
Fast Convergence PINNs Using Pseudo-Density
Embedding: A study on Solid Mechanics

Melvin Wong1*, Jiao Liu1*, Ge Jin2*, Kunpeng Li1,3, Doan Ngoc Chi Nam4

1College of Computing & Data Science, Nanyang Technological University (NTU), Singapore
2School of Aerospace Engineering, Beijing Institute of Technology, Haidian, Beijing, China

3School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), Singapore
4 Singapore Institute of Manufacturing Technology (SIMTech), A*STAR, Singapore

{wong1357, jiao.liu}@ntu.edu.sg, jinge52293@gmail.com, kunpeng.li@ntu.edu.sg, doanncn@simtech.a-star.edu.sg

Abstract—Physics-informed neural networks (PINNs) have
shown the potential to incorporate physical laws into machine
learning models. However, their widespread adoption is limited
due to significant convergence issues, particularly on complex
geometries. This paper presents a first study on training a model
in the form of a pseudo-density embedding that encodes geometry
information and subsequently extending from this baseline model
in future PINN training process. Our study on complex geometry
involving the science of solid mechanics demonstrates that such
an embedding not only streamlines preprocessing tasks but
also produces precise physical outcomes and notably accelerates
convergence compared to conventional PINNs. Empirical findings
indicate that our proposed method, pseudo-density embedding
PINN (PD-PINN), achieves a significant 3% to 8% reduction
in error rates within a defined computational budget on a
linear elastic solid mechanics example, surpassing performance
benchmarks set by traditional methodologies.

Index Terms—Physics-informed neural networks, solid me-
chanics, linear elasticity, pseudo-density embedding

I. INTRODUCTION

The simulation and modeling of physical systems have long

been central to numerous scientific and engineering domains

[1]. With the recent advancements in deep neural networks,

researchers are exploring the application of these networks

in these domains [2]. Among the promising methods for

such tasks, physics-informed neural networks (PINNs) have

received considerable attention [3]. A distinctive feature of

PINNs is their ability to integrate the governing physics laws

described by partial differential equations into the learning

objectives of the neural networks. This ensures that their

outputs are consistent with the underlying governing physics.

Although PINNs have been widely studied in recent years,

they still face the challenge of slow convergence, especially

when dealing with irregular geometry boundaries [4]. The

performance of PINNs can be improved by designing effective

training algorithms [5]. Over the past five years, several

such algorithms have been proposed, broadly categorized

into loss re-weighting schemes [6], [7], collocation points

re-sampling [8], [9], and curriculum training [10]. In this

paper, we introduce a new category of training algorithm for

linear elastic solid mechanics called pseudo-density embed-

ding PINN (PD-PINN). While traditional methods characterize

*Equal contribution as the first author

the shape of a geometry only by sampling points at its

boundaries, we propose using a pseudo-density embedding

network as a baseline model makes complementary use of

pseudo-density fields inside and outside the geometry to pro-

vide additional global geometric information. This additional

geometric information enhances the ability of PINN to handle

irregular geometric problems and significantly accelerates its

convergence performance. Additionally, we highlight that the

performance of PINNs is highly sensitive to hyperparameter

settings, especially the loss weights for boundary conditions

[5]. This often necessitates users of PINN to make multiple

adjustments to loss weights to achieve an optimal predictive

ability for the model. In contrast, our method alleviates the

need for explicitly setting these loss weights for boundaries not

subject to forces or hinge joints, simplifying the specification

of boundary conditions. Moreover, we also found that the

proposed PD-PINN can simplify the data preprocessing by

allowing the utilization of collection points sampled only

in a regular geometric space and the traction boundaries,

thereby avoiding the need to sample at the irregular traction-

free boundaries. While various methodologies akin to pseudo-

density embedding have been introduced within the realm

of topology optimization [11], our study demonstrates that

deploying a pseudo-density embedding baseline model yields

favorable outcomes even in the context of forward problems.

The remainder of the paper is organized as follows. Section

II provides the technical background on linear elastic solid

mechanics and PINNs. The proposed method is elaborated in

Section III. Section IV presents the results of experimental

studies. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Governing Equations in Linear Elastic Solid Mechanic

The linear elastic problem is a fundamental and extensively

studied issue in solid mechanics [12]. Here the 2-dimensional

problems are considered in this paper. The governing equations

for linear elastic problems are described as follows:

σij,j + fi = 0, (1)

σij = λδijεkk + 2μεij , (2)

574

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00112

εij =
1

2
(ui,j + uj,i), (3)

x ∈ Ω,

i, j, k ∈ {1, 2},
where σij is the Cauchy stress tensor, εij is the strain tensor,

ui is the displacement, fi is the body force per unit mass,

δij is the Kronecker delta function, and λ and μ are the Lamé

constants. Note that both σij , εij and ui are written in Einstein

notation and are functions of a point x inside of the geometry

Ω. The governing equations above are closed by the following

boundary conditions:

ui = ūi, x ∈ Γu,

σijnj = f̄i, x ∈ Γf ,
(4)

where ūi and f̄i are the displacement and force at the corre-

sponding boundaries Γu and Γf , respectively, and nj is the

unit outward normal vector on the corresponding boundaries

Γf .

B. Physics-Informed Neural Networks

Following the function provided by Raissi et al. [3], in this

subsection, we introduce how to use the PINN to calculate the

physical dynamics of linear elastic solid mechanics. We use a

fully connected neural network to approximate the solutions

of the displacements and record them as ûi, i ∈ {1, 2}. Then,

following the governing equations (2) and (3), we can calculate

the approximated Cauchy stress tensor σ̂ij and strain tensor ε̂ij
using automatic differentiation, respectively. Based on these

approximations, the PINN loss function is then defined as the

composition of a PDE loss component (Lpde) and a boundary

condition loss component (Lbc):

Lpinn = wpdeLpde + wbcLbc, (5)

Lpde = ||σ̂ij,j + fi||2Ω, (6)

Lbc = ||ûi − ūi||2Γu
+ ||σ̂ijnj − f̄i||2Γf

, (7)

where wpde and wbc are the weights of the corresponding

losses. Note that the PDE and boundary condition loss com-

ponents are defined over a continuous domain. In particular, it

is hard to directly calculate them since they are intractable.

Therefore, we need to estimate the loss components using

Monte Carlo based on a set of collection points. For linear

elastic solid mechanics, we need three subsets of collection

points, denoted as DΩ = {x(l)Γu
}NΩ

l=1, DΓu
= {x(l)

Γu
}NΓu

l=1 , and

DΓf
= {x(l)

Γf
}NΓf

l=1 . These three subsets contain collection

points in the geometry Ω, on the boundary Γu, and on

the boundary Γf , respectively. Meanwhile, for the points in

DΓf
, the corresponding unit outward normal vectors should

also be provided. Based on the loss components estimated

according to the above subsets, gradient-based optimizers such

as stochastic gradient descent and Adam can train the PINN.

Fig. 1. The PD-PINN architecture comprises two neural networks: the pseudo-
density embedding network, which describes the geometry, and the second
network, which predicts displacement solutions, strain tensors, and the Cauchy
stress tensor. PD-PINN training involves incorporating the pseudo-density
embedding network into the overall training process.

III. PROPOSED METHOD

In this section, we present the details of PD-PINN. We begin

by outlining the training process for the pseudo-density em-

bedding network employed to describe the geometry. We then

present the training algorithm for incorporating the pseudo-

density embedding baseline model into the PINN.

A. Pseudo-Density Embedding Network

During the pseudo-density embedding baseline model train-

ing, we assume that a regular geometric space Ω+ is capable

of covering the original geometry Ω. Subsequently, we sample

a set of collection points DΩ+ = {(x(l))}NΩ+

l=1 within Ω+.

Each collection point is associated with a corresponding

label ρ(l), indicating whether the point x(l) resides in Ω. If

ρ(l) = 1, then x(l) is located inside Ω; otherwise, it is situated

outside Ω. Thus, we can train the pseudo-density embedding

baseline model ρ̂(x) = Sigmoid(C · tθ(x)) using the dataset

Dρ
Ω+ = {(x(l), ρ(l))}NΩ+

l=1 to predict the inclusion status of a

point within Ω, where tθ(x) is a multilayer perceptron and C
is a predefined parameter.

It is important to note that DΩ+ can be easily generated

based on any conventional geometry representation, such as

mesh, level set function, or point cloud. Furthermore, this

baseline model ρ̂(x) itself can be considered as a type of

geometry representation.

B. Training of the PD-PINN

Similar to conventional PINNs, we use a neural network

û to approximate the displacement solution and subsequently

provide the predicted strain tensor ε̂ij using automatic differ-

entiation. In contrast to the conventional PINNs, the predicted

Cauchy stress tensor is obtained by incorporating the pseudo-

density embedding baseline model into (2), i.e.,

σ̂+
ij = ρ̂(λδij ε̂kk + 2με̂ij), (8)

and the equilibrium equation (1) is modified as:

σ+
ij,j + ρ̂fi = 0, (9)

575

Fig. 2. An example of a linear elastic solid mechanic.Fig. 2. An example ooof a

(a) Conventional PINN (b) PD-PINN

Fig. 3. The boundaries of the conventional PINN and the PD-PINN. The
conventional PINN defines the boundary conditions at the geometry bound-
aries (highlighted in green). In contrast, we use the design space boundaries
in PD-PINN.

Then, the loss of the PD-PINN is defined as follows:

LPD−PINN = wpde+Lpde+ + wbc+Lbc+ , (10)

Lpde+ = ||σ̂+
ij,j + ρ̂fi||2Ω+ , (11)

Lbc+ = ||ûi − ūi||2Γu
+ ||σ̂+

ijnj − f̄i||2Γ+
f

, (12)

where Γ+
f contains all of the points on the traction force

boundaries of Ω and the traction-free boundaries of Ω+.

Note that the loss function LPD−PINN of the PD-PINN

is defined over a continuous region and can be estimated

using Monte Carlo. To this end, three sets of collection points,

i.e., DΩ+ , DΓu
, and DΓ+

f
, should be sampled in Ω+, Γu and

Γ+
f , respectively. Note that, since Ω+ is assumed as a regular

geometric space, sampling DΩ+ and DΓ+
f

is much simpler and

convenient than the conventional PINNs which need to sample

in the complex geometry Ω and both complex traction-free and

traction force boundaries Γf .

The structure of the PD-PINN is summarized in Fig. 1, and

the training process of the PD-PINN is described as follows:

1) Sample three datasets DΩ+ , DΓu
, and DΓ+

f
by using

mesh grid, and generate Dρ
Ω+ based on DΩ+ based on

the calculating geometry.

2) Train the pseudo-density embedding baseline model

ρ̂(x) based on Dρ
Ω+ .

3) Train the PD-PINN based on the loss defined in (10).

IV. EXPERIMENTS AND DISCUSSION

To validate the effectiveness of the proposed PD-PINN,

we perform a comparative analysis with a conventional PINN

using the example depicted in Fig. 2. This illustration presents

a complex geometry featuring linear elastic material, where a

force is applied to the right boundary, and zero displacements

are applied to the left boundary. The material properties are

TABLE I
ERROR COMPARISON BETWEEN CONVENTIONAL PINN AND PD-PINN.

Method ε11 ε12 ε22 σ11 σ12 σ22

Conventional PINN 5.54% 1.33% 3.20% 5.77% 1.14% 0.47%

PD-PINN C=0.1 0.89% 0.54% 0.75% 0.16% 0.54% 0.12%

PD-PINN C=1.0 0.83% 0.43% 0.39% 0.09% 0.39% 0.06%

specified as Young’s modulus of E = 1 and a Poisson’s ratio

of ν = 0.3, yielding Lamé parameters λ and μ calculated as

λ = Eν
(1+ν)(1−ν) and μ = E

2(1+ν) in 2-D cases. We assume fi
is uniformly set to 0 for simplicity. The ground truth of the

example is obtained using a commercial finite element solver,

specifically Abaqus.

For PD-PINN, both the pseudo-density embedding baseline

model and the displacement approximation network are im-

plemented as multilayer perceptrons, with structures set to

“(x)-30-30-ρ̂” and “(x)-30-30-30-(û1, û2)”, respectively. The

conventional PINN also adopts a multilayer perceptron archi-

tecture, configured as “(x)-30-30-30-(û1, û2)”. We adopted the

same as [13] with the first layers of all the aforementioned

neural networks incorporating Fourier feature mappings. Con-

cerning the loss function of PD-PINN, both wpde+ and wbc+

are set to 1. Regarding the conventional PINN, wpde and

wbc are set to 0.5 and 1, respectively, as suggested that the

boundary condition loss should be assigned a larger weight [5].

We employed a cosine scheduler and the Adam optimizer with

a learning rate ranging from 5e-3 to 1e-4 for both PD-PINN

and conventional PINN. All methods are trained for 500K

epochs to observe convergence and ensure training stability.

In the initial demonstration, we highlight the streamlining

effect that PD-PINN introduces to the preprocessing phase.

Illustrated in Fig.3(a), the conventional PINN necessitates the

sampling of points along the boundaries of the geometry

(indicated by the green lines). Additionally, it requires the

computation of norm vectors corresponding to these sampled

points. Notably, the geometry’s traction-free boundaries ex-

hibit irregularities, making point sampling and norm vector

computation intricate. In contrast, as depicted in Fig.3(b), PD-

PINN simplifies these procedures by focusing solely on the

boundaries of the design space. As a result, we have reduced

the complexity of the sampling process.

Table I presents the errors in the predicted values and

the ground truth after 500K training steps. Specifically, we

provide the errors for components of the strain tensor and

the Cauchy stress tensor, namely ε11, ε12, ε22, σ11, σ12, and

σ22. To demonstrate the influence of the hyperparameter C,

the results obtained by PD-PINN under the conditions of both

C = 0.1 and C = 1.0 are summarized. It can be observed

from Table I that PD-PINN can achieve a 3% to 8% reduction

(on average) in the error rates for various strain and stress

components. These results exhibit a substantial improvement

over conventional PINN. To further illustrate the effectiveness

of PD-PINN, we present the predicted distribution map of ε11
in Fig. 4. It can be observed that, compared with conventional

PINN, the predictions provided by PD-PINN with C = 1.0
closely align with the ground truth obtained from finite ele-

ment analysis. Fig. 5 also depicts the convergence trends of

576

(a) FEM (b) Conventional PINN (c) PD-PINN with C=0.1 (d) PD-PINN with C=1.0

Fig. 4. The distribution map of the stress ε11 (top-row) and the strain σ12 (bottom-row) provided by the finite element method (i.e., the ground truth),
conventional PINN, the PD-PINN with C = 0.1, the PD-PINN with C = 1, and .

(a) Strain Error ε12 (b) Stress Error σ12

Fig. 5. The convergence trends of the conventional PINN, the PD-PINN with
C = 0.1, and the PD-PINN with C = 1 on ε12 and σ12.

the errors on ε12 and σ12 for conventional PINNs, PD-PINN

with C = 0.1, and PD-PINN with C = 1.0. It is evident

that, in the early stage, PD-PINN with C = 0.1 exhibits the

fastest convergence. Although PD-PINN with C = 1.0 initially

demonstrates slower convergence than C = 0.1, it achieves

lower errors than conventional PINNs after approximately

130K epochs. These results underscore the effectiveness of

the proposed PD-PINN.

V. CONCLUSION AND FUTURE DIRECTION

The paper introduces PD-PINN, a new approach for linear

elastic solid mechanics in the context of PINNs. It utilizes

a pseudo-density embedding baseline model to efficiently

represent boundary features and incorporate global geometric

information, speeding up training. PD-PINN removes the

need for explicit loss weight settings for traction-free bound-

aries, simplifying boundary condition specification. Notably,

it allows the use of regular geometric space and traction

boundaries for sampling collection points, eliminating the need

for irregular boundary sampling. This improves preprocessing

and demonstrates superior convergence compared to traditional

PINNs in a linear elastic solid mechanics example.

ACKNOWLEDGMENT

The authors would like to express our deep gratitude to

individuals, especially Professor Yew-Soon Ong, Dr. Jian

Cheng Wong, Dr. Abhishek Gupta, and Dr. Chi Chun Ooi,

for their expertise and useful critiques in this research

work. This research is partly supported by the Distributed

Smart Value Chain programme which is funded under the

Singapore RIE2025 Manufacturing, Trade and Connectivity

(MTC) Industry Alignment Fund-Pre-Positioning (Award No:

M23L4a0001), and the College of Computing & Data Science,

Nanyang Technological University (NTU).

REFERENCES

[1] D. W. Heermann and D. W. Heermann, Computer-simulation methods.
Springer, 1990.

[2] M. Raissi, “Deep hidden physics models: Deep learning of nonlinear par-
tial differential equations,” The Journal of Machine Learning Research,
vol. 19, no. 1, pp. 932–955, 2018.

[3] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational physics, vol. 378, pp. 686–707, 2019.

[4] J. C. Wong, P.-H. Chiu, C. Ooi, M. H. Dao, and Y. Ong,
“Lsa-pinn: Linear boundary connectivity loss for solving pdes
on complex geometry,” 2023 International Joint Conference on
Neural Networks (IJCNN), pp. 1–10, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:256598217

[5] S. Wang, S. Sankaran, H. Wang, and P. Perdikaris, “An expert’s
guide to training physics-informed neural networks,” arXiv preprint
arXiv:2308.08468, 2023.

[6] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating
gradient flow pathologies in physics-informed neural networks,” SIAM
Journal on Scientific Computing, vol. 43, no. 5, pp. A3055–A3081, 2021.

[7] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[8] M. A. Nabian, R. J. Gladstone, and H. Meidani, “Efficient training of
physics-informed neural networks via importance sampling,” Computer-
Aided Civil and Infrastructure Engineering, vol. 36, no. 8, pp. 962–977,
2021.

[9] A. Daw, J. Bu, S. Wang, P. Perdikaris, and A. Karpatne, “Rethinking
the importance of sampling in physics-informed neural networks,” arXiv
preprint arXiv:2207.02338, 2022.

[10] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney,
“Characterizing possible failure modes in physics-informed neural net-
works,” Advances in Neural Information Processing Systems, vol. 34,
pp. 26 548–26 560, 2021.

[11] J. Yin, Z. Wen, S. Li, Y. Zhanga, and H. Wang, “Dynamically configured
physics-informed neural network in topology optimization applications,”
arXiv preprint arXiv:2312.06993, 2023.

[12] P. L. Gould, Introduction to linear elasticity. New York: Springer, 1994,
vol. 2. [Online]. Available: https://doi.org/10.1007/978-1-4614-4833-4

[13] J. Cheng Wong, C. Ooi, A. Gupta, and Y.-S. Ong, “Learning in
sinusoidal spaces with physics-informed neural networks,” IEEE Trans-
actions on Artificial Intelligence, pp. 1–15, 2022.

577

