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Abstract—Federated Learning (FL) is an attractive machine
learning paradigm that facilitates collaborative machine learning
at the decentralized level and produces insightful results. How-
ever, in cases where the participating clients have non-IID (non
independent and identical data) distributions, it produces sub-
optimal results. Furthermore, gradient leakage attacks have been
shown in federated learning to be capable of leaking confidential
information from global model parameters, hence posing a severe
risk to user privacy. In this work, we develop a method called Fed-
SHARC, a Secure Hierarchical model Aggregation by clustering
in a decentralized federated learning framework that addresses
data heterogeneity issues to achieve good performance while
guarding the framework against gradient leakage attacks. Secure
model aggregation occurs at two stages in this hierarchical
approach. Phase-1 involves exploiting differential privacy to
aggregate the models of the reward-driven clustered clients. On
the other hand, giving each participant with heterogeneous data
the same privacy budget will have a significant impact on the
performance. As an effective multi-participant budget allocation
technique, we suggest an efficient weighted noise injection policy
that modifies the privacy budget based on the data distributions
of clients. Phase-2 involves selecting a leader from each cluster’s
highly rewarded clients to take part in the multi-party computa-
tion enabled inter-cluster secure model aggregation. Experiments
conducted on three benchmark public datasets demonstrate the
effectiveness of the proposed Fed-SHARC in terms of privacy
and performance. Furthermore, we verify its resilience against
gradient leakage attacks.

Index Terms—Decentralised Federated Learning, Reward-
driven Clustering, Multi-Party Computation, Weighted noise
injection policy, Gradient leakage Attack.

I. INTRODUCTION

Federated learning (FL) [1] facilitates distributed collabora-

tive learning without revealing the original training data, which

contributes to General Data Protection Regulation(GDPR)

compliance [2]. The participants in centralized federated learn-

ing communicate their local model gradients to a server,

which then combines all of the received models into a single

global model and sends it back to all of the participants.

By learning a shared model jointly, the participants benefit

from collaborative learning without disclosing the real data.

A server used for aggregation could have a single point of

failure [3] and high communication costs [4]. There is a chance

that this will experience unplanned downtime. To address this

problem, a decentralized FL framework [5] was developed.

Decentralized federated learning (DFL) is a fully decentral-

ized learning system that operates without a central server

and solely depends on local gradient information exchange

between participants and their neighbours.

Decentralised Federated learning performs well when client

data sets are evenly distributed (i.e., Independently and Identi-

cally Distributed (IID)) [6]. On the other hand, when the data

are not dispersed uniformly, or non-IID, DFL has challenges.

In non-IID datasets, the skewness of the distribution results in

diverging gradients. When these diverse models are averaged

throughout training rounds, they fail to yield a useful model,

and lowers the performance of the shared global model. In

addition, recent research studies show that federated learning is

vulnerable to gradient leakage attacks (DLG) [7]–[9], which a

prospective adversary can acquire participant data from shared

model parameters due to the lack of a trust mechanism. Thus,

to prevent model parameters from leaking, privacy-preserving

techniques in FL have been introduced. Existing federated

learning systems use either secure multiparty computation

(SMPC) [10], [11], which divides model parameters into

secret-shares and shares them among multiple participants,

resulting in high communication overhead with the increasing

number of participants and also vulnerable to inference attacks,

or differential privacy (DP) [12], [13], in which data privacy

is preserved by augmenting the data with noise. A privacy

budget is a critical component in determining noise level and

degree of protection. Severe utility damage will result from

existing differentially private approaches [14], [15] that allot

the same amount of privacy budget to each participant. Thus,

in order to enhance the utility, an effective budget allocation

mechanism is required. Aside from that, Dataset condensation

is emerging as a privacy-preserving option in FL [31].

With the goal of enhancing performance and resilience, this

paper proposes an effective solution, Fed-SHARC, to these

problems by using a hierarchical mechanism to enable secure

model aggregation. The proposed method groups clients with

similar data distributions into clusters. The clusters are trained

individually and concurrently after being divided. A secure

intra-cluster model is obtained at the first level of the hierarchy

by securely aggregating the local models of all the clients that

belong to the same cluster utilizing differential privacy. We

improve the performance of differential privacy by proposing
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a novel weighted noise injection strategy that will adjust the

privacy budget based on the client data distributions. In the

proposed method, rewards will be given to clients based on

their contribution in intra-cluster model training. More rewards

will be given to clients who contribute more in their intra-

cluster model training. The most rewarded client from each

cluster is chosen to act as the cluster leader. The selected

cluster leaders work together and serve as a representative at

the second level of hierarchy to complete the MPC enabled

inter-cluster model aggregation and produce the global model.

We summarize the contributions of our work below:

• We propose Fed-SHARC, a resilient decentralized feder-

ated learning framework that improves performance and

robustness through reward-driven clustering and secure

hierarchical model aggregation.

• We propose a weighted noise injection strategy, an ef-

fective multi-participant budget allocation approach that

adjusts the privacy budget according to the client data

distributions.

• We demonstrate the effectiveness of our Fed-SHARC

through extensive experiments on public datasets. The

performance results demonstrate the effectiveness of Fed-

SHARC and is not significantly impacted by cluster size.

• Furthermore, we carried out the DLG attack and our

approach is shown to successfully resist this attack.

II. RELATED WORK

The research work presented in [16] demonstrates Clustered

Federated Learning (CFL), an approach that is applicable

to general non-convex objectives, not requiring the number

of clusters to be known in advance, and does not require

any alterations to the FL communication protocol. The work

in [16] also raises a privacy concern in FL by showing

how weight updates can be used to determine client data

similarity. As a result, these methods might not be appropriate

for user-intensive applications. The authors also suggest [17]

ways to increase the robustness of a CFL-based architecture

in a byzantine environment. However, it is computationally

inefficient because it takes several communication rounds to

entirely segregate all in congruent random clients. The Iterative

Federated Clustering Algorithm (IFCA) [18], which the paper

proposes, alternately estimates the cluster identities of the

users and optimises model parameters for the user clusters

via gradient descent and poses a potential risk as the system

still requires clients to provide estimations of their cluster IDs

to the central server.

The research presented in [19] suggests a novel multi-center

aggregation approach for Federated Learning that concurrently

determines the best user and centre matching while simultane-

ously learning several global models from non-IID user data.

In [20] , the authors proposed a hierarchical clustering step

(FL+HC) to distinguish client clusters based on how similar

their local updates are to the global joint model. However,

it depends on a computationally challenging method known

as iterative pairwise distance calculation between all clusters.

The study [21] also proposes an algorithm for choosing

clients in each cluster based on an auction, which tries to

address the imbalance in resource consumption brought on

by client selection at random. However, auction approach is

unsuitable for FL applications on a broad scale. The research

work presented in [22] introduces a MPC enabled Federated

Learning system named CE-Fed. In particular, the suggested

CE-Fed is a mechanism that creates a committee for the

purpose of aggregating models with a small number of mem-

bers and does so by aggregating the global model exclusively

among those members rather than across all participants. In

order to achieve model aggregation for FL while protecting

privacy, the work presented in [23] suggests using Multi-Party

Computation (MPC). The paper suggests creating a two-phase

system to solve this issue by electing a small committee and

making MPC-enabled model aggregation services available to

more participants via the committee. However, the committee

members are chosen at random.

As opposed to the aforementioned CFL approaches, which

take into account each client’s participation in FL training,

our proposed Fed-SHARC method performs global model

aggregation, utilizing a chosen cluster leaders to increase

accuracy, decrease communication costs and preserving the

privacy by having secure hierarchical model aggregation.

III. FED-SHARC FRAMEWORK

In this section, we describe the proposed Fed-SHARC

framework as shown in Figure 1, with the objective of

improving performance and resilience.

There are several phases involved in implementing the

proposed Fed-SHARC framework. (1) Clustering/grouping

mechanisms based on client data distributions and proximity

to locations; (2) Secure hierarchical model aggregation that

involves differentially private Intra-cluster model aggregation

with weighted noise injection policy, in which the local models

of all FL clients in the same cluster are securely aggregated

using DP to form an intra-cluster model; and (3) Inter-cluster

model aggregation, where the selected reward-based cluster

leaders, jointly aggregate inter-cluster models in a secure way

using MPC to generate the overall global model.

A. Clustering Mechanism

As depicted in Figure 1 , the proposed server-less decentral-

ized (peer-to-peer) Clustered Federated Learning framework

enables direct communication between clients inside clusters

without the use of a central server or coordinator. The proposed

clustering mechanism is explained as follows: Initially clients

are assigned to a random cluster. Our suggested mechanism

will reshuffle them into various groups based on the cosine

similarity of their local gradients after a few training rounds.

Along with that, the distance among clients is taken into

consideration for grouping. The following equation is used to

calculate the cosine similarity [24] Cos sim(i, j) between

the two clients, Ci and Cj .

Cos sim(i, j)
Δ
=

< Δw
(ci)
t ,Δw

(cj)
t >

||Δw
(ci)
t || ||Δw

(cj)
t ||

(1)
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Fig. 1: Fed-SHARC Framework

In the equation 1, Δw
(ci)
t , Δw

(cj)
t represents the parameter

used for model updates of the clients Ci and Cj respectively.

B. Differentially private intra-cluster local model aggregation
with weighted noise injection policy

The proposed Fed-SHARC aims to cooperatively train a

global model with numerous clients. The goal of the training

procedure is to gradually minimize the loss function floss.

woptimal = minfloss(w
k, Xk) (2)

where woptimal represents the optimal global model param-

eters; w represents the global model parameters; wk represents

local model parameters; Xk represents the local data.

To achieve high performance and minimal communication

costs, the model aggregation is carried out in a hierarchical

manner. It consists of two phases: DP enabled Intra-cluster

model aggregation and MPC enabled Inter-cluster model ag-

gregation with rewarded cluster leaders.

Each client in the same cluster begins the training process

by building their models locally using local datasets. After

completing the local training, the cluster’s clients within the

same cluster work together to cooperatively learn the intra-

cluster model. Although the model parameters are shared with

the other clients, there is a potential that a malicious user may

intercept them and hack into the private information. In order

to prevent this, we use DP (ε,δ) mechanism. This is achieved

by adding quantitative random Gaussian noise to the model

parameters following the local training, which is defined as

follows [25] :

GσF (x) � f(x) +N(0, S2σ2) (3)

where S is a sensitivity of function f and N(0, S2σ2) is

the normal distribution with mean 0 and standard deviation

Algorithm 1 Intra-cluster Model Aggregation with weighted

noise injection policy

1: Input: Ci - Cluster List ; ni- No. of clients in cluster; m -
Neighbouring clients;

2: Function{Intra-Cluster.Model.aggregation(Ci, ni,m)}
3: for a ∈ [1, Ci] do
4: for b ∈ [1, ni] do
5: for c ∈ [1,m] do
6: T ← local training
7: end for
8: for T ∈ [1, ni] do
9: Perform clipping

10: Add noise σ to the locally-trained model
11: share it with ’m’ neighbours in the cluster
12: end for
13: end for
14: W ← Aggregated Model
15: end for
16: return W

Sσ. The level of privacy provided by a differentially private

mechanism is controlled by the privacy parameter or privacy

budget ε.

1) Weighted noise injection policy: Budget for privacy is

a crucial consideration when assessing the degree of security

and noise level. The FL clients with non-IID data distributions

will perform worse and the model’s final convergence will be

significantly impacted if the same amount of noise N(0, S2σ2)
is added to their model parameters. To tackle this problem,

we design a weighted noise injection policy by combining

clipping and noise injection, where the data perturbation

level is adjusted according to the data scale weights owned

by different clients. When applying weighted noise injection

policy , clients can add N(0, Q∗S2σ2) where Q represents the

data scale weights. Each client aggregates peer clients’ private
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models to obtain the intra-cluster model.

C. Inter-cluster global model aggregation with rewarded clus-
ter leaders

The trained intra-cluster models from several clusters are

ultimately combined to create the final inter-cluster global

model. We present the reward-based client selection technique,

where one client from each cluster is selected based on

the contribution to their intra-cluster training. We take into

consideration MPC to safely aggregate the inter-cluster model

aggregation since adding more noise (DP) may result in too

much noise in the aggregated results, resulting to poor privacy-

utility trade-offs.

1) Rewarding Mechanism: The primary objective of the

rewarding mechanism is to provide an incentive to the best

performing client from each cluster during each communica-

tion round. In our protocol, we assign a reward to the best

performing client in each cluster, which is considered as the

cluster leader of that cluster. In order to choose the cluster

leader (best performing client) for a particular cluster, we use

the cosine similarity as a performance metric. So, the client

closest to the cluster centre is chosen as cluster leader. Since

we test our model with a classification problem the cosine

similarity is used as a means of measuring the similarity of

the output with the expected value. This cosine similarity is a

widely accepted metric to use for classification problems. Each

cluster will have at most only one cluster leader. The cluster

leader from each cluster who has been assigned the higher

reward will be selected to take part in the inter-cluster model

aggregation. The cluster with higher incentives can take part in

the global training more frequently, accelerating convergence

and enhancing accuracy.

Following the selection of all cluster leaders, the model

parameters of each cluster leader is securely aggregated using

MPC to obtain the global model. Each cluster leader splits

its model parameters equally into several secret shares. The

number of splits depends on the number of cluster leaders in

a FL at a given instance. Each cluster leader keeps one share

and sends the rest to all the other neighbouring cluster leaders

in the FL. This process continues till all the cluster leaders

complete the exchange of their shares to all the neighbouring

cluster leaders. The cluster leaders then train their respective

models on these aggregated shares which then becomes the

new global model.

The global model is then sent back to all the cluster leaders.

The cluster leaders in turn send it to its cluster’s clients, for

further training. This is a continuous process and converges

to an optimal solution after few global rounds. Thus, the

proposed architecture effectively safeguards individual model

updates throughout the learning process. Assume the FL sys-

tem contains G number of clusters. Then, there are G number

of cluster leaders. The total number of messages denoted

as Total Inter cluster msgs exchanged in the inter-cluster

model aggregation among all cluster leaders is given by

Total Inter cluster msgs = G ∗ (G× (G− 1))× 2 (4)

The pseudo code of the inter-cluster model aggregation is

shown in Algorithm 2

Algorithm 2 Inter-cluster secure Model Aggregation

1: Input: Ci - Cluster List ; ni- No. of clients in cluster; Ĉi Selected
cluster leaders;

2: Function{Inter-Cluster.Model.aggregation(Ci, ni, Ĉi)}
3: for a ∈ [1, Ci] do
4: for b ∈ [1, ni] do
5: for c ∈ [1, Ĉi] do
6: T ← weights from ClusterLeaders(Ĉi)
7: W ← MPC Enabled GlobalModel Aggregation
8: end for
9: for T ∈ [1, b] do

10: Split the intra-cluster trained model into s secret shares
11: share it with Ĉi neighbours
12: end for
13: end for
14: for a ∈ [1,m]&a �= x do
15: send s to neighbour nodes
16: Receive s from neighbour nodes
17: S = sum the secretshares
18: end for
19: W ← Aggregated Global Model
20: end for
21: return W

In order to aggregate the intra-cluster models of all clusters

in a distributed manner, the proposed protocol chooses a small

group of clients to serve as cluster leaders. As a result, there

is a significant reduction in the communication cost.

IV. EXPERIMENTAL ANALYSIS

As a machine learning library, we use TensorFlow 2.0

[26] to assess the performance of our suggested Fed-SHARC

framework. It is a free and open-source machine learning and

artificial intelligence software library. NetworkX is a Python

toolkit [27] for graph and network analysis that is used to

create FL clusters in a customized way. MNIST [28], CIFAR-

10 [29], and the Fashion-MNIST dataset [30] were three

public data sets that we took into consideration. We investigate

the performance and effectiveness of IID (Independent and

identically distributed) and non-IID datasets in our research.

As opposed to the non-IID distribution, which first sorts the

data by label before partitioning it across the clients so that

each party has a set number of labels and there is no overlap

between samples from different clients, the IID distribution

involves shuffling the data across all of the clients. Our

proposed method is capable of supporting any number of

clusters. For model aggregation, we employ FedAvg. In our

experiments, we measure performance in terms of accuracy.

A. Accuracy

The network is simulated using Python NetworkX. The

following environment is used in experiments: Local-Single

Server: Each party uses a single local server running Ubuntu

18.04 with an Intel(R) Xeon(R) CPU i7-7700 V8 (3.60GHz)

and 32GB of RAM.
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TABLE I: Accuracy Comparisons with existing methods

Method MNIST IID MNIST
nonIID

CIFAR-10
IID

CIFAR-10
nonIID

Fashion-MNIST
IID

Fashion-MNIST
nonIID

Fed-SHARC 99.46 98.55 70.68 52.62 93.65 90.08
DFL+MPC 98.0 97.38 65.42 50.83 90.56 88.19
Traditional FL 99.15 98.24 61.22 46.14 90.61 88.81

TABLE II: Accuracy of Fed-SHARC with varying Clip

values
Dataset C=0.5 C=1.3 C=2 C=4 C=6 C=8
MNIST 97.6 98.55 98.53 98.46 98.32 98.12
CIFAR-10 46.6 47.83 52.25 50.64 50.7 50.3
FMNIST 88.01 88.19 88.50 90.01 88.93 88.63

TABLE III: Accuracy of Fed-SHARC with varying noise

values
Dataset σ=1.1 σ=1.3 σ=1.5 σ=1.8
FMNIST-DP (without
noise injection policy)

82.5 81.23 80.87 80.04

FMNIST-Fed-SHARC
(with noise injection
policy)

90.06 89.0 87.83 86.65

The effectiveness of our proposed Fed-SHARC in IID and

non-IID distributions is evaluated primarily on the basis of

accuracy. For evaluation, we take into account 4 clusters with

a total of 10 clients each. All clients participated in intra-

cluster local model training, whereas only a small number of

cluster leaders—4 in total, one for each cluster—participate

in inter-cluster global model aggregation. We evaluate Fed-

SHARC’s efficacy against the following baseline schemes:

Traditional FL, where clients are chosen at random to partic-

ipate in the training, and decentralized FL with MPC support

(DFL+MPC), where all clients participated in the training

and communicated their secret shares with one another in

order to rebuild the overall joint global model. The accuracy

for IID and non-IID distributions are shown in Table I.

The proposed Fed-SHARC scheme performs better than that

of other baseline methods.This is due to the fact that our

proposed technique completely takes into account the local

data distribution when choosing clients, resulting in an average

increase in the size of the training samples and a higher

convergence rate. The DFL+MPC and Fed AVG schemes did

not take into account the local data distributions of various

clients when sampling clients, and the distribution of the

locally chosen data set varies over rounds, which has an

adverse effect on the convergence of the global model.

We examine the impact of changing the clipping bound

between 0.5 and 8. The Fed-SHARC findings are depicted in

Table II . Fed- SHARC achieves good accuracy on MNIST

when c= 1.3 , CIFAR-10 when C= 2 and FMNIST when

C=4 by combining gradient clipping with weighted noise

injection to per-example gradients. This is because the L2

norm of the gradients changes for different datasets, leading to

variable optimum clipping bound settings. The best accuracy

can only be achieved with a properly set clipping bound, as

an improperly set clipping bound will degrade performance

because it will affect both noise variance and gradient in-

formation retention. Next, we assess the effects of different

noise levels (1.1, 1.3, 1.5, 1.8) with the clipping bound C =

4 . Table III compares the performance of Fed-SHARC with

the federated learning without weighted noise injection policy .

The per-example gradients’ Gaussian noise content is adjusted

by the noise scale. The outcomes demonstrate that training

performance will suffer from excessive noise addition. we set

σ = 1.1 by default in Fed-SHARC, although a smaller noise

scale might increase accuracy performance across all datasets.
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B. Impact of varying cluster size

We study the impact of the varying cluster size in the

framework. The accuracy for MNIST data set over commu-

nication rounds with variable cluster size is shown in Figure

2. Our analysis revealed that accuracy is unaffected by the

quantity of nodes in each cluster. Faster convergence rate and

accuracy were achieved by using our suggested Fed-SHARC

technique, which chooses an effective cluster leader for global

model aggregation that contributed more training samples.

Ground Truth MNIST

Fashion- MNIST

CIFAR-10

No-privacy

No-privacy

No-privacy

Fed-SHARC
(with privacy)

MNIST

Fig. 3: Resilient to Gradient Leakage

C. Gradient Leakage Attack Resiliency

We measure the resiliency of Fed-SHARC against gradient

leakage attacks using MNIST ,CIFAR-10 and and Fashion-

MNIST datasets. we carried out the DLG attack [9] on

arbitrary images on the above datasets. We use initial random

weights and biases with a broader range of values as a random

seed to generate the dummy data. In the client local model,

the dummy data is fed. Using L2, the gradient loss between
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the dummy data’s gradient and the real gradient from the

client local training is calculated. The dummy data is adjusted

and the the same process is repeated until the dummy data

gradient matches with the real gradient. Figure 3 provides

a visualization comparison of Fed-SHARC with FL without

privacy under gradient leakage attack using MNIST dataset,

CIFAR-10, Fashion-MNIST datasets. It has been observed

that the gradient leakage attacks succeed at the 100th attack

iteration for MNIST dataset, 33th attack iteration for Fashion-

MNIST dataset, 66th attack iteration for CIFAR-10 dataset

in the FL without privacy. The gradient leakage attack fails

in Fed-SHARC even after 8000 iterations. We observe that

federated learning with no privacy is vulnerable to gradient

leakage attacks, while Fed-SHARC can effectively mitigate

gradient leakages attack. We use the root mean square devi-

ation of the difference between the reconstructed input and

the ground truth to quantify the resiliency. While FL without

privacy has a value of 0.2094, Fed-SHARC has a value of

0.7654. The highest value denotes resilience against gradient

leakage attacks.

V. CONCLUSIONS

In this study, we proposed and implemented an effective

secure hierarchical model aggregation by reward-driven clus-

tering. It enables many clients to jointly develop a machine

learning model while preserving their privacy and resilience to

gradient leakage attacks. Our Fed-SHARC method aggregates

the models accurately while protecting privacy. The proposed

Fed-SHARC with weighted noise injection policy improves

accuracy and resiliency of FL when compared to the uniform

privacy budget allocation. We demonstrated the effectiveness

of our proposed Fed-SHARC method on several datasets. With

extensive evaluation, we show that the Fed-SHARC approach

outperforms with high resilience against gradient leakage

attacks while offering competitive accuracy performance.
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