
Fast-Converging Decentralized ADMM for
Consensus Optimization

1st Jeannie He
Div. of Info. Science and Engineering

KTH Royal Institute of Technology
Stockholm, Sweden

jeannie@kth.se

2nd Ming Xiao
Div. of Info. Science and Engineering

KTH Royal Institute of Technology
Stockholm, Sweden

mingx@kth.se

3rd Mikael Skoglund
Div. of Info. Science and Engineering

KTH Royal Institute of Technology
Stockholm, Sweden

skoglund@kth.se

Abstract—For its well-established convergence properties and
applicability to various optimization problems, the alternating
direction method of multipliers (ADMM) has been at the center
of several research fields. When applied to distributed problems
such as consensus optimization, ADMM is typically implemented
in a centralized manner. Such implementations are, however,
discouraged for e.g. their dependency on the location and
capacity of the central node. While there are decentralized
alternatives, these implementations are either computationally
and communication-wise expensive or slow. This is because
existing decentralized alternatives require all worker nodes to
either replicate the work of synchronizing the outputs from
all nodes or execute their tasks in sequence. To address this
problem, we propose a fast-converging decentralized ADMM
(FCD-ADMM) algorithm. Through theoretical analysis, we prove
the convergence properties of FCD-ADMM and show that FCD-
ADMM can converge faster than its centralized alternative with-
out sacrificing accuracy. As shown in our numerical experiments,
FCD-ADMM can converge to the same or better solution faster
than several state-of-the-art alternatives.

Index Terms—Alternating Direction Method of Multipliers
(ADMM), decentralized optimization, distributed optimization,
consensus optimization, convergence rate.

I. INTRODUCTION

The alternating direction method of multipliers (ADMM) is

a well-known algorithm with established convergence prop-

erties. Amongst the areas applicable to ADMM, one area is

distributed systems, where ADMM is typically used as the

standard tool for solving the following optimization problem:

minF (x) =min

N∑
i=1

fi(xi),

s.t. xi − z = 0, ∀i = 1, 2, . . . , N,

(1)

where fi(xi) : R
n → R is the local loss function at node i =

1, . . . , N , and xi ∈ R
n is the local primal variable minimizing

fi(xi) at node i; x = [x1, . . . , xN] is the concatenation of

the primal variables at all nodes; and z ∈ R
n is the global

variable shared by the nodes [1]. This is a typical consensus

optimization problem definition applicable to e.g. classification

problems using data from smart devices and cost minimization

challenges in smart grids.

By introducing a dual variable yi ∈ R
n and a step size

ρ > 0, one can iteratively solve (1) through the following⎧⎪⎪⎨
⎪⎪⎩
xk+1
i = argminx fi(x) +

〈
yki , x− zk

〉
+ ρ

2

∥∥x− zk
∥∥2 ,

yk+1
i = yki + ρ

(
xk+1
i − zk

)
,

zk+1 = 1
N

∑
i

(
xk+1
i +

yk+1
i

ρ

)
.

(2)

As in [2]–[10], the algorithm can be implemented by letting

nodes i compute and send the local variables (xk+1
i , yk+1

i) to

a central node, which will then compute and send the global

variable zk+1 to the nodes [1]. The corresponding algorithm

is henceforth referred to as the classical centralized ADMM

(CC-ADMM).

Given the disadvantages of centralized ADMM implemen-

tations (e.g. high bandwidth demand [11], high dependency

on the capacity and location of the central node [12], and

high risk of single point failures [13]), the authors in [14]–

[18] proposed algorithms to achieve decentralized ADMM

by letting the worker nodes take over the responsibility for

synchronizing outputs. Since the responsibility is replicated

rather than shared, these algorithms suffer from replicated

work as well as a high dependency on the capacity and

locations of the worker nodes.

As solutions, Random Walk ADMM (RW-ADMM) [19],

Incremental ADMM (I-ADMM) [20], and Parallel Ran-

dom Walk ADMM (PW-ADMM) [21] achieve decentralized

ADMM by letting the worker nodes operate in sequence,

except that PW-ADMM has multiple updating threads working

in parallel, each with its own version of zk. Due to their

reliance on sequential operations, these algorithms have the

disadvantage of slow convergence.

A. Contribution

From the above, we can see that existing decentralized

ADMM algorithms have the disadvantage of requiring all

nodes to either aggregate the outputs from all nodes on their

own or execute all of their tasks in sequence. Given the

importance of computational and communication efficiency

as well as fast decision-making, we have proposed a fast-

converging decentralized ADMM algorithm (FCD-ADMM)

to address this problem. In this algorithm, we introduce a

shared variable zki . Using this shared variable zki , we make it

580

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00114

possible for the nodes to split rather than replicate the work of

synchronizing the outputs and we enable fast convergence by

letting the worker nodes compute (xk
i , y

k
i) in parallel as well

as by removing the need to wait with the computation of zk

until a master node has received and confirmed the receipt of

(xk
i , y

k
i) from all nodes in the supporting network. This is what

differentiates our FCD-ADMM from the aforementioned al-

gorithms. Compared to existing algorithms, our FCD-ADMM

has the following advantages:

1) Fast convergence to optimal solution - As will be shown

in our numerical experiment results, our FCD-ADMM

has converged faster than CC-ADMM by yielding the

same outputs in a shorter time. As mentioned earlier,

this is because, unlike CC-ADMM, our FCD-ADMM

does not require the computation of zk to start after

a master node has received and verified the receipt of

(xk
i , y

k
i) from all worker nodes. Aside from converging

faster than CC-ADMM, our FCD-ADMM also yielded

the same or better optimal object value than I-ADMM,

RW-ADMM, and PW-ADMM. Again, this is expected

because, unlike these algorithms, FCD-ADMM lets the

nodes collectively compute zk based on the local vari-

ables that they have computed in parallel.

2) Scalability - As will be shown in our theoretical analysis,

the computational and communication cost with respect

to the number of nodes N in the supporting network is,

for each node in each iteration of FCD-ADMM, given by

O(N). Thus, our algorithm is scalable in that it allows

the supporting network to grow without increasing the

computing power or bandwidth demand.

II. PROPOSED ALGORITHM

Consider a network with nodes i = 1, . . . , N , where the

expected time for computing xk
i and yki is the same for all

nodes i and node i is connected to its neighbor (i mod N)+1.

Inspired by [20], we introduce a variable zk
ikj

defined as

zkikj
= zkik−1

+
1

N

⎡
⎣
⎛
⎝xk

ikj
+

yk
ikj

ρ

⎞
⎠−

⎛
⎝xk−1

ikj
+

yk−1
ikj

ρ

⎞
⎠
⎤
⎦ , (3)

for j = 1, 2, . . . , N , where ik−1 = ikj−1,

zkik0
=

1

N

N∑
j=1

⎛
⎝xk−1

ikj
+

yk−1
ikj

ρ

⎞
⎠ , (4)

and ikj is the index of the jth node to contribute to the

computation of zk
ikN

by computing and sending zk
ikj

to node

ikj+1. While this can be achieved by both ikj = j and

ikj = ((j − k) mod N) + 1 (5)

as they both give ikj+1 = (ikj mod N) + 1, we note that only

(5) also gives

ik+1
1 = ikN . (6)

Algorithm 1 FCD-ADMM at node i

1: Input: ρ, x0
i , y0i , z0

2: for k = 1,2,... do
3: set xk

i according to (2)

4: set yki according to (2)

5: if i �= ik1 then
6: wait for zki−1

7: end if
8: set zki according to (3)

9: send zki to node (i mod N) + 1
10: if i �= ikN then
11: wait for zk

12: if i �= ikN−1 then
13: forward zk to node (i mod N) + 1
14: end if
15: end if
16: end for

This means that if zk = zk
ikN

, then enforcing (5) instead of

ikj = j can reduce the time to complete iteration k + 1 by

making it possible for node with the jth access to zk
ikN

to be

the jth node to contribute to the computation of zk+1. To show

that zk = zk
ikN

, we note that (3) - (5) give

zkikN
= zkik0

+

N∑
j=1

1

N

⎡
⎣
⎛
⎝xk

ikj
+

yk
ikj

ρ

⎞
⎠−

⎛
⎝xk−1

ikj
+

yk−1
ikj

ρ

⎞
⎠
⎤
⎦

=
1

N

N∑
j=1

⎛
⎝xk−1

ikj
+

yk−1
ikj

ρ

⎞
⎠ =

1

N

N∑
i=1

(
xk
i +

yki
ρ

)

= zk.
(7)

Hence, we can replace the computation of zk in (2) with

the computation of zk
iNk in accordance with (3) - (5). The

resulting algorithm is called Fast-Converging Decentralized

ADMM (FCD-ADMM). The pseudo-code can be found in

Algorithm 1.

For illustration, Fig. 1 shows the flow of CC-ADMM and

FCD-ADMM in a network of 3 worker nodes. As shown in

the figure, both FCD-ADMM and CC-ADMM start with all

worker nodes i computing x1
i and y1i in parallel. However,

while CC-ADMM continues with all worker nodes i sending

x1
i and y1i to the central node to get z1 in return; FCD-ADMM

continues with, as per (5), node i11 = ((1−1) mod 3)+1 = 1
computing and sending z11 to node i12 = ((2 − 1) mod 3) +
1 = 2, and so on until z1 = z1

i1N
= z1

i13
is computed by

node i13 = ((3 − 1) mod 3) + 1 = 3. Moreover, while z1 is

broadcasted in CC-ADMM by the central node, this variable is

forwarded in FCD-ADMM, as per (6), from node i21 = i13 = 3
to node i22 = ((2 − 2) mod 3) + 1 = 1 and so on until all

nodes have access to z1. Again, while x2
i and y2i are computed

in both CC-ADMM and FCD-ADMM as soon as node i has

access to z1, this step is followed in CC-ADMM by x2
i and

581

x1
1, y

1
1

x1
2, y

1
2

x1
3, y

1
3

z1

x2
1, y

2
1

x2
2, y

2
2

x2
3, y

2
3

z2

time t

a) CC-ADMM

x1
1, y

1
1

x1
2, y

1
2

x1
3, y

1
3

z11

z12

z13 x2
3, y

2
3

x2
1, y

2
1

x2
2, y

2
2

z23

z21

z22

time t

(b) FCD-ADMM

Fig. 1. Two Gantt charts demonstrating the flow of a) CC-ADMM and b)
FCD-ADMM in a network of N = 3 worker nodes, where the activities
executed by the worker nodes i = 1, 2, 3 and the central node are represented
by red, yellow, green, and gray boxes, respectively.

y2i being sent to the central node but in FCD-ADMM by node

i21 = 3 computing and sending z23 to node i22 = 1, and so on

until z2 = z1
i2N

= z1
i23

is computed by node i23 = ((3− 2) mod

3) + 1 = 2.

III. THEORETICAL ANALYSIS

In what follows, we will analyze FCD-ADMM from various

perspectives under the following definitions and assumptions:

Definition III.1. The communication delay of a message is

defined as the time interval between the moment the sender

transmits the message and when it is received by the recipient.

Definition III.2. The start of iteration k+1 is defined as the

end of iteration k. The end of iteration k is the point when

{xk
i , y

k
i , z

k|i = 1, 2, . . . , N} is computed.

Definition III.3. The iteration time, tk, is defined as the time

interval between the start and end of iteration k.

Definition III.4. The aggregated iteration time, T k, is defined

as the time interval between the start and end of iteration 1
and k.

Definition III.5. The convergence time is defined as the time

required for an algorithm to reach the state of convergence

since the start of iteration 1.

Assumption III.6. The communication delays of two mes-

sages are about the same if the messages have the same sender,

receiver, and size.

Assumption III.7. Compared to the time expended on the

computation of (xk
i , y

k
i , z

k
i) and on the waiting for other nodes,

the time expended on other operations in FCD-ADMM is

negligible. Thus, the iteration time in these algorithms can

be simplified as solely dependent on the computational time

of (xk
i , y

k
i , z

k
i) and communication delays.

A. Convergence Analysis

Lemma III.8. Given the same input {x0
i , y

0
i , z

0; i =
1, . . . , N}, the output {xk

i , y
k
i , z

k; i = 1, . . . , N, k = 1, 2, . . .}
is, as shown in (7), the same in FCD-ADMM as in CC-ADMM.

Corollary III.9. Following Lemma III.8, the number of iter-
ations required to reach the state of convergence is the same
in FCD-ADMM as in CC-ADMM.

B. Computational Cost Analysis

In this subsection, we will analyze and compare FCD-

ADMM against CC-ADMM from the perspective of compu-

tational cost.

Remark III.10. Unlike CC-ADMM, where the computational

cost with respect to the number of nodes N is given by O(N)
for the central node, the computational cost with respect to

the number of nodes N is given by O(1) for every node in

FCD-ADMM.

C. Communication Cost Analysis

In this subsection, we will analyze and compare FCD-

ADMM against CC-ADMM from the perspective of commu-

nication cost.

Proposition III.11. As shown in Figure 1 and Algorithm 1, a
node i in FCD-ADMM only needs to send up to 2 messages
per iteration to one other node, namely node (i mode N)+1.
Furthermore, the content of each message sent during iteration
k is either zk−1 or zki . The communication cost per iteration
is thus, for each node, given by O(1).

D. Time Analysis on FCD-ADMM

In this subsection, we will analyze FCD-ADMM by deriving

its iteration time, tk, and aggregated iteration time, TK , for

k ∈ {1, 2, . . .}.
Corollary III.12. Following Assumption III.6 and Proposition
III.11, the communication delay in FCD-ADMM is the same
for all messages coming from the same node.

Following Corollary III.12, we have that the communication

delay of a message sent from node i in FCD-ADMM can be

simplified as a variable solely dependent on the index i. For

simplicity, we will therefore denote the communication delay

of a message sent from node i in FCD-ADMM as ti,c ∈ R+.

582

Proposition III.13. The iteration time in FCD-ADMM is, for
k = 1, 2, . . ., given by

tk ≤ max
i∈{1,2,...,N}

{
tkikj ,l

}
+

N∑
i=1

tki,g +

N−1∑
j=1

tikj ,c, (8)

where tki,l is the time required to compute the local variables
(xk

i , y
k
i) at node i and iteration k; tki,g is the time required

to compute the corresponding shared variable zki ; ti,c is
the communication delay of a message from node i to its
subsequent node in FCD-ADMM.

Proof : Let tki be the time interval between the start of

iteration k and the moment zki is computed in FCD-ADMM.

As shown in Section II, FCD-ADMM lets node i = ikj start

computing xk
i , y

k
i , and zki at the start of the iteration if k = 1

or j = 1; but requires the node to wait with the computation

until it has received the necessary inputs otherwise. For k = 1
and n ∈ {2, . . . , N}, this gives

tkikn =max{tkikn−1
+ tikn−1,c

, tkikn,l}+ tkikn,g

≤max{tkikn−1
, tkikn,l}+ tikn−1,c

+ tkikn,g,
(9)

where tk
ik1

= tk
ik1 ,l

+ tk
ik1 ,g

. Through deduction, this gives

t1i1N
≤ max

j∈{1,2,...,N}

{
t1i1j ,l

}
+

N∑
j=1

t1i1j ,g
+

N−1∑
j=1

ti1j ,c. (10)

For k = 2, 3, . . . and n ∈ {2, . . . , N}, we get

tkikn =max{tkikn−1
+ tikn−1,c

,

n−1∑
j=1

tkikj ,c
+ tkikn,l}+ tkikn,g

=max{tkikn−1
,

n−2∑
j=1

tikj ,c + tkikn,l}+ tikn−1,c
+ tkikn,g,

(11)

where tk
ik1

= tk
ik1 ,l

+ tk
ik1 ,g

. Through deduction, this gives

tkikN
≤ max

j∈{1,2,...,N}

{
tkikj ,l

}
+

N∑
j=1

tkikj ,g
+

N−1∑
j=1

tikj ,c. (12)

From (10) and (12), we see that (8) holds. Q.E.D.

Proposition III.14. The aggregated iteration time in FCD-
ADMM is bounded by

TK ≤
K∑

k=1

(
max

i
{tki,l}+

N∑
i=1

tki,g

)

+

(
K −

⌊
K

N

⌋) N∑
i=1

ti,c −
K mod N∑

i=1

ti,c.

(13)

Proof : We have from Proposition III.13 that

TK ≤
K∑

k=1

tk =

K∑
k=1

⎛
⎝max

i
{tki,l}+

N−1∑
j=1

ti,c +

N∑
i=1

tki,g

⎞
⎠

=
K∑

k=1

(
max

i
{tki,l}+

N∑
i=1

tki,g

)
+
(
K − cKi

) N∑
i=1

ti,c,

(14)

where cKi is the number of times that the node i has been given

the contribution index j = N between the start of iteration 1
and the end of iteration K. Moreover, we have from (5) that

ikN = (N − k) mod N + 1 = −k mod N + 1. (15)

Due to periodicity, (15) shows that, counting from the start of

iteration 1 to the end of iteration, we have

cKi =

⌊
K

N

⌋
+

{
1, if i ∈ {1, . . . ,K mod N},
0, otherwise.

(16)

Substituting (16) into (14) gives (13). Q.E.D.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will present, compare, and analyze the

performance of FCD-ADMM against some of the ADMM

algorithms mentioned in Section I in networks of N = 30
worker nodes.

The algorithms are CC-ADMM, RW-ADMM, I-ADMM,

and PW-ADMM, where PW-ADMM is implemented with

M = N updating threads and the others with M = 1
updating thread as per design. The algorithms are chosen for

their established convergence properties and applicability to

the problem defined in (1).

To reduce the impact of time and statistical variability, the

performance is measured by, for each algorithm, repeating

R = 100 rounds of simulations with 100 iterations per round.

The simulations are run on a Linux server with 12 CPU

cores and 64 GB RAM.

Since the novelty of our algorithm from computing the

outputs as CC-ADMM in a decentralized manner without

causing replicated work or extended convergence time, we did

not do any hyperparameter tuning. Instead, we implemented

the algorithms with ρ = 20 as in [20] and used x0
i = y0i =

z0 = 0 for i = 1, 2, . . . , N . For the same reason, we used

the default search method from the SciPy Library, namely

Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS), as the

method for solving xk
i := argminx fi(x)+〈yki , x−zk〉+ ρ

2 |x−
zk|2, where the local loss function is defined as

fi(x) = ‖Aix− bi‖2, (17)

where Ai ∈ Rn×m is the feature matrix in the data distributed

to node i, bi ∈ Rm is the corresponding label vector. The

data comes from [22] and has n = 4177 samples with m = 8
features per sample. Again, we note that we only considered

one local loss function definition and one dataset in our

simulations because the novelty of our algorithm is not related

to how the local primal variable xk
i is computed or how the

data is handled.

Since the objective is to find the optimal solution z mini-

mizing F (z) =
∑

i fi(z), we have used various measures to

evaluate each algorithm’s effectiveness in finding the optimal

solution. To begin with, we have, for each iteration k, calcu-

lated the average total loss defined as

F̄ k = F̄ (T̄ k) =
1

RM

R∑
r=1

M∑
m=1

N∑
i=1

fi(z
r,m,k), (18)

583

where zr,m,k is zk from thread m and repetition r, and T̄ k

is the average time taken to compute zk since the start of

iteration k = 1. Following (18), we define the optimal value

achieved by an algorithm as

F̄ ∗ = min
k
{F̄ k}. (19)

Based on (18) and (19), we say that an algorithm has con-

verged at iteration k if

|F̄ k − F̄ ∗| < 0.1|F̄ ∗|. (20)

Fig. 2. A figure showing the development of the average system loss value
F̄k for FCD-ADMM, CC-ADMM, RW-ADMM, I-ADMM, and PW-ADMM
over time. The y-axis represents the value of F̄k in each algorithm. The x-
axis represents the value of T̄k as the average taken to complete iteration k
in each algorithm, measured from the start of the 1st iteration.

TABLE I
A TABLE SHOWING THE AVERAGE NUMBER OF MILLISECONDS TAKEN TO

COMPLETE AN ITERATION AND TO COMPUTE (xk
i , y

k
i) AS t̄ AND t̄l ,

RESPECTIVELY; THE NUMBER OF ITERATIONS AND SECONDS UNTIL

REACHING THE STATE OF CONVERGENCE DEFINED IN (20); AND THE

OPTIMAL VALUE F̄ ∗ = mink F̄k ACHIEVED BY EACH ALGORITHM.

ALGORITHM t̄ t̄l k∗ t∗ F̄ ∗

FCD-ADMM 19± 5 5± 4 39 0.7 23k
CC-ADMM 20± 5 6± 5 39 0.8 23k
RW-ADMM 6± 4 6± 4 3782 21.5 24k
I-ADMM 5± 4 5± 4 607 4.0 23k
PW-ADMM 14± 27 9± 10 35 0.4 181k

As shown in Fig. 2 and Table I, the outcomes of CC-ADMM

and FCD-ADMM are almost the same, except that FCD-

ADMM has a lower average iteration time, which in turn led

to a faster convergence. This confirms Lemma III.8. The lower

average iteration time can be explained by the fact that, unlike

FCD-ADMM, CC-ADMM requires the computation of zk to

start after the master node has received, stored, and verified

that it has registered (xk
i , y

k
i) from all nodes i = 1, . . . , N .

From Table I, we can further see that FCD-ADMM has

converged to the same or better F̄ ∗ than I-ADMM and RW-

ADMM using about 6 and 30 times less time, respectively.

Moreover, we can see from Fig. 2 that given the same times-

tamp t ≥ 0.05 where t = 0 at the start of iteration k = 1, our

FCD-ADMM has, on average, achieved a significantly lower F̄
than I-ADMM, RW-ADMM and PW-ADMM. As mentioned

earlier, this is expected because, unlike these algorithms, FCD-

ADMM lets the nodes collectively compute zk based on the

local variables that they have computed in parallel. Also, we

can see from Table I that F̄ ∗ is about 8 times lower and thereby

better in FCW-ADMM than in PW-ADMM.

V. CONCLUSIONS

We have proposed an algorithm to achieve decentralized

ADMM with fast convergence without causing replicated

work. Through theoretical analysis and numerical experiments,

we have shown that FCD-ADMM has the same convergence

properties as CC-ADMM in terms of the number of iterations

required to reach the state of convergence as well as the

development of zk over k. By allowing the computation of zk

to start before all nodes have computed their local variables

(xk
i , y

k
i), our FCD-ADMM has achieved a shorter iteration

time than CC-ADMM and thereby a faster convergence in our

numerical experiments. By allowing the nodes to collectively

compute zk based on the local variables that they have

computed in parallel, our FCD-ADMM has also, given the

same timestamp t where t = 0 at the start of iteration k = 1,

yielded a significantly better object value than I-ADMM, RW-

ADMM, and PW-ADMM. Altogether, these demonstrate the

superiority of our FCD-ADMM.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[2] X. Wang, J. Yan, B. Jin, and W. Li, “Distributed and parallel ADMM
for structured nonconvex optimization problem,” IEEE transactions on
cybernetics, vol. 51, no. 9, pp. 4540–4552, 2019.

[3] H. Wang, Y. Gao, Y. Shi, and R. Wang, “Group-based alternating
direction method of multipliers for distributed linear classification,”
IEEE transactions on cybernetics, vol. 47, no. 11, pp. 3568–3582, 2016.

[4] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous
distributed ADMM for large-scale optimization—part i: Algorithm and
convergence analysis,” IEEE Transactions on Signal Processing, vol. 64,
no. 12, pp. 3118–3130, 2016.

[5] J. Zhang, S. Nabavi, A. Chakrabortty, and Y. Xin, “ADMM optimization
strategies for wide-area oscillation monitoring in power systems under
asynchronous communication delays,” IEEE Transactions on Smart
Grid, vol. 7, no. 4, pp. 2123–2133, 2016.

[6] M. Hong, “A distributed, asynchronous, and incremental algorithm for
nonconvex optimization: An ADMM approach,” IEEE Transactions on
Control of Network Systems, vol. 5, no. 3, pp. 935–945, 2018.

[7] S. Zeng, S. Wang, and Y. Zhang, “Optimization of distributed ADMM
algorithm based on minimum network latency,” in 2019 12th Interna-
tional Symposium on Computational Intelligence and Design (ISCID),
vol. 2. IEEE, 2019, pp. 7–10.

[8] A. Aytekin and M. Johansson, “Exploiting serverless runtimes for large-
scale optimization,” 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), pp. 499–501, 2019.

[9] X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and
accuracy of ADMM-based distributed algorithms,” in International
Conference on Machine Learning. PMLR, 2018, pp. 5796–5805.

[10] Z. Xu, G. Taylor, H. Li, M. A. Figueiredo, X. Yuan, and T. Goldstein,
“Adaptive consensus ADMM for distributed optimization,” in Interna-
tional Conference on Machine Learning. PMLR, 2017, pp. 3841–3850.

584

[11] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” arXiv preprint arXiv:1908.07782, 2019.

[12] P. Singh, M. Masud, M. S. Hossain, A. Kaur, G. Muhammad, and
A. Ghoneim, “Privacy-preserving serverless computing using federated
learning for smart grids,” IEEE Transactions on Industrial Informatics,
2021.

[13] M. Wang, Y. Su, L. Chen, Z. Li, and S. Mei, “Distributed optimal
power flow of DC microgrids: A penalty based ADMM approach,” CSEE
Journal of Power and Energy Systems, vol. 7, no. 2, pp. 339–347, 2019.

[14] B. Wang, J. Fang, H. Duan, and H. Li, “Graph simplification-aided
ADMM for decentralized composite optimization,” IEEE Transactions
on Cybernetics, vol. 51, no. 10, pp. 5170–5183, 2019.

[15] S. Shethia, A. Gupta, O. Thapliyal, and I. Hwang, “Distributed fast-
tracking alternating direction method of multipliers (ADMM) algorithm
with optimal convergence rate,” in 2021 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), 2021, pp. 976–981.

[16] F. Rey, Z. Pan, A. Hauswirth, and J. Lygeros, “Fully decentralized
ADMM for coordination and collision avoidance,” in 2018 European
Control Conference (ECC). IEEE, 2018, pp. 825–830.

[17] J. Yan, F. Guo, C. Wen, and G. Li, “Parallel alternating direction method
of multipliers,” Information Sciences, vol. 507, pp. 185–196, 2020.

[18] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block ADMM
with O(1/k) convergence,” Journal of Scientific Computing, vol. 71,
no. 2, pp. 712–736, 2017.

[19] X. Mao, K. Yuan, Y. Hu, Y. Gu, A. H. Sayed, and W. Yin, “Walkman:
A communication-efficient random-walk algorithm for decentralized
optimization,” IEEE Transactions on Signal Processing, vol. 68, pp.
2513–2528, 2020.

[20] Y. Ye, H. Chen, M. Xiao, M. Skoglund, and H. V. Poor, “Privacy-
preserving incremental ADMM for decentralized consensus optimiza-
tion,” IEEE Transactions on Signal Processing, vol. 68, pp. 5842–5854,
2020.

[21] Y. Ye, H. Chen, Z. Ma, and M. Xiao, “Decentralized consensus opti-
mization based on parallel random walk,” IEEE Communications Letters,
vol. 24, no. 2, pp. 391–395, 2020.

[22] W. J. Nash, T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B.
Ford, “The population biology of abalone (haliotis species) in tasmania.
i. blacklip abalone (h. rubra) from the north coast and islands of bass
strait,” Sea Fisheries Division, Technical Report, vol. 48, p. p411, 1994.

585

