decay step factor all 0.5
ηw,0 all 0.05
β FairFed 0.5
β FPFL 5.0
ηλ,t FPFL 0.5
b FFALM 1.05
β FFALM 2.0
ηλ,0 FFALM 2.0
λ0 FFALM and FPFL 0.0

D. Implementation Details

The hyperparameters used in the experiment for FFALM

and all baselines are shown in Table I. Following the setup

from augmented Lagrangian method, we slowly increase the

learning rate of λ by a factor b per communication round for

FFALM. All algorithms have the same learning rate scheduler

of w which is realized by a constant-step decay factor.

TABLE II: Comparison of the performance of the proposed

algorithm across baselines on CelebA and UTKFace datasets.↑ indicates the larger the value the better and ↓ indicates the

smaller the value the better.

Algorithm Acc ↑ (%) ΔDP ↓ (%) ΔEO ↓ (%)

CelebA

FedAvg 74.66 39.54 21.11
FairFed 73.27 37.36 19.50
FPFL 74.58 30.87 9.71
FFALM 74.06 28.92 6.82

UTKFace

FedAvg 86.22 13.07 19.12
FairFed 79.54 10.80 17.92
FPFL 86.73 7.97 15.85
FFALM 86.02 6.60 13.87
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(a) (b)

Fig. 2: Learning curves on validation set for (a) CelebA dataset and (b) UTKFace dataset

E. Results

The training curves of all algorithms are shown in Figure

2. The curves show how accuracy, DPD, and EOD change as

the communication round increases. It can be observed that

FFALM shows similar improvement in accuracy as FedAvg

while improving the fairness performance.

The experimental results evaluated on the testing set are

presented in Table II. For celebA dataset, FFALM improves

DPD by almost 11% and EOD by roughly 14% compared to

FedAvg. FFALM outperforms other baselines in fairness per-

formance with minimal accuracy loss. For UTKFace dataset,

FFALM improves DP difference performance by about 6%,

and reduces EO gap by 6% compared to FedAvg. The overall

fairness improvement is also apparent on FFALM in UTKFace

dataset compared with different baselines.

VI. CONCLUSION

In this paper, we proposed FFALM, an FL algorithm based

on augmented Lagrangian framework to handle group fairness

issues. It leveraged accuracy parity constraint for smooth loss

formulation of minimax FL framework. It was shown that the

theoretical convergence rate of FFALM is O( 1
T 2/3 ). Experi-

ment results on CelebA and UTKFace datasets demonstrated

the effectiveness of the proposed algorithm in improving

fairness with negligible accuracy drop under severe statistical

heterogeneity.
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