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Abstract—Partial Label Learning (PLL) involves associating
each instance with a candidate label set, which includes the true
label along with false positive labels. Traditional PLL approaches
typically assume that these false positive labels follow either a
uniform or a non-uniform structure, based on the true label of
an instance. However, these assumptions do not fully encompass
all aspects of real-world scenarios, especially in cases of fine-
grained objects with subtle differences in appearance. Therefore,
we introduce a fine-grained PLL task specifically designed to
handle candidate sets that comprise the true label, partially non-
uniform fine-grained labels manifesting in a hierarchical structure,
and other false positive labels. Nevertheless, the incorporation
of these partially non-uniform, fine-grained labels can result in
an intractable posterior, leading to an inconsistent classifier. To
address this issue, we propose a Specific Classes-Hierarchical
(SCH) regularisation that ensures classifier consistency. Subse-
quently, the Global Label-Hierarchical-wise Embedding (GLHE)
regularisation is introduced, using the refined pseudo labels of
positive samples from the obtained consistent classifier. This allows
the model to learn more distinctive representations from fine-
grained instances. Our extensive experiments on datasets such
as CIFAR-10, CIFAR-100, and CUB-200 have demonstrated the
effectiveness of our approach.

I. INTRODUCTION

Partial Label Learning (PLL), as discussed in [1, 2], primarily

focuses on scenarios where each instance is associated with a

set of candidate labels. This set contains a true label along with

either uniform or non-uniform false positive labels. In addition,

[3] proposes instance-dependent partial label learning, which

incorporates the feature aspect into the label generation process.

To address the label ambiguity inherent in partial label learning,

various frameworks have been proposed. Probabilistic graphical

model-based methods [4, 5, 6, 7], as well as clustering-based

or unsupervised approaches [8], leverage graph structures and

prior information in the feature space for label disambiguation.

Similarly, average-based perspective methods [1, 4] assume

a uniform treatment of all candidates; however, they are

susceptible to false positive labels, which can lead to misleading

predictions. To mitigate this issue, an identification-based

method [9] was introduced, treating the true label as a latent

variable to better handle label disambiguation. Following this,

representative approaches such as the maximum margin method

[10, 11, 12, 13] have been used for further label clarification.

More recently, self-training perspective methods [14, 15, 16]

have emerged, demonstrating promising performance. In a

related development, techniques such as those presented in

[17, 18] use augmented inputs to learn features from unlabeled

sample data. The learning objective here is to differentiate

Example 1: The Uniform Probability Distribution, as proposed by [16], is

represented by P (�Y = �y|y) = 1

2c−1−1
which is equal to 1

3 for k =

3. We introduce the Partially Non-Uniform Probability Distribution, defined as

P (�Y = �y|y, y′, x) · P (y′|y). The variable x represents the level of image
blurriness, which can be challenging to quantify; therefore, we have omitted it
in the (I). The potential candidate label sets are �y1 = {1}, �y2 = {2},�y3 =
{3}, �y4 = {1, 2}, �y5 = {1, 3}, �y6 = {2, 3}. The probability p(�Y |y) is

transformed to p(�Y = �y|y, y′) by considering y′, with P (y′|y). For instance,
P (y′ = 2|y = 1) = 0.8 can be denoted as given the true label is 1, there is
an 80% chance of it being misclassified as the false positive label 2. In addition,

p(�Y = �y4|y = 1, y′ = 2) can be interpreted as, given a true label y = 1 and
fine-grained label y′ = 2 of an instance x, there is a 1/3 × 80% probability
that its candidate label set will be �y4, and a 1/3 × 20% chance that it contains
only the true label y = 1 itself. The 20% and 80% probabilities are assumed
to be given, based on the fine-grained transition matrix P (y′ = 2|y = 1). The
details of the used fine grained transition matrix can be referred to appendix page
Figure 8.

P (�Y |y) P (�Y |y, y′, x)P (y′|y)
�y1 �y2 �y3 �y4 �y5 �y6 �y1 �y2 �y3 �y4 �y5 �y6

y = 1, y′ = 1 1
3

0 0 1
3

1
3

0 0.2
3

0 0 0.2
3

0.2
3

0

y = 1, y′ = 3 - - - - - - 0 0 0 0 0 0

y = 2, y′ = 2 0 1
3

0 1
3

0 1
3

0 0.7
3

0 0.7
3

0 0.7
3

y = 3, y′ = 1 - - - - - - 0 0 0 0 0 0

y = 3, y′ = 3 0 0 1
3

0 1
3

1
3

0 0 0.6
3

0 0.6
3

0.6
3

y = 1, y′ = 2 - - - - - - 0 0 0 0 0.8
3

0

y = 2,y′ = 1 - - - - - - 0 0 0 0.3
3

0 0

y = 2, y′ = 3 - - - - - - 0 0 0 0 0 0

y = 3,y′ = 2 - - - - - - 0 0 0 0 0 0.4
3

TABLE I: Comparison of Probability Distributions: Uniform versus
Partially Non-Uniform

between similar and dissimilar parts of the input, thereby

maximizing the acquisition of high-quality representations.

In addition, we believe that the fine-grained PLL is realistic

since it considers human cognition behaviour [19, 20, 21]

into the annotation process. For instance, in the fine-grained

PLL problem, the quality of the annotation is significantly

influenced by the human visual system [22, 23], which greatly

affects how an annotator makes decisions, hindering annotator

to accurately measuring length, discerning gray levels, and

dealing with complex backgrounds [24].

Although the fine-grained Partial Label Learning (PLL)

approach is realistic, it presents inherent challenges in terms of

learnability. This is particularly evident when considering the

variables of fine-grained features and subtle differences between

categories, which result in a partially non-uniform structure.

In the case of a highly similar fine-grained label learning

task, where the number of fine-grained labels approaches

the total size of the class, intractability issues arise. This

implies that accurately predicting the true posterior probability

becomes exceedingly challenging. Such a situation makes

the accurate prediction of the true label nearly impossible,
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Fig. 1: The left heat-map shows the distribution of fine-grained labels in our problem scenario, while the right heat-map demonstrates the label distribution of
conventional partial labels.

particularly if prior knowledge about the generation of fine-

grained labels is not incorporated into the modelling process.

To address this issue, previous studies [25, 26] have shown

that patterns or statistical summaries of the pitfalls of the

human visual system can actually be studied, meaning that

the dataset annotation structure or fine-grained partial label

hierarchy, which is accessible, can be formulated. In our case,

the correlation among specific classes (or fine-grained labels)

can be accessed or estimated based on the dataset annotations

that include superclass information. For each fine-grained label,

we can establish correlations by observing its superclass and

then identifying connections to other classes that belong to the

same superclass. The superclass information considers broader

categories that group together fine-grained labels. Failing to

consider such correlations during the model’s encoding can

lead to inconsistencies in the classifier and risk function. To

address this, we incorporate the correlation of fine-grained

labels, denoted as the fine-grained transition matrix, through

specific class-hierarchical regularisation (see Eq. 9) and global

label-hierarchical-wise embedding regularisation (see Eq. 10)

to disambiguate labels. In addition, we introduce contrastive

prototype regularisation, aiming to enhance the precision of

the prototypes by leveraging the prototype vector margin. The

main contributions of the work are summarised:

• We introduce a realistic fine-grained PLL, in which the

true category has marginally distinctive features, while the

other categories exhibit subtle differences in their features

compared to the true category.

• We propose specific class-hierarchical regularisation for

label disambiguation. Additionally, this method can be

universally applied to other related fine-grained PLL

learning methods. Thereafter, global label-hierarchical-

wise embedding regularisation is proposed, using the

positive samples from the consistent classifier to learn

more distinct representation from fine-grained instances.

Lastly, we propose contrastive prototype regularisation for

updating pseudo labels.

• A new ambiguity condition (5) is proposed for fine-grained

PLL. Theoretically, we have proven that the method is a

Classifier-Consistent Risk Estimator.

II. FINE GRAINED PARTIAL LABEL PROBLEM SETTING

Notations: Given a feature space X ⊆ R
d and a fully

supervised label space defined as Y = {1, . . . , c}, with the

number of classes denoted as |c|> 2, the partially non-uniform

fine-grained partial label set has a space of �Y := {�y | �y ⊆ Y}.

This implies that there are a total of 2c possible selections of

subsets in Y , which include the empty set and the full candidate

set. Under the paradigm of partially non-uniform fine-grained

partial labels, each instance X ∈ X has a candidate set of
�Y ∈ �Y . The distribution of the fine-grained partial label dataset,

denoted as �D, includes elements (X, �Y ) from the Cartesian

product X × �Y . The objective is to learn a classifier from

the partially non-uniform fine-grained partial label sample of

size m, defined as �D = {(X1, �Y 1), . . . , (Xm, �Ym)}, which

are independently and identically drawn from the distribution
�D. The aim is for the classifier to accurately assign the true

labels to the testing dataset.

III. DISTINCTION BETWEEN CONVENTIONAL (UNIFORM
AND NON-UNIFORM) AND FINE-GRAINED PLL USING

CAUSAL GRAPH MODEL

In this section, we have compared conventional (uniform

and non-uniform) and fine-grained partial labels using a causal

graph model. It allows a clear visual representation of fine-

grained label generation. Figure 2(a) depicts the generation

process for a uniform partial label. The generation of �Y depends

only on the true category Y , and no additional variables are

considered. This scenario is quite unrealistic where the labels

in �Y are generated with uniform probability. Thus, Figure

2(b) presents a non-random approach for the generation of �Y
by considering variables Y and Y ′. It offers a more accurate

depiction of how partial labels should realistically be generated.

Here, Y ′ denotes categories with subtle differences from the

true category Y , resulting in a non-uniform partial label. In

the fine-grained partial label scenario, the fine-grained feature

variable X is used to represent the nature of subtle differences

in the features of fine-grained objects. For example, in a dataset

of bird species, the true category Y could be a specific species
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(a) Uniform Partial Label

Y Y ′ �Y

(b) Non-Uniform Partial Label
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X

(c) Fine Grained Partial Label

Fig. 2: In the case of uniform partial labeling, the true category Y possesses distinct features that make other equally likely categories
distinguishable from it. In non-uniform partial labeling, the true category Y has relatively distinctive features compared to other subtle
differences categories Y ′, which shares relatively similar features with the true category. In Fine-Grained Partial Labeling, the true category
Y has subtle nuances of features like voice, face and fine grained animal species dataset, while the other categories Y ′ exhibit subtle

differences in their features X compared to the true category. Fine-Grained Partial Label Generation is introduced in Figure 1 (c). Let �Y
denotes the observed candidate set of annotations provided by the annotator for an fine-grained feature X . Y ′ is denoted as a subtle difference
category. The Y stands for true category to which the fine-grained feature instance X belongs.

of bird, while the subtly different category Y ′ might include

other species that have subtle differences from the true species

category of fine-grained bird X . Based on Figure 1(c), we can

establish a joint probability distribution (as described in Eq.

(3)).

P
(
Y, Y ′, �Y ,X

)
= Pθ

(
�Y |Y, Y ′, X

)
P (Y ′|Y,X)P (X)P (Y ) (1)

We have weakened the assumption from P (Y ′ | Y,X) to

P (Y ′ | Y ) to make variable Y ′ independent of X . This means

that the generation of Y ′ depends solely on Y . Consequently,

the equation becomes

P
(
Y, Y ′, �Y ,X

)
= Pθ

(
�Y | Y ′, Y,X

)
P (Y ′ | Y )P (X)P (Y ) (2)

Here, P(�Y = �y | Y = y, Y ′ = y′, X = x) represents

the conditional probability that the model aims to learn and

optimise. P (X) and P (Y ) are the marginal probabilities of

X and Y , respectively, which represent a standard normal

distribution of the image and a uniform distribution of the label.

Since X is given and is explicitly captured in the learning

process, and P (Y ) is uniform, meaning it does not vary across

instances, it is not necessary to include it in the learning process.

This provides the causal graph model perspective of the fine-

grained PLL. In this context, P (Y ′|Y ) is named the fine-

grained transition matrix. It is denoted as Z(x)y,y′ , which can

be defined as the transition probability from a specific true class

y of the fine-grained object x to a specific subclass y′. If classes

y and y′ are in the same superclass, this could be reflected

in Z(x)y, y′ having a higher value, since classes belonging

to the same superclass tend to have a higher likelihood of

sharing subtle nuances. Conversely, Z(x)y,y′ = 0 indicates

that classes y and y′ do not belong to the same superclass,

showing a weaker or negative correlation. Each superclass

consists of many specific classes. It is reasonable to assume

that considering the superclass information of the dataset, the

fine-grained transition matrix is usually accessible. The entries

of the fine-grained transition matrix, Z(x)y,y′ , are defined as

Z(x)y,y′ = P (Y ′ = y′|Y = y), with y, y′ ∈ {1, . . . , c}.

IV. FINE-GRAINED PARTIAL LABEL DISTRIBUTION

The conditional probability of fine-grained partial labels is

derived as follow:∑
y∈Y

P(�Y = �y, Y = y | X = x)

=
∑
y∈Y

∑
y′∈Y ′

P(�Y = �y, Y = y, Y ′ = y′ | X = x)

=
∑
y∈Y

∑
y′∈Y ′

P(�Y = �y | Y = y, Y ′ = y′, X = x)P (Y ′ = y′ | Y = y)︸ ︷︷ ︸
Noised Induced Fine-Grained Partial Label Transition Matrix

P(Y = y | X = x),

(3)

where,

P(�Y = �y | Y = y, Y ′ = y′, X = x)P (Y ′ = y′ | Y = y)

=

⎧⎨
⎩

1

2c−1 − 1
P (y′ | y) if y, y ∈ �Y

0 if y, y′ /∈ �Y

(4)

Here, P(�Y = �y | Y = y, Y ′ = y′, X = x) is the conditional

probability of �Y given Y, Y
′
, and X . This is also known as the

Fine-Grained Partial Label Transition Matrix. For simplicity,

we have assumed the �Y is independent of Y
′
, and X which is

1
2c−1−1 according to [16]. Unlike the previous work [16] which

has studied under the uniform partial label transition matrix,

we have studied partially non-uniform type by introducing

the transition matrix Z. The full detailed explanation of

conventional partial label distribution and fine-grained partial

label distribution is illustrated in Table 1.

A. Assertion Conditions in Fine-Grained Partial Label Gener-
ation Set

The learning conditions for fine-grained partial label

are described below. According to [1], a certain de-

gree of ambiguity is required for the learnable PLL.

The Fine Grained Partial Label ERM Learnability condi-

tion, referred to as Lemma 1, is proposed as follows:

Py′,ȳ := P(y′, ȳ ∈ �Y | y′, ȳ �= y, x). (5)

Here, y′ represents the fine-grained label, while ȳ denotes

a random false positive label. Certain ambiguity conditions

must be satisfied to ensure the learnability of the fine-grained

(PLL) problem, where y′ �= y and ȳ �= y. These conditions, as

proposed by [27], guarantee the Empirical Risk Minimization

(ERM) learnability of the fine-grained PLL problem, given

a certain degree of ambiguity. In our case, this condition is

Py′,ȳ < 1. The term y represents the true label corresponding
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to each instance x. Here, Py is defined as P(y ∈ �Y |Y = y),
where Py = 1 ensures that the ground-truth label is included in

the partially non-uniform fine-grained partial label set for each

instance. The term Py′ is defined as nearly one in a relatively

small-class dataset, while Py′ is greater than Pȳ in a relatively

large-class dataset.

V. SPECIFIC CLASSES-HIERARCHICAL
REGULARISATION

According to Equation (7), the fine-grained transition matrix

Z, which represents correlations across specific classes, plays

a crucial role in the process of fine-grained label generation.

This generation process can be decomposed into two parts:

Z and the noise fine-grained partial label transition matrix

A. Therefore, by integrating the fine-grained transition matrix

Z into our model, we can significantly reduce the ambiguity

associated with the term A∗, the noise induced fine-grained

partial label transition matrix. This matrix is defined as the

probability of observing the candidate label set �Y given a

true label Y , an instance X , and a fine-grained label Y ′. It

is expressed as A∗
ij = P (�Y = �y | Y = y, Y ′ = y′, X =

x)P (Y = y | Y ′ = y′), where �y belongs to the set Y and

�y is in the range of [2c − 1]. To achieve this, we propose

the specific classes hierarchical regularisation approach. This

method incorporates the fine-grained transition matrix Z to

explicitly encode the correlations across specific classes into

the fine-grained PLL framework.

P (�Y | X = x) = A∗ P (Y | X = x),︸ ︷︷ ︸
True posterior probability

A∗−1 P (�Y | X = x) = P (Y | X = x),︸ ︷︷ ︸
True posterior probability

(6)

ZT−1
A−1P (�Y | X = x) = P (Y | X = x).︸ ︷︷ ︸

True posterior probability

(7)

Nonetheless, we cannot yet claim to have obtained a classifier-

consistent risk estimator since the term A remains unsolved.

Furthermore, the complexity of A increases exponentially with

the expansion of the label space. As the number of possible

subsets, 2c − 1, grows, accurately estimating P (�Y | Y, Y ′, X)
becomes infeasible. Consequently, instead of attempting to

estimate P (�Y | Y, Y ′, X) precisely, we have relaxed the

assumption of A by positing the independence of �Y from X
and Y ′. Although the transition matrix A = P (�Y | Y, Y ′, X)
differs from P (�Y | y), it is important to note that as long

as the fine-grained transition matrix P (Y ′ | Y ) is captured,

which is the primary factor impacting the outcome of label

generation, the differences arising from transitioning from

a uniform to a partially non-uniform label distribution can

be neglected without significantly affecting the optimisation

process. Moreover, as [16] states, fully recovering the term

P (�Y | y), which depends solely on y, is not necessary for

optimising the loss function. For precise expression, we assume

that �Y is independent of y′, y, and x, thus modifying the term

A to the actual value 1
(2k−1)−1

. Consequently, we have derived

the specific classes-hierarchical regularisation as follows:

�L(f(x), �y)

=− 1

N

N∑
m=1

⎛
⎝2c−1∑

j=1

I

(
�Ym = �yj

)
log

(
A∗[:, j]�g(xm)

)⎞⎠
= − 1

N

N∑
m=1

c∑
i=1

1(�Ym = am) log

(
1

2c−1 − 1

∑c
j=1 Zji exp (fj(xm))∑c

k=1 exp (fk(xm))

) (8)

where Zi,j ∈ [0, 1]c×c, Zi,i = 1, for ∀i=j ∈ [c], Ii,j = 0,

for ∀i �=j ∈ [c]. The 1
2c−1−1 is derived according to [16] and

denotes as A. The I is the indicator function.

L(f(X),�Y )SCH
= −

N∑
m=1

c∑
i=1

1(�Ym = ām) log

(
A

∑c
j=1 Zji exp (fj(xm))∑c

k=1 exp (fk(xm))

)
, (9)

where N denotes the total number of examples. The classifier

f(xm) maps m-th example xm to the logit space. fj(xm) is

the logit for j-th class of the m -th input. Zij denotes the

elements of the transition matrix, Z. The ām is the predicted

class label for the m-th example. Given the Z, the uncertainty

of the intractable A∗ is greatly reduced, as shown in equation

(7). We have replaced the hard target label candidate set with

pseudo labels ā, which is updated according to (12).

VI. GLOBAL LABEL-HIERARCHICAL-WISE EMBEDDING
REGULARISATION

Given an more precised pseudo label of the positive sample

set provided by function (9) the global label-hierarchical-wise

embedding regularisation is applied to facilitate the model to

learn more distinct representation of the fine grained object by

pushing apart the dissimilar fine grained sample and grouping

the similar fine grained sample. The norm embedding of u
and v as the current anchor and key normalised embedding,

respectively, derived from the feature extraction network fΘ and

the key neural network f ′
Θ. The global label-hierarchical-wise

embedding regularisation is defined as follows:

L(f(x),τ,c)GLHE = − 1

N+(x)

∑
v+∈N+(x)

log
exp(u�v+/τ)∑

v′∈c̄(x) exp(u
�v′/τ)

,

(10)

1) Positive Sample Selection: The Dq and Dv are vectorial

embeddings corresponding to the anchor and key views of

the current mini-batch. Given an instance x, the global label-

hierarchical-wise embedding regularisation of each sample is

denoted by contrasting its anchor embedding with the remaining

samples of the total sample pool c̄. The S̄(x) is the sample

set excluding the anchor set q and is defined as S̄(x) =
c̄\q, where c̄ = Dq ∪ Dv ∪ queue. The positive sample set

is defined as N+(x) = v′ | v′ ∈ S̄ (x) , ȳ′ = (ŷ = c), which

includes samples from the current mini-batch with the predicted

label ŷ = argmaxy∈Y fy(augq(x)) equal to the prediction ȳ′ of

instances from S̄(x). Finally, we have the final loss function

expressed as:

LSCH + LGLHE = λL(f(x), τ, c) + �L(f(X), �Y ). (11)

Overall, the specific classes-hierarchical regularisation (9) is

designed to incorporate fine grained correlation information
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through the use of Z. This process leads to the identification

of more precise positive samples. These positive samples

are subsequently exploited using the global label-hierarchical-

wise embedding regularisation (12) to help model learn

more distinctive representation of the fine-grained instances.

Ultimately, this leads to improved classification accuracy. λ is

the hyperparameter.

VII. CONTRASTIVE PROTOTYPE REGULARISATION

We present a contrastive prototype regularisation approach.

This method updates the prototype to allow prototypes of differ-

ent classes with subtle differences to have as large a distance or

margin as possible. Initially, we need to determine the margin

between the prototype vector vi and the prototype vector

vj , both in S
d−1, which is defined as mij = exp(−v�

i vj).
The mij quantifies the margin between the prototype vectors

of vi and vj on the unit sphere. A smaller value of mij

indicates more similarity between vi and vj . For the prototype

vi, we define the normalised margin between vi and vj

as m̄ij =
exp(−v�i vj)∑
j �=i exp(−v�i vj)

. For each vi, i ∈ {1, · · · ,K},

momentum updating is implemented, where the new prototype

vector vt+1
i is a combination of the normalised margin between

vj and vi for all j �= i as a regularisation. The resulting new

update rule is given as vt+1
i =

√
1− α2vt

i + α
g

‖g‖2
, where

the gradient g is defined as g = u− β
∑

j �=i m̄
t
ijv

t
j , and u is

the anchor embedding whose prediction is class i. Here, m̄t
ij

is the normalised margin between prototype vectors at step t
(i.e., vt

j , j �= i). The g uses u, the anchor embedding of x, to

update the prototype vector vi by considering the similarity

of prototype vectors. If the similarity is high, resulting in a

smaller value of m̄ij , more weight is given to the original

u in the prototype updating, leading to fewer changes in

g. Consequently, the impact on v from less similar classes

will be less, and vice versa. This ensures a larger separation

of embeddings with subtle differences for different classes,

endowing the model to learn more distinctiveness for dissimilar

classes through greater adjustments to vi, and less modification

for similar classes. The updating mechanism of pseudo labels

ā is defined as follows:

ā = φā+ (1− φ)rc, rc =

{
1 if c = argmaxy∈Y u�vy,

0 otherwise.
(12)

Here, ā is the average weighted combination of the uniform

probability 1
|c|1, the initial format of ā, and rc. The rc is

constructed based on the dot product of the anchor embedding

u and vy , ensuring that classes with more similar prototypes are

selected. The vy is the normalised prototype vector associated

with the y-th class. The hyper-parameter φ controls the updating

of ā.

VIII. CLASSIFIER-CONSISTENT RISK ESTIMATOR

1) Learning with True labels: Lets denote f(X) =
(g1(x), . . . , gc(x)) as the classifier, in which gc(x) is the

classifier for label c ∈ [c]. The prediction of the classifier

fc(x) is P (Y = c | x). We want to obtain a classifier f(X)
=argmaxc∈[c] gc(x). The loss function is to measure the loss

given classifier f(X). To this end, the true risk can be denoted

as:

R(f) = E(X,Y )[L (f (X) , Y )]. (13)

The ultimate objective is to learn the optimal classifier

f∗ = argminf∈F R(f) for all loss functions, aiming for the

convergence of empirical risk R̄fg(f) to the true risk R(h).
To achieve the optimal classifier, we need to prove that the

modified loss function is risk consistent as if it can converge

to the true loss function.
2) Learning with Fine-Grained Partial Label: An input

X ∈ X has a candidate set of �Y ∈ �Y but a only true label

Y ∈ �Y . Given the fine-grained partial label �Y ∈ �Y and instance

X ∈ X that the objective of the loss function is denoted

as: R̂(f) = E(X,�Y )
�L
(
f (X) , �Y

)
. The optimal classifier

f̂∗ = argminf∈F R̂(f). Since the true fine-grained partial

label distribution D̄ is unknown, our goal is approximate the

optimal classifier with sample distribution D̄fg by minimising

the empirical risk function, namely

R̂fg(f) =
1

n

n∑
i=1

�L (f (xi) , �yi) . (14)

Assumption 1. According to [28] that the minimisation of the

expected risk R(f) given clean true population implies that the

optimal classifier is able to do the mapping of f∗
i (X) = P (Y =

i | X), ∀i ∈ [c]. Under Assumption 1, we can draw conclusion

that f̂∗ = f∗ according to Theorem 2 in the appendix page.

Theorem 1. Assume that the fine-grained transition matrix
Zy,y′ is fully ranked and the assumption 1 is met, the the
minimizer of f̂∗ of R̂(f) will converge to f∗ of R(f), meaning
f̂∗ = f∗.

Remark. If A and Zy,y′ are accurately estimated, the empirical

risk of the algorithm trained with partially non-uniform fine-

grained partial labels will converge to the expected risk of the

optimal classifier trained with true labels. As the number of

samples approaches infinity, considering the fine-grained partial

labels, f̂n theoretically converges to f̂ . Consequently, f̂n will

converge to the optimal classifier f∗, as stated in Theorem 1.

Generalisation Error. Define R̂ and R̂fg as the true risk

and the empirical risk, respectively, given the fine-grained

partial label dataset. The empirical loss classifier is obtained as

f̂fg = argminf∈F R̂fg(f). Suppose a set of real hypotheses

F�yk
exists, with fi(X) ∈ F for all i ∈ [c]. Also, assume

its loss function �L(f(X), �Y ) is L-Lipschitz continuous with

respect to f(X) for all �yk ∈ �Y and upper-bounded by

M , i.e., M = supx∈X ,f∈F,yk∈�Y
�L (f(x), �yk). The expected

Rademacher complexity of F�yk
is denoted as �n(F�yk

)[29].

As the number of samples approaches infinity (n → ∞),

�n(F�yk
) tends to zero with a bounded norm. Subsequently,

R̄(f̂) converges to R̄(f̂�) as the number of training data

becomes infinitely large.

Theorem 2. For any δ > 0, with probability at least 1− δ,

R̂
(
f̂fg

)
− R̂

(
f̂�

)
≤ 4

√
2L

c∑
k=1

�n (F�yk
) +M

√
log 2

δ

2n
. (15)

The proof is given in Appendix Theorem 2.
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Dataset Method q∗ = 0.03± 0.02 q∗ = 0.05± 0.02 q∗ = 0.1± 0.02

CIFAR100 LSCH + LGLHE 73.36 ±0.32 72.76±0.14 54.09 ±1.88
PiCO∗ 72.87±0.26 72.53 ±0.37 48.03 ±3.32

ML-PLL∗ 63.98 ±1.12 56.10±0.55 25.74 ±0.29
LWS∗ 46.8 ±0.06 24.82 ±0.17 4.53 ±0.47

PRODEN ∗ 59.33 ±0.48 41.20 ±0.27 13.44±0.41

CUB200 LSCH + LGLHE 72.04 ±0.73 71.95±0.38 56.03±0.69
PiCO∗ 71.85±0.53 71.15±0.41 50.31±1.01

ML-PLL∗ 5.13±0.68 2.39±0.38 0.84±0.18
LWS∗ 9.6±0.62 4.02±0.03 1.44±0.06

PRODEN∗ 18.71±0.45 17.63±0.89 17.99±0.62

Dataset Method q∗ = 0.1± 0.02 q∗ = 0.3± 0.02 q∗ = 0.5± 0.02

CIFAR10 LSCH + LGLHE 93.54±0.08 92.79±0.3 89.81±0.65
PiCO∗ 93.64±0.24 92.85±0.43 81.45±0.57

ML-PLL ∗ 92.47 ±0.33 88.97 ±0.17 66.74±0.90
LWS∗ 87.34±0.87 39.9±0.72 9.89±0.55

PRODEN∗ 88.80±0.14 81.88±0.51 20.32±3.43

TABLE II: Accuracy comparison on three benchmark datasets. Superior results are indicated in bold. Our proposed methods

have shown comparable results to fully supervised learning and outperform previous methods in a more challenging learning

scenario, such as the partial rate at 0.5 (CIFAR10) and 0.1 (CIFAR100, CUB200). (The symbol ∗ indicates fine-grained partial

label dataset).

IX. EXPERIMENTS

Dataset: We evaluated our proposed method using three bench-

mark datasets: CIFAR10, CIFAR100 [30], and CUB200 [31].

CIFAR100 comprises 50,000 training images and 10,000 test

images, distributed across 100 classes. In contrast, CIFAR10

consists of the same total number of images but is divided into

just 10 classes. The CUB200 dataset includes 11,788 images

of birds, categorized into 200 distinct classes. The data for

CUB200 is split into 5,994 training images and 5,794 testing

images.

Main Empirical Results for CIFAR10: We trained the

model using a fine-grained partial label dataset at rates of

q = 0.1± 0.02, 0.3± 0.02, 0.5± 0.02. Classification accuracy

for all experiments is presented in Table 1. We benchmarked

our results against prior works on CIFAR-10, including

PiCo [12], LWS [32], PRODEN [15], and ML-PLL [33],

all of which employ class-hierarchical regularization. Our

method consistently outperformed these previous approaches

in scenarios involving fine-grained Partial Label Learning

(PLL) with q = 0.3± 0.02, 0.5± 0.02. Notably, our proposed

method demonstrated a significant improvement, achieving an

8.36% increase in classification accuracy at a 0.5 fine-grained

partial rate compared to the best-performing previous work

[12]. Additionally, our results were competitive at partial rates

of 0.1 and 0.3.

Main Empirical Results for CUB200 and CIFAR100: Our

proposed method excelled in challenging tasks involving fine-

grained partial labels, particularly notable at a 0.1 partial rate

across both the CUB200 and CIFAR100 datasets. Specifically,

for the CUB200 dataset, our method achieved significant

improvements, showing a notable increase of 5.72% at the

0.1 fine-grained partial rate, along with gains of 1.281% and

0.37% at the 0.05 and 0.03 rates, respectively. Similarly, on the

CIFAR100 dataset, our approach demonstrated a substantial

classification advantage, with margins of 6.06% at the 0.1

rate, and 0.4181% and 0.5414% at the 0.05 and 0.03 rates,

respectively. To ensure the reliability of these results, each

experiment was conducted five times using different random

seeds.

A. Ablation Study

In this section, we present a comparison of the classification

performance for the Fine-Grained Partial Label task on two

datasets, CUB200 and CIFAR100, of the state-of-the-art method

PLCR [34] and our method, which integrates the identity

transition matrix loss with PLCR. As shown in Table 5

and Table 6, our method has achieved superior results for

partially non-uniform fine-grained learning tasks. Even under

less challenging conditions where q∗ = 0.03, our loss function

demonstrates improved performance. Most importantly, we’ve

observed a significant deterioration in the performance of the

PLCR method under more challenging conditions of q∗ =
{0.05, 0.1}. This suggests that without properly accounting

for the exogeneity of the dataset, the designed algorithm may

not handle more realistic tasks efficiently. The table above

presents a comparison of the PLCR method on its own and the

combination of PLCR with our LSCH. Overall, the table clearly

shows that, regardless of the difficulty of learning tasks (q∗), the

accuracy of PLCR significantly improves when integrated with

our LSCH. For q∗ = 0.03, the LSCH has improved the accuracy

of the PLCR method by 26.87%. Similarly, for q∗ = 0.05, we

have observed an accuracy improvement of 35.74%. Lastly,

for q∗ = 0.1, the accuracy improvement is 23.85%. These

improvements prove the effectiveness of the LSCH, especially

in fine-grained PLL tasks.

Data Method q∗ = 0.03 q∗ = 0.05 q∗ = 0.1
CUB200 PLCR∗ 34.08±0.18% 15.37±0.4% 4.05±0.23%
CUB200 PLCR∗+ LSCH 60.95±0.39% 51.11±0.64% 27.90±0.98%

TABLE III: Accuracy Comparison on Benchmark dataset

(CUB200)
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(a) (b) (c)

Fig. 3: Classification Comparison on datasets CIFAR10, CIFAR100, CUB200

Data Method q∗=0.1
CIFAR100 PiCO[12] 20.941(-24.015)%

Data Method q∗=0.1
CIFAR100 LSCH + LGLHE 54.156(0.066)%

Data Method q∗=0.1
CUB200 PiCO[12] 21.22(-25.155)%

Data Method q∗=0.1
CUB200 LSCH + LGLHE 48.62(-7.64)%

Fig. 4: Accuracy comparison for benchmark dataset (CUB200).

(a) (b)

Fig. 5: Prototype and Classification Comparison

Data Method q∗=0.1 q∗ = 0.2 q∗ = 0.3 q∗ = 0.4
CIFAR100 PLCR∗ 73.67%±0.13 68.99% ±0.18 52.45%±0.99 36.50%±1.68
CIFAR100 PLCR∗+ LSCH 73.55%±0.30 70.66%±0.08 61.57%±0.59 47.87%±0.49

TABLE IV: Accuracy Comparison on Benchmark datasets

(CIFAR100)

Figure 5 examines the impact of updating entries in the

original fine-grained transition matrix, denoted as ZOriginal(with

entries 0.2), to form a new matrix, ZNew(with entries 0.3), on

the classification performance: Our results demonstrate that

a fine-grained transition matrix is crucial for training a more

robust model. Compared to the approach described in [12], our

method exhibits greater robustness. Figure 6 illustrates how

the proposed Equation (9) significantly reduces the uncertainty

associated with the A∗ transition matrix. This reduction in

uncertainty subsequently improves both classification accuracy

and prototype performance.

X. CONCLUSION

In this paper we have addressed the fine-grained PLL

problem by capturing the dependency of the fine-grained label

on the true label. However, accounting for this dependency

increases the complexity of the transition matrix, potentially

leading to an inconsistent classifier. To address this issue, we

propose the specific classes-hierarchical regularisation. This

approach not only offers a provably consistent classifier but

also achieves superior performance. Thereafter, the global

label hierarchical wise embedding regularisation is proposed,

exploiting the positive samples from the consistent classifier to

learn more distinct representation from fine grained instances,

leading to better classification performance.
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XI. APPENDIX

A. Implementation Details

The contrastive network was equipped with a projection

head featuring a 128-dimensional, 2-layer MLP embedding

and used augmentation techniques as described in [12]. The

network operated with a momentum of 0.999. Queue sizes

were configured to 8192 for CIFAR-10 and CIFAR-100, and

4192 for CUB200.

For model training, the following parameters were used: the

model trained for 299 epochs using an SGD optimizer with a

momentum of 0.9, a batch size of 256, and a cosine learning

rate schedule. The temperature τ was set at 0.07, and the loss
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weighting λ was 0.5. The hyperparameters α and β, controlling

prototype updates, were set at 0.1 and 0.01 respectively.

Regarding the partial label rates, for CIFAR-10, the rates

were q ∈ {0.1, 0.3, 0.5}, and for CIFAR-100/CUB200, the rates

were q ∈ {0.03, 0.05, 0.1}. The fine-grained rates were defined

as q∗ ∈ {0.1 ± 0.02, 0.3 ± 0.02, 0.5 ± 0.02} for CIFAR-10

and q∗ ∈ {0.03 ± 0.02, 0.05 ± 0.02, 0.1 ± 0.02} for CIFAR-

100/CUB200.

Training durations varied by dataset and label specificity:

CIFAR-10 required 1 epoch for all partial rates and 50 epochs

for fine-grained labels. For CIFAR-100 and CUB200, the

epochs were set to {20, 20, 100} for clean partial labels

and {20, 100, 100} for fine-grained partial rates. Notably,

CIFAR-10 training did not involve global label-hierarchical-

wise embedding regularisation.

B. Implementation Details for Ablation Study

1) Implementation Details for CUB200: In the CUB200

dataset, for tasks with q∗ = {0.03, 0.05}, we have assigned a

total of 80 epochs, considering these to be less challenging.

Conversely, for the more demanding task where q∗ = 0.1, we

have increased the total epochs to 100. Across all fine-grained

Partial Label Learning (PLL) tasks on CUB200, the learning

rate is uniformly set at 0.01. For all other methods, we have

implemented the number of epochs that yields the best results.

2) Implementation Details for CIFAR100 and CIFAR10:
For the CIFAR100 and CIFAR10 datasets, within our LSCH
framework, the tasks with q∗ = 0.03 are considered relatively

easy and thus set to 150 epochs. Tasks with q∗ = {0.05, 0.1}
also have a duration of 150 epochs, reflecting a standardized

approach to managing these difficulty levels. For all other

methods, we have implemented the epoch count that produces

the most effective outcome. The learning rate for all fine-

grained PLL tasks on CIFAR100 is set at 0.1.

C. The Proof for Theorem 1

The objective is to design a new loss function, enabling the

hypothesis with fine-grained partial labels to converge towards

the optimal classifier trained with true labels. We define �L as

the newly proposed loss function for fine-grained PLL. The

true and empirical loss functions regarding fine-grained partial

labels are stated as R̂(f) = E(X,�Y )∼P(X,�Y )
[ �L(f(X), �Y )] and

R̂fg(f) = 1
n

∑n
i=1

�L(f(xi), �yi), respectively. Furthermore,

we define {(xi, �yi)}1≤i≤n as the fine-grained partial label

sample space. The functions f̂∗ and f̂fg represent the optimal

classifiers with minimum expected risk function R̂(f) and

empirical risk function R̂fg(f), respectively. Specifically,

the model is formalised as f̂∗ = argminf∈F R̂(f) and

f̂fg = argminf∈F R̂fg(f). The goal of the proposed loss

function �L is to ensure that the classifier, trained with a sample

of fine-grained partial labels, converges to the optimal classifier

trained with a population dataset of true labels. Formally, this

convergence is represented as f̂fg
n−→ f�. The true expected

risk function for a classifier trained with true labels from the

population is defined as R(f) = E(X,Y )∼P (X,Y )[ �L(f(X), Y )].

The optimal classifier for the true expected risk function is

defined as f� = argminf∈F R(f).

D. The Proof for Theorem 2
Definition 1: Let’s denote �yk as the kth element of the vector

�y, being 1 while the others are 0, if �yk ∈ �y. Here, �y represents

a candidate set of the fine-grained partial label of an instance.

Based on Lemma 1 and Theorem 1, the estimation error bound

has been proven through the following equation:

R̂
(
f̂fg

)
−min

f∈F
R̂(f) = R̂

(
f̂fg

)
− R̂

(
f̂�

)
= R̂

(
f̂fg

)
− R̂fg(f̂) + R̂fg(f̂)− R̂fg

(
f̂�

)
+ R̂fg

(
f̂�

)
− R̂

(
f̂�

)
≤ R̂

(
f̂fg

)
− R̂fg(f̂) + R̂fg

(
f̂�

)
− R̂

(
f̂�

)
≤ 2 sup

f∈F

∣∣∣R̂(f)− R̂fg(f)
∣∣∣

≤ 4� (Fv) +M

√
log 2

δ

2n

≤ 4
√
2L

c∑
k=1

�n (F�yk
) +M

√
log 2

δ

2n
.

(16)

The first inequality, R̂fg(f̂) − R̂fg(f
�) ≤ 0, establishes the

initial step in the proof. The derivation and validation of the

first three equations have been thoroughly demonstrated in

[35]. The overarching framework and subsequent elements of

this proof draw extensively on the methodologies and results

discussed in [29].

The definition 2: Suppose a space D and a sample distribution

DS are given, in which S = {s1, . . . , sn} is a set of examples

drawn independently and identically from the distribution DS .

Additionally, let F be defined as a class of functions f : S → R.

The empirical Rademacher complexity of F is defined as:

�̂n(F) = Eσ

[
sup
f∈F

(
1

n

n∑
i=1

σif(xi)

)]
. (17)

The expected Rademacher complexity of the function space F
is denoted as:

� = EDS
Eσ

[
sup
f∈F

(
1

n

n∑
i=1

σif(xi)

)]
. (18)

The independent random variables σ1, . . . , σn are uniformly

selected from {−1, 1} and are defined as Rademacher variables.

Let M be the upper bound of the loss function. Subsequently,

for any δ > 0, with probability at least 1− δ, we have:

sup
f∈F

∣∣∣R̂(f)− R̂fg(f)
∣∣∣ ≤ 2�( �L ◦ F) +M

√
log(1/δ)

2n
, (19)

where �( �L ◦ F) is the expected Rademacher complexity of

the function space with the modified loss function �L, defined

as:

�L(f(X), �Y ) = −
c∑

i=1

(āi) log
(
(Z)

�
f(X)i

)
, (20)

and FV is:

FV =

{
(X, �Y ) �→

c∑
i=1

(āi) log
(
(Z)

�
f(X)i

)
| f ∈ F

}
. (21)
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Assuming the loss function �L(f(X), �Y ) satisfies the L-

Lipschitz property with respect to f(X) for all �yk ∈ �Y , and

applying the Rademacher vector contraction inequality, we

obtain:

R(FV ) ≤
√
2L

c∑
k=1

�n(F�yk
). (22)

The proof is thus completed.

E. The Transition Matrix of the Table 1

Fig. 6: The Transition Matrix
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