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Abstract—Extracting discriminative features plays a crucial
role in the fine-grained visual classification task. Most of the
existing methods focus on developing attention or augmentation
mechanisms to achieve this goal. However, addressing the am-
biguity in the top-k prediction classes is not fully investigated.
In this paper, we introduce a Self Assessment Classifier, which
simultaneously leverages the representation of the image and
top-k prediction classes to reassess the classification results.
Our method is inspired by self-supervised learning with coarse-
grained and fine-grained classifiers to increase the discrimination
of features in the backbone and produce attention maps of
informative areas on the image. In practice, our method works as
an auxiliary branch and can be easily integrated into different ar-
chitectures. We show that by effectively addressing the ambiguity
in the top-k prediction classes, our method achieves new state-
of-the-art results on CUB200-2011, Stanford Dog, and FGVC
Aircraft datasets. Furthermore, our method also consistently
improves the accuracy of different existing fine-grained classifiers
with a unified setup.

Index Terms—fine-grained classification, self-supervised learn-
ing

I. INTRODUCTION

The fine-grained visual classification task aims to classify

images belonging to the same category (e.g., different kinds

of birds, aircraft, or flowers). Compared to the ordinary image

classification task, classifying fine-grained images is more

challenging due to three main reasons: (i) large intra-class

difference: objects that belong to the same category present

significantly different poses and viewpoints; (ii) subtle inter-

class difference: objects that belong to different categories

might be very similar apart from some minor differences, e.g.,

the color styles of a bird’s head can usually determine its fine-

grained category; (iii) limitation of training data: labeling fine-

grained categories usually requires specialized knowledge and

a large amount of annotation time. Because of these reasons,

it is not a trivial task to obtain accurate classification results

by using only the state-of-the-art CNN such as VGG [1].

Recent works show that the key solution for fine-grained

classification is to find informative regions in multiple object’s

parts and extract discriminative features [2]–[4]. A popular

approach to learn object’s parts is based on human anno-

tations [5]–[7]. However, it is time-consuming to annotate

fine-grained regions, hence making this approach imprac-

tical. Some improvements utilize unsupervised or weakly-

supervised learning to locate the informative object’s parts [3],

[8] or region of interest bounding boxes [9], [10]. Although

this is a promising approach to overcome the problem of man-

ually labeling fine-grained regions, these methods have draw-

backs such as low accuracy, costly in training phase/inference

phase, or hard to accurately detect separated bounding boxes.

In this paper, we introduce a Self Assessment Classifier

(SAC) method to address the ambiguity in the fine-grained

classification task. Intuitively, our method is designed to

reassess the top-k prediction results and eliminate the unin-

formative regions in the input image. This helps to decrease

the inter-class ambiguity and allows the backbone to learn

more discriminative features. During training, our method also

produces attention maps that focus on informative areas of

the input image. By integrating into a backbone network,

our method can reduce the wrong classification over top-k

ambiguity classes. Note that ambiguity classes are the results

of uncertainty in the prediction that can lead to the wrong

classification. Our contributions can be summarized as follows.

• We propose a new self class assessment method that

effectively jointly learns the discriminative features and

addresses the ambiguity problem in the fine-grained vi-

sual classification task.

• We show that our method can be easily integrated into

different fine-grained classifiers to achieve new state-of-

the-art results.

II. RELATED WORKS

Fine-grained visual classification involves small diversity

within the different classes. Typical fine-grained problems,

such as differentiating between animal and plant species, drew

much attention from researchers. Since background context

acted as a distraction in most cases, many pieces of research

focus on improving the attentional and localization capabilities

of CNN-based algorithms [11], [12]. Besides, to focus on the

informative regions that could distinguish the species between

any two images, many methods relied on annotations of parts’

location or attributes [7]. Specifically, Part R-CNN [5] and

extended R-CNN [13] detected objects and localized their

parts under a geometric prior. Then, these works predicted a

fine-grained category from a pose-normalized representation.

In practice, it is expensive to acquire pixel-level annotations

of the object’s parts as ground truth. Thus, methods that require

only image-level annotations draw more attention [4], [14],

[15]. Lin et al. proposed the bilinear pooling [16] and its

improved version [17], where two features were combined at

each location using the outer product. In [18], the authors

introduce the Spatial Transformer Network to achieve accu-

rate classification performance by learning geometric trans-

formations. Yang et al. [19] used geographical and temporal
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Fig. 1. An overview of our proposed method. The Top-k Coarse-grained Class Search first generates a list of potential top-k prediction candidates using a
Deep CNN backbone. The Self Assessment Classifier then reassesses these predictions to improve the fine-grained classification results. The red color class
label denotes the ground truth. The black color regions denote dropped regions. Dotted line means the image is used for augmentation. Best viewed in color.

information for improving fine-grained classification results.

In [20], a meta-learning framework had been adopted to

learn features for fine-grained recognition. Recently, Joung et
al. [21] leveraged object representation to cope with multiple

camera viewpoint problem in the fine-grained classification.

Many works provided a training routine that maximized

the entropy of the output probability distribution for training

CNNs [14], [22]. Sun et al. proposed Multiple Attention

Multiple Class loss [23] that pulled positive features closer

to the anchor and pushed negative features away. Dubey et al.
proposed PC [24], which reduced overfitting by combining the

cross-entropy loss with the pairwise confusion loss to learn

more discriminative features. In [25], by using Maximum-

Entropy learning in the context of fine-grained classification,

the authors introduced a training routine that maximizes the

entropy of the output probability distribution. A triplet loss was

used in [26] to achieve inter-class separation. Hu et al. [14]

proposed a regularization loss to focus on attention regions

between corresponding local features. More recently, in [27],

diversification block cooperated with gradient-boosting loss

had been introduced to maximally separate the highly similar

fine-grained classes.

While it is expensive to acquire annotations of object’s

parts, unsupervised and weakly supervised methods for iden-

tifying informative regions have been investigated recently.

In SCDA [28], an unsupervised method was introduced to

locate the informative regions without using any image label or

extra annotation. However, it is less accurate when compared

with weakly supervised localization methods, which leveraged

image-level super-vision [29]. To locate the whole object,

Zhang et al. [30] used Adversarial Complementary Learning

which could recognize different object’s parts and discover

complementary regions that belong to the same object. Re-

cently, authors in [31] used Gaussian Mixture Model to learn

discriminative regions from the image feature maps for fine-

grained classification.

All of the above methods do not focus on the ambiguity

prediction classes, which is one of the main reasons that

causes wrong classifications. To address this problem, our

method is designed to explicitly reduce the effect of the top-

k ambiguity prediction classes. Furthermore, our method can

effectively learn and produce the attention map in an unsuper-

vised manner. In practice, our method can be easily integrated

into different fine-grained classifiers to further improve the

classification results.

III. METHODOLOGY

A. Method Overview

We propose two main steps in our method: Top-k Coarse-

grained Class Search (TCCS) and Self Assessment Classifier

(SAC). TCCS works as a coarse-grained classifier to extract

visual features from the backbone. The Self Assessment

Classifier works as a fine-grained classifier to reassess the

ambiguity classes and eliminate the non-informative regions.

Our SAC has four modules: the Top-k Class Embedding

module aims to encode the information of the ambiguity

class; the Joint Embedding module aims to jointly learn

the coarse-grained features and top-k ambiguity classes; the

Self Assessment module is designed to differentiate between

ambiguity classes; and finally, the Dropping module is a data

augmentation method, designed to erase unnecessary inter-

class similar regions out of the input image. Figure 1 shows

an overview of our approach.

B. Top-k Coarse-grained Class Search

The TCCS takes an image as input. Each input image is

passed through a Deep CNN to extract feature map F ∈
R

df×m×n and the visual feature V ∈ R
dv . m,n, and df

represent the feature map height, width, and the number

of channels, respectively; dv denotes the dimension of the

visual feature V. In practice, the visual feature V is usually

obtained by applying some fully connected layers after the

convolutional feature map F.

The visual features V is used by the 1st classifier, i.e.,

the original classifier of the backbone, to obtain the top-k
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prediction results. Assuming that the fine-grained dataset has

N classes. The top-k prediction results Ck = {C1, ..., Ck} is

a subset of all prediction classes CN , with k is the number of

candidates that have the k-highest confident scores.

C. Self Assessment Classifier

Our Self Assessment Classifier takes the image feature F
and top-k prediction Ck from TCCS as the input to reassess

the fine-grained classification results.

Top-k Class Embedding. The output of the TCCS module

Ck is passed through the top-k class embedding module to

output label embedding set Ek = {E1, ...Ei, ..., Ek}, i ∈
{1, 2, ..., k}, Ei ∈ R

de . This module contains a word em-

bedding layer [32] for encoding each word in class labels

and a GRU [33] layer for learning the temporal information

in class label names. de represents the dimension of each

class label. It is worth noting that the embedding module is

trained end-to-end with the whole model. Hence, the class

label representations are learned from scratch without the need

of any pre-extracted/pre-trained or transfer learning.

Given an input class label, we trim the input to a maximum

of 4 words. The class label that is shorter than 4 words

is zero-padded. Each word is then represented by a 300-D

word embedding. This step results in a sequence of word

embeddings with a size of 4 × 300 and denotes as Êi of

i-th class label in Ck class label set. In order to obtain the

dependency within the class label name, the Êi is passed

through a Gated Recurrent Unit (GRU) [33], which results in

a 1024-D vector representation Ei for each input class. Note

that, although we use the language modality (i.e., class label

name), it is not extra information as the class label name and

the class label identity (for calculating the loss) represent the

same object category.

Joint Embedding. This module takes the feature map F
and the top-k class embedding Ek as the input to produce the

joint representation J ∈ R
dj and the attention map. We first

flatten F into (df × f), and Ek is into (de × k). The joint

representation J is calculated using two modalities F and Ek

as follows

JT = (T ×1 vec(F))×2 vec(Ek) (1)

where T ∈ R
dF×dEk

×dj is a learnable tensor; dF = (df × f);
dEk

= (de × k); vec() is a vectorization operator; ×i denotes

the i-mode tensor product.

In practice, the preceding T is too large and infeasible to

learn. Thus, we apply decomposition solutions that reduce the

size of T but still retain the learning effectiveness. Inspired

by [34] and [35], we rely on the idea of the unitary attention

mechanism. Specifically, let Jp ∈ R
dj be the joint represen-

tation of pth couple of channels where each channel in the

couple is from a different input. The joint representation J is

approximated by using the joint representations of all couples

instead of using fully parameterized interaction as in Eq. 1.

Hence, we compute J as

J =
∑
p

MpJp (2)

Note that in Eq. 2, we compute a weighted sum over all

possible couples. The pth couple is associated with a scalar

weight Mp. The set of Mp is called the attention map M,

where M ∈ R
f×k.

There are f × k possible couples over the two modalities.

The representation of each channel in a couple is Fi, (Ek)j ,

where i ∈ [1, f ], j ∈ [1, k], respectively. The joint representa-

tion Jp is then computed as follows

JT
p = (Tu ×1 Fi)×2 (Ek)j (3)

where Tu ∈ R
df×de×dj is the learning tensor between chan-

nels in the couple.
From Eq. 2, we can compute the attention map M using

the reduced parameterized bilinear interaction over the inputs

F and Ek. The attention map is computed as

M = softmax ((TM ×1 F)×2 Ek) (4)

where TM ∈ R
df×de is the learnable tensor.

By integrating Eq. 3 and Eq. 4 into Eq. 2, the joint

representation J can be rewritten as

JT =

f∑
i=1

k∑
j=1

Mij

(
(Tu ×1 Fi)×2 (Ek)j

)
(5)

It is also worth noting from Eq. 5 that to compute J, instead

of learning the large tensor T ∈ R
dF×dEk

×dj in Eq. 1, we

now only need to learn two smaller tensors Tu ∈ R
df×de×dj

in Eq. 3 and TM ∈ R
df×de in Eq. 4.

Self Assessment. The joint representation J from the Joint

Embedding module is used as the input in the Self Assessment

step to obtain the 2nd top-k predictions C′
k. Note that C′

k =
{C ′

1, ..., C
′
k}. Intuitively, C′

k is the top-k classification result

after self-assessment. This module is a fine-grained classifier

that produces the 2nd predictions to reassess the ambiguity

classification results.
Inspired by [36], [37], the contribution of the coarse-grained

and fine-grained classifier is calculated by

Pr(ρ = ρi) = αPr1(ρ = ρi) + (1− α)Pr2(ρ = ρi) (6)

where α is the trade-off hyper-parameter (0 ≤ α ≤ 1).
Pr1(ρ = ρi), Pr2(ρ = ρi) denotes the prediction probabilities

for class ρi, from the coarse-grained and fine-grained classi-

fiers, respectively.

IV. EXPERIMENT

A. Experimental Setup

Dataset Target # Cate # Train # Test
CUB-200-2011 [38] Bird 200 5, 994 5, 794

Stanford Dogs [39] Dog 120 12, 000 8, 580

FGVC-Aircraft [40] Aircraft 100 6, 667 3, 333

TABLE I
FINE-GRAINED CLASSIFICATION DATASETS IN OUR EXPERIMENTS.

Dataset. We evaluate our method on three popular fine-

grained datasets: CUB-200-2011 [38], Stanford Dogs [39] and

FGVC Aircraft [40] (Table I).
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Implementation. All experiments are conducted on an

NVIDIA Titan V GPU with 12GB RAM. The model is trained

using Stochastic Gradient Descent with a momentum of 0.9.

The maximum number of epochs is set at 80; the weight decay

equals 0.00001, and the mini-batch size is 12. Besides, the

initial learning rate is set to 0.001, with exponential decay

of 0.9 after every two epochs. Based on validation results,

the number of top-k ambiguity classes is set to 10, while the

parameters dφ, α are set to 0.1 and 0.5, respectively.

Baseline. To validate the effectiveness and generalization of

our method, we integrate it into 7 different deep networks, in-

cluding two popular Deep CNN backbones, Inception-V3 [41]

and ResNet-50 [42]; and five fine-grained classification meth-

ods: WS [36], DT [43], WS DAN [14], MMAL [11], and the

recent transformer work ViT [44]. It is worth noting that we

only add our Self Assessment Classifier into these works, other

setups and hyper-parameters for training are kept unchanged

when we compare with original codes.

B. Results

Table II summarises the contribution of our Self Assessment

Classifier (SAC) to the fine-grained classification results of

different methods on three datasets CUB-200-2011, Stanford

Dogs, and FGVC Aircraft. This table clearly shows that

by integrating SAC into different classifiers, the fine-grained

classification results are consistently improved. In particular,

we observe an average improvement of +1.3, +1.2, and +1.2
in the CUB-200-2011, Stanford Dogs, and FGVC Aircraft

datasets, respectively.

C. Ablation Study

Coarse vs. Fine-grained Classifier. In this work, we

consider that both the coarse-grained classifier and the fine-

grained classifier are equally important. In practice, we can

control the contribution of each classifier by changing the

parameter α in Eq. 6. Table III is provided to validate the

effect of this parameter using ResNet-50 and WS DAN on the

CUB-200-2011 dataset. This table demonstrates that by fine-

tuning the α parameter, the results can be slightly improved.

However, we can see that the final classification results do not

depend too much on this α parameter.

Complexity Analysis. Table IV shows the efficiency of

each module of SAC and its complexity indicated by the

GPU speed and the number of parameters during the inference

process, when we integrate SAC into ResNet-50 [42] and

WS DAN [14] on the CUB-200-2011 dataset. These results

show that SAC increases the performance without affecting

the computational cost of backbones.

Language Modality Contribution. In this experiment, we

analyze the contribution of language labels. Two experiments

are conducted: (i) we keep using the labels from the dataset

and (ii) we replace them by their indexes. Table V shows

the experimental results. We can see that the class labels also

contribute additional information for the model to learn more

effectively. The results confirm that the fine-grained dataset

Methods CUB-200
-2011

Stanford
Dogs

FGVC
Aircraft

MAMC [23] 86.5 85.2

PC [24] 86.9 83.8 89.2

MC [45] 87.3 92.9

DCL [46] 87.8 93.0

ACNet [47] 88.1 92.4

DF-GMM [31] 88.8 93.8

API-Net [48] 90.0 90.3 93.9

GHORD [49] 89.6 94.3

CAL [50] 90.6 94.2

Parts Models [15] 90.4 93.9

ViT + DCAL [22] 91.4 91.5

P2P-Net [12] 90.2 94.2

Inception-V3 [41] 83.7 85.1 87.4

Inception-V3 [41]+SAC 85.3(+1.6) 86.8(+1.7) 89.2(+1.8)

ResNet-50 [51] 86.4 86.1 90.3

ResNet-50 [51]+SAC 88.3(+1.9) 87.4(+1.3) 92.1(+1.8)

WS [36] 88.8 91.4 92.3

WS [36]+SAC 89.9(+1.1) 92.5(+1.1) 93.2(+0.9)

DT [43] 89.2 88.0 90.7

DT [43]+SAC 90.1(+0.9) 88.8(+0.8) 91.9(+1.2)

MMAL [11] 89.6 90.6 94.7

MMAL [11]+SAC 90.8(+1.2) 91.6(+1.0) 95.5(+0.8)

WS DAN [14] 89.4 92.2 93.0

WS DAN [14]+SAC 91.1(+1.7) 93.1(+0.9) 93.9(+0.9)

ViT [44] 91.0 93.2 92.1

ViT [44]+SAC 91.8(+0.8) 94.5(+1.3) 93.1(+1.0)

Avg. Improvement +1.3 +1.2 +1.2

TABLE II
CONTRIBUTION (% ACC) OF OUR SELF ASSESSMENT CLASSIFIER (SAC)

ON FINE-GRAINED CLASSIFICATION RESULTS.

α

(coarse-grained)
(1− α)

(fine-grained)
ResNet-50

+ SAC
WS DAN

+ SAC
0.5 0.5 88.3 91.1

0.7 0.3 88.1 91.0

0.3 0.7 88.3 91.2

0.9 0.1 88.0 91.0

0.1 0.9 87.8 90.9

TABLE III
THE EFFECT OF PARAMETER α, WHICH CONTROLS THE CONTRIBUTION OF

COARSE-GRAINED CLASSIFIER AND FINE-GRAINED CLASSIFIER.

itself contains potential additional information that can be

wisely leveraged to improve the learning of the classifier.

Number of Top-k Classes. The accuracy of our proposed

method depends on the top-k prediction classes extracted

dynamically by the coarse-grained classifier. If the coarse-

grained classifier has poor performance and the top-k value

is set at a small number, there may be no ground truth

class in any top-k predictions. In this case, our fine-grained

classifier only penalizes the wrong cases. Therefore, the fine-

grained classifier can not improve the accuracy of the network.
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Backbone � � � � �
Auxiliary

Classifier
� � �

Localization �

ResNet-50

Backbone

#Params(M) 25.6 25.6 25.6 25.6 38.4

GPU Time

(s/sample)

0.009

±0.0013
0.009

±0.0013
0.009

±0.0013
0.009

±0.0013
0.017

±0.0022

WS DAN

Backbone

#Params(M) 29.8 29.8 29.8 29.8 49.0

GPU Time

(s/sample)

0.121

±0.0110
0.121

±0.0110
0.121

±0.0110
0.121

±0.0110
0.201

±0.0120

TABLE IV
PERFORMANCE AND COMPLEXITY OF EACH MODULE OF SAC.

Method
CUB-200

-2011
Stanford

Dogs
FGVC

Aircraft
ResNet-50 86.4 86.1 90.3

ResNet-50
+ SAC

indexes 87.8 86.9 91.7

labels 88.3 87.4 92.1

WS DAN 89.4 92.2 93.0

WS DAN
+ SAC

indexes 90.6 92.7 93.6

labels 91.1 93.1 93.9

TABLE V
THE EFFECTIVENESS OF SAC WITH AND WITHOUT USING CLASS LABELS.

Table VI shows the effect of the number of top-k ambiguity

classes on the classification results in our method. From this

table, we can see that if the number of top-k classes is set to

a small number, our improvement is minimal. In practice, we

recommend setting this parameter to a relatively big number

to avoid this problem. We choose k = 10 in all of our

experiments with different methods and datasets.

#Top-k classes
ResNet-50

+ SAC
WS DAN

+ SAC
2 87.2 89.4

5 88.4 89.6

10 88.3 91.1

20 87.7 90.7

50 85.9 87.2

TABLE VI
THE EFFECT OF DIFFERENT NUMBERS OF TOP-K CLASSES.

D. Qualitative Results

Attention Maps. Figure 2 illustrates the visualization of

attention maps between image feature maps and each ambi-

guity class. The visualization indicates that by employing our

Self Assessment Classifier, each fine-grained class focuses on

different informative regions.

Prediction Results. Figure 3 illustrates the classification

results and corresponding localization areas of different meth-

ods. In all samples, we can see that our SAC focuses on

different areas based on different hard-to-distinguish classes.

�

Indigo Bunting Blue Grosbeak Florida Jay Lazuli Bunting

Rusty Blackbird American Crow Brewer Blackbird Geococcyx

Red Winged 
Blackbird

Common Raven Orchard Oriole Bobolink

Input Image

Input Image

Input Image

Fig. 2. The visualization of the attention map between image feature maps
and different ambiguity classes from our method. The red-colored class label
denotes that the prediction is matched with the ground-truth.

Thus, the method can focus on more meaningful areas and

also ignore unnecessary ones. Hence, SAC achieves good

predictions even with challenging cases.

Black footed
Albatross

Scissor tailed
Flycatcher

Evening
Grosbeak

(a)

Laysan
Albatross

Scissor tailed
Flycatcher

Yellow
Warbler

(b)

Sooty
Albatross

Scissor tailed
Flycatcher

Common
Yellowthroat

(c)

Black footed
Albatross

Northern
Fulmar

Evening
Grosbeak

(d)

Black footed
Albatross

Scissor tailed
Flycatcher

Evening
Grosbeak

(e)

Fig. 3. Qualitative comparison of different classification methods. (a) Input
image and its corresponding ground-truth label, (b) ResNet-50 [42], (c)
WS DAN [14], (d) MMAL [11], and (e) Our SAC. Boxes are localization
areas. Red color indicates wrong classification result. Blue color indicate
correct predicted label. Best viewed in color.

V. CONCLUSION

We introduce a Self Assessment Classifier (SAC) which

effectively learns the discriminative features in the image and

resolves the ambiguity from the top-k prediction classes. Our

method generates the attention map and uses this map to

dynamically erase unnecessary regions during the training. The

intensive experiments on CUB-200-2011, Stanford Dogs, and

FGVC Aircraft datasets show that our proposed method can

be easily integrated into different fine-grained classifiers and

clearly improve their accuracy.
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