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Abstract—Reinforcement Learning (RL) refers to a set of
methods where the agent learns directly from interactions without
explicitly constructing a model of the environment. In RL, the
agent interacts with an environment, takes actions, receives
feedback, and learns to make decisions to maximize cumulative
rewards over time. The primary goal is to find an optimal
policy or value function that guides the agent’s decision-making.
Although RL can be formulated as an optimisation problem, it
is rarely analysed or studied in depth. Conversely, just like any
other optimisation task, an understanding of the problem might
help detect high-quality policies. This study employs the use of
Local Optima Networks (LONs) to analyse the fitness landscape
associated with RL and modify the sampling method for the
case of the coupled inverted pendulum tasks. Deep Deterministic
Policy Gradient serves as a local search algorithm to refine the
characterization of the fitness landscape. Experimental results on
the two pendulum tasks in part confirm and extend the conclu-
sions of a study on the same problem carried out from a robotics
and engineering standpoint. However, the proposed approach
uniquely identifies both known and previously unknown local
optima solutions. A sensitivity analysis of a key LON parameter,
the perturbation strength, offers deeper insights into the fitness
landscape. The constructed LON indicates that, for the coupled
inverted pendulum task, some basins of attraction are much
stronger than others.

Index Terms—Fitness landscape analysis, reinforcement learn-
ing, inverted pendulum task, robotics

I. INTRODUCTION

Reinforcement Learning (RL) is a machine learning

paradigm where an agent learns to make decisions by inter-

acting with an environment. The agent receives feedback in

the form of rewards or penalties based on its actions, and the

objective is to learn a policy that maximizes the cumulative

reward over time. Due to this model free approach, RL has

found extensive application in robotics, contributing to the

development of intelligent, adaptive systems [1].

Although RL can be perceived as a trial-and-error black-

box approach, it inherently involves solving an optimisation

problem. Consequently, we can associate a fitness landscape

with any RL problem and conduct an analysis of this fitness

landscape, that is Fitness Landscape Analysis (FLA) [2]. FLA

comprises a set of techniques aimed at extracting features from

a fitness landscape to inform the design of an appropriate

solver. These features include, for example, the number of

optima [3] and the correlation between pairs of variables [4].

While this approach has been extensively used in the dis-

crete domain [5]–[7], it is gaining attention in the continuous

domain as well [8]–[10]. Among the FLA visualisation tech-

niques, Local Optima Networks (LONs) [11] have recently re-

ceived increasing attention from the evolutionary computation

community. A LON provides an intuitive 2D or 3D graphic

visualisation of multivariate landscapes. In a LON graph, the

nodes represent local optima while edges represent possible

transitions between these local optima. Due to their potential to

represent highly dimensional landscapes, LONs are currently

considered a popular tool to study learning landscapes of

neural networks [12] and have even been experimented within

a neural architecture space [13].

In the context of RL, particularly Deep RL, FLA involves

examining the structure and characteristics of the solution

space in which learning algorithms operate. It explores how

the performance of a learning algorithm, or agent, is influenced

by changes in its parameters or policies. By visualizing and

analyzing the fitness landscape, researchers can gain insights

into the complexity, smoothness, and potential challenges of

the learning process. This analysis aids in understanding how

different configurations of the agent’s behavior relate to its

performance and guides the optimization of reinforcement

learning algorithms for more effective and efficient training.

The study in [14] performed a FLA on the training land-

scape of a neural network for RL applied in the context of

the control of the coupled inverted pendulum task. Numerical

results indicated a correlation between the ruggedness of the

landscape and the performance of multiple operators, thus

providing a recommendation for which operator to use under

various ruggedness scenarios.

The present study, building on the analysis in [14], intro-

duces an approach based on Local Optima Networks (LONs)

to gain insights into the RL problem associated with the

coupled inverted pendulum task. Our computational intelli-

gence perspective’s findings are compared with those obtained

through a classical engineering approach in [15]. This cross-

disciplinary comparison reveals that our proposed approach

partially confirms the results in [15] for the two pendulum

tasks, as both approaches identify the same typical local

optima. However, our LON approach indicates the presence

of some typical optima that were previously unknown while
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reveals the strength of different basins of attraction.

To address the multi-modal nature of the fitness landscape,

we propose a modified resampling strategy, namely parameter-

level basin hopping, that directly operates on the parameters

of neural networks adopted in RL algorithm, aims to detect

unexplored basins of attraction by perturbations of the neural

network parameters. We combine this strategy with the Deep

Deterministic Policy Gradient (DDPG) [16], a gradient-based

method traditionally used in RL. In the proposed algorithm,

DDPG acts as a local search to optimize the behaviour of RL

agents on the coupled inverted pendulum task. Meanwhile,

DDPG is resampled by parameter-level basin hopping to

mitigate the issue of converging into typical local optima. The

proposed method, by combining a thorough exploration of the

search space with an exploitation of promising areas, enables

the detection of previously unknown local optima.

The remainder of this paper is organised as follows. Sec-

tion II introduces the coupled inverted pendulum task and

formulates it as a RL problem. Additionally, a brief overview

of Local Optima Networks (LONs) is provided. Section III

describes the proposed method, distinguishing between the

new sampling method called parameter-level basin hopping

and the use of DDPG as a local search. Section IV presents the

results of this study. Finally, Section V provides the concluding

remarks for this study.

II. BACKGROUND

A. The Coupled Inverted Pendulum Task

The coupled inverted pendulums task is a control task that

was designed as a proxy for the dynamics locomotion of

multi-legged robots [15]. The purpose of this was to create a

generalised algorithm capable of evaluating the performance of

control algorithms for the purpose of robotic control. Different

control algorithms can be compared, to measure their ability

to solve the task and to better understand their properties and

functionality. This alleviates the time pressures associated with

building bespoke tasks in which to evaluate a particular control

algorithm [14].

Fig. 1: The coupled inverted pendulums task configured for

two carts. The objective is to move the carts in such a way

to move the pendulums to the upright position and maintain

their balance [15].

The task consists of a 1-dimension track which can be

configured to contain between 1 - 5 carts. Each cart has a

TABLE I: Parameters of the coupled inverted pendulums task

[15].

ID Sensor Name System to sensor mapping

S0 Pendulum Angle 0 ø ∈ [0,0.5π] → [127, 0], 0 else

S1 Pendulum Angle 1 ø ∈ [1.5π,2π] → [0,127], 0 else

S2 Pendulum Angle 2 ø ∈ [0.5π,π] → [127, 0], 0 else

S3 Pendulum Angle 3 ø ∈ [π,1.5π] → [0,127], 0 else

S4 Proximity 0 Distance left → [0,127]

S5 Proximity 1 Distance right → [0,127]

S6 Cart Velocity 0 v ∈ [-2,0] → [127,0], 0 else

S7 Cart Velocity 1 v ∈ [0,2] → [0,127], 0 else

S8 Angular Velocity 0 w ∈ [-5π,0] → [127,0], 0 else

S9 Angular Velocity 1 w ∈ [0,5π] → [0,127], 0 else

Ai Actuators 0 Ai ∈[0,127], for i ∈ 0,1

u Motor Control 0 2(A0/127 - A1/127) → [0,1]

centrally mounted pendulum at its center hanging below it. In

scenarios with multiple carts, they are interconnected, restrict-

ing their movement. If this is the case, the task necessitates

coordinated movements to prevent overstretching the tether

or collisions. The simulation ends, recording the fitness score

at that moment, if any cart collides with another or hits the

track’s boundary. The objective of the task is to move the

cart(s) in such a way as to swing the pendulum into the upright

position and maintain it there. The complexity of the task

escalates with the number of carts, transitioning from simple

movements in single-cart scenarios to intricate coordination

and spatial navigation in multi-cart setups. The complexity

and execution times of tasks vary markedly between single

and double pendulums. Therefore, to keep the computational

runtime of the experiments within reasonable limits, the focus

will be exclusively on the one and two pendulum problems

Control of each cart is independent, with inputs at every

time step dictating the speed. At each time step, each cart

provides 10 sensor readings that describe its current state

which can be seen in Table I. The differential between two

consecutive actuator values determines the cart’s next move-

ment. The simulation spans a maximum of 3000 time steps.

An aggregate fitness function measures the proportion of time

steps during which all pendulums remained in their upper

equilibrium positions.

B. Continuous Control by Deep Reinforcement Learning

Reinforcement learning is a subsection of machine learning

where an agent seeks to maximise a given reward over a num-

ber of time steps [17]. Unlike supervised learning, which relies

on labeled training data which can be complex to acquire,

reinforcement learning operates without the need for both

data acquisition and labelling. This field has gained renewed

interest following the successful integration of deep neural net-

works with reinforcement learning, demonstrated in surpassing

human-level performance [18]. A notable implementation in

this domain is deep Q-learning, utilizing deep neural networks

[19]. These networks, characterized by multiple neuron layers

between input and output [20], are employed in this study to

control each cart in the simulation.
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The neural network parameters are encoded as a vector

whose elements are weights and biases of the network
(
w1,1, w1,2 . . . , b1,1, b1,2, . . .

)
(1)

with indices indicating the layer and neuron position.

Each network mathematically models a cart, taking ten

kinematic parameters S0, S2, . . . , S9 listed in Table I as inputs

and outputting two acceleration values for the cart’s wheels,

A1 and A2 respectively.

In scenarios with multiple interconnected carts, the candi-

date solution x includes weights and biases for each cart’s

network 1. In order to assess the quality, i.e., the fitness f of

X , is evaluated through simulation, recording the aggregate

duration each pendulum(s) remains upright during the task.

The fitness function f (x) to be maximised is the fraction of

time during which each pendulum is in the upright position.

Simulations are continued for a prearranged observation win-

dow and interrupted if the distance between two carts exceeds

the length of the chain or the carts have collided.

The pseudocode (Algorithm 1) details the calculation of

the fitness function f (x) for the coupled inverted pendulums

studied in this article and depicted in Figure 1 is shown in

Algorithm 1.

Algorithm 1 Fitness function f for the coupled inverted

pendulums task using deep neural networks also used in [14]

INPUT The candidate solution x containing weights and

biases of two neural networks (one for each cart)

k = 1
while Carts within the simulation are in bounds, proximity

of each other and within 3000 step limit (k ≤ 3000).

do
for j = 1 : npend carts do

extract and normalise the sensor values S0, S1, . . . S9

for cart j from the simulation, see Table I

execute the network and collect the acceleration values

for each wheel

execute one step of the pendulum simulation and record

the time tk,jup during which the pendulum is upright

update the sensor values S0, S1, . . . S9 representing the

new state of the cart

end for
k = k + 1

end while
Calculate tup =

∑3000
k=1

∑npend

j=1 tk,jup and normalise it tup =
tup

total time

OUTPUT The fitness value f (x) = tup

C. Local Optima Networks

Local Optima Network (LON) was proposed in [11] to

analyse and visualise the fitness landscape of problems with

discrete search space. Subsequently, in [21], LONs were

extended to the continuous domain with the Basin-Hopping

algorithm [22] as the sampling method. LONs have been

recognized as a valuable tool for effectively visualizing and

analysing the global structure of fitness landscapes.

A LON is a directed graph with sampled local optima as

the nodes and transitions between local optima as the edges.

During sampling, Basin-Hopping perturbs an existing local

optima and performs local search on the perturbed solution.

If the local search leads to a non-deteriorating local optima,

a valid transition is established, and a new edge is created

from the existing local optima to the improved local optima.

A monotonic sequence is a connected sequence of nodes. The

start node of the sequence is the first local optima sampled in

a run, and the end node is the last local optima sampled in

that run, which does not have an outward edge. This implies

that the perturbation fails to move to a non-deteriorating local

optima.

LONs have been applied to various continuous and discrete

domain problems [23] [24]. However, it is worth noting that,

to the best of our knowledge, this current work represents

the pioneering effort in utilizing LONs to analyze the fitness

landscape of high-dimensional problems, surpassing 1000 di-

mensions (the number of dimensions is give by the number

of trainable parameters of the neural network). Furthermore,

this study is the first attempt to construct LONs based on

the trainable parameters of neural networks. By visualizing

and analyzing LONs in such complex and high-dimensional

domains, we gain valuable insights into the global structure,

connectivity, and optimization challenges of such landscapes.

III. PROPOSED METHOD: LON FOR REINFORCEMENT

LEARNING

A. Parameter-Level Basin-Hopping

Algorithm 2 presents an adaptation of the Basin-Hopping

algorithm [25] specifically designed to operate on the trainable

parameters of neural networks. It takes several inputs: pertur-

bation strength (p), tolerance (T ), a RL method (F (θ, ω, e, h)),
the necessary hyperparameters (h) for the RL method, and the

environment parameters (e) for the RL task. The algorithm

returns a list of sampled fitness values (f∗) and their corre-

sponding local optima parameters (θ∗, ω∗). The perturbation

strength (p) determines the range of random values added

to each parameter during perturbation. The tolerance (T )

determines when the sampling process should stop. If more

than T consecutive runs of the local search fail to find non-

deteriorating solutions, the algorithm terminates.

Algorithm 2 initializes random parameters θ and ω for Actor

and Critic networks. The RL method is executed to train the

Actor and Critic to find local optima θl and ωl with the local

maximal fitness f . Next, a perturbation process applies random

values within [−p, p] to θ∗ and ω∗, followed by another RL

method execution. The process repeats until the tolerance

criterion is met. Throughout the algorithm, the best fitness f∗

and corresponding parameters θ∗ and ω∗ are updated when

non-deteriorating local optima are discovered.
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Algorithm 2 Parameter-Level Basin-Hopping

INPUT Perturbation strength p, Tolerance T , Environment

parameters e, Hyperparameters h, RL method F (θ, ω, e, h)
Randomly initialize Actor θ, Critic ω
Set tolerance counter t = 0
Observe fitness and local optima parameters f, θl, ωl =
F (θ, ω, e, h)
Update best fitness f∗ = f
Update best parameters θ∗ = θl, ω

∗ = ωl

Append best fitness and parameters to list list ←
(f∗, θ∗, ω∗)
while t < T do
θ = Perturbation(θ∗, p)
ω = Perturbation(ω∗, p)
f, θl, ωl = F (θ, ω, e, h)
if f ≥ f∗ then

f∗ = f
θ∗ = θl, ω

∗ = ωl

list ← (f∗, θ∗, ω∗)
t = 0

else
t = t+ 1

end if
end while
RETURN list

B. Deep Deterministic Policy Gradient

The DDPG algorithm [16] is employed as the local search

method to solve the RL task. DDPG is a well-known algorithm

designed to address RL problems with continuous states and

action. We chose DDPG for local search as it naturally

suits the continuous action space of the inverted pendulum

problem under consideration. In this setup, the Actor and

Critic networks are both 4-layer feedforward neural networks.

Each layer in the networks uses sigmoid activation function,

including the output layer of the Actor network, which uses

the sigmoid function to constrain the action values within the

range of [0, 1]. On the other hand, the output layer of the Critic

network has no activation function, allowing the Q-value to

range in [−∞,∞]. To facilitate learning, an Experience Replay

buffer of size 40000 is utilized, from which 2000 state-action-

reward-state transitions are sampled at each step. During the

sampling process, a Gaussian noise ε ∼ N (0, 0.1) is added

to the selected action. The learning rate is set to 0.001, and

the discount factor, which determines the importance of future

rewards, is set to 0.99. These configurations are specified in

the input h of the Basin-Hopping algorithm.

C. Single Action Conversion Trick

As mentioned in Section II-A, each cart has 2 actuators A1

and A2 for two opposite directions, left and right. The motor

gives an acceleration to left only when A1 − A2 > 0 and to

right when A1−A2 < 0. Since only the difference between the

actuators is relevant, the Actor is designed to output a single

action value a in the range of [0, 1] for each cart. This action

value is then interpreted as follows:

a
a<0.5−→ {254× (0.5− a), 0},

a
a≥0.5−→ {0, 254× (a− 0.5)}.

In the case of the two pendulum tasks, the sensor values

of the two carts are concatenated and used as input to the

Actor network. The Actor network then generates two action

values as output. The sizes of the layers in the Actor network,

including the input layer, are [20, 20, 20, 20, 2]. The input

layer of the Critic network receives the concatenated state and

action as input, and the network outputs a single Q-value. The

sizes of the layers in the Critic network, including the input

layer, are [22, 20, 20, 20, 1]. The total number of trainable

parameters is 2623.

IV. EXPERIMENTAL RESULTS

The parameter-level Basin-Hopping method, utilizing

DDPG as the local search, is employed for the inverted

pendulum task on the two carts scenario with 2000 steps

of simulation. A total of 100 runs of Basin-Hopping are

conducted with two different perturbation strengths, namely

p ∈ {1e-3, 1e-4}, and a tolerance value of T = 5.

Figure 2 summarizes the performance of local optima

sampled by Basin-Hopping. There are some key differences

between the two perturbation strengths, with the smaller

perturbation (1e-4) resulting in increased performance, es-

pecially at above a fitness value of 0.6. This suggests that

the smaller perturbations are able to traverse the landscape

more optimally than larger perturbations. More specifically,

the smaller perturbations allow for the optimum behaviour to

be learned, whereby the pendulums are able to be balanced in

the upright position, which typically occurs with finesses of

0.72 and above.

Fig. 2: Local optima fitness boxplot for two pendulums task

with different perturbation strength (ps).

The boxplot analysis indicates that the LON results with

a perturbation strength of 1e-4 warrant a closer investigation.

Figure 3 presents a 3D visualization of the fitness landscape
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for the two pendulums task with a perturbation strength of

1e-4, revealing a complex landscape of local optima. Three

notable characteristics are captured by the LON visualization.

• Due to the high-dimensional search space, the landscape

of local optima appears sparse. Different runs seem not

converging to the same local optimum, as nodes are never

visited by multiple inward edges.

• The problem exhibits multiple distinct typical local op-

tima as nodes tend to cluster around specific levels of

the graph rather than being evenly distributed along the

z-axis.

• Some basins of attraction are challenging to escape. The

nodes at the bottom of the LON graph have a limited

number of edges connecting them to the upper part of the

graph, suggesting that most attempts to escape these local

optima are unsuccessful. This emphasizes the importance

of proper initialization of the neural network parameters,

as poorly initialized Actors and Critics may struggle to

escape basins of attraction with low fitness.

The remaining of this section further investigates the LON

results with various numerical analyses.

Fig. 3: 3D LON visualization for two pendulums task with

perturbation strength 1e-4. Grey nodes are local optima, red

node is the local optima with the best fitness, small grey

nodes are start of a path of connected nodes. Directed edges

represents perturbations from the start node to the end node.

The nodes with higher fitnesses are positioned higher.

Figure 4 displays the distribution of basins of attraction,

referred to as ’sinks’ in [23], at the level of local optima in the

parameter space of neural networks for the two pendulums task

with a perturbation strength of 1e-4. In the context of the LON,

a sink represents the end node of a monotonic sequence where

the sampling method fails to discover any non-deteriorating

local optima through perturbation. The distribution of fitness

values associated with these sinks reveals the presence of five

peaks, representing local maxima in terms of frequency of

the occurrences of fitnesses. These peaks are observed around

fitness values of 0.22, 0.32, 0.46, 0.55, and 0.72. In [15], the

fitness values of 0.32, 0.46, 0.55, and 0.72 are recognized as

typical local optima with distinct behavioral patterns. How-

ever, the sink corresponding to a fitness value of 0.22, which is

not reported in [15], represents a new behavior pattern. In this

scenario, both carts move in the same direction and come to an

immediate stop upon approaching the boundary. Consequently,

the pendulums remain in the lower position throughout the

task, resulting in a low fitness.

Fig. 4: Fitness histogram of basins of attraction of local optima

for two pendulums task with perturbation strength 1e-4.

The distribution of fitnesses of all local optima sampled for

two pendulums task with perturbation strength 1e-4 is shown

in figure 5. Similarly as in figure 4, the figure reveals the pres-

ence of five peaks located around 0.22, 0.32, 0.46, 0.55, 0.72
fitness values. This observation suggests that the end nodes of

a monotonic sequence serve as typical basins of attraction.

Moreover, the limited occurrence of local optima between

fitness values of 0.6 and 0.7 indicates a surprisingly smooth

landscape beyond a fitness of 0.6. Consequently, local search

algorithms easily reach a fitness of 0.7 once they escape the

basins of attraction surrounding a fitness of 0.6. Furthermore,

it is noteworthy that the peaks at 0.22 and 0.32 significantly

surpass the other peaks, indicating the remarkable strength of

these basins of attraction compared to others. This observation

suggests a high probability for agents to become trapped in

these particular basins of attraction. Therefore, an efficient

solver for the two pendulums coupled inverted pendulum task

should possess the capability to effectively escape these basins

of attraction.

V. CONCLUSION

In this paper, we present a method for sampling data to

construct Local Optima Networks (LONs) and apply this

approach to characterise the training landscape of a neural

network used in Reinforcement Learning (RL) within the con-

text of a robotic control problem—the coupled inverted task.

The derived solutions are grounded in the physical principles

governing dynamic balance and control. The insights gained

from the analysis of the fitness landscape, particularly around

the basin-hopping strategies and the identification of optimal
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Fig. 5: Fitness histogram of local optima for two pendulums

task with perturbation strength 1e-4.

and suboptimal local optima, can potentially inform the devel-

opment of more adaptive and resilient control algorithms for

real world robotics.

The global search in our proposed method is executed

through a novel adaptive modification of the Basin-Hopping

method. Its purpose is to identify unexplored areas within

the search space. Complementing this, the local search is

performed by Deep Deterministic Policy Gradient (DDPG),

aiming to exploit the basins identified by the global search.

The proposed computational intelligence approach confirms

and extends the findings of a classical engineering study. In

addition to the previously identified typical basins of attraction,

a new narrow but strong suboptimal basin of attraction has

now been detected. Knowledge of this additional feature in the

landscape will aid engineers and AI practitioners in carefully

designing algorithms. More importantly, this study highlights

that the problem under consideration is not yet fully under-

stood by the scientific community. Future work will involve

exploring alternative basin-hopping techniques and utilising

surrogate models to rapidly predict the local performance of

DDPG runs. The objective of these efforts will be to expand

our understanding of the landscape and potentially identify

new unexplored basins of attraction.
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