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Abstract—The increasing global burden of infectious and
parasitic diseases (IPDs) presents a significant challenge to
public health systems worldwide, particularly to emergency
departments (EDs). Accurate forecasting of ED attendances for
IPDs is crucial for effective resource planning and public health
interventions. We present a novel method for forecasting
nationwide IPDs ED attendances incorporating a high-
dimensional set of disease and environmental covariates.
National ED attendances with IPDs as a cause in Singapore from
2009 to 2018 was taken as the study setting. We proposed simple
and trimmed pooling of forecasts using 6 models which can
optimize point forecast accuracy over a 1 to 8-week forecast
horizon. We found that forecast combinations based on trimmed
means provided superior forecast accuracy over sub-models
which were used to construct the forecast combinations.
Forecast combinations consistently achieved a Mean Absolute
Percentage Error below 10.5% in the forecast horizon of 1-8
weeks ahead over the study period. We further demonstrated
the robustness of forecast combinations in maintaining good
forecast performance even when some sub-model constituents
performed significantly worse compared to alternatives.
Moreover, epidemiological analysis that employed post-
selection inference revealed significant correlations between
decreases in past temperature and increases in total
precipitation, PM2.5 surface concentration with increased ED
attendances for IPDs. The proposed methods can provide
forward guidance for potential outbreaks and refine short to
long—term resource management for ED admissions. The source

code and supplementary material are available at
https://github.com/gpeihong/IPDs-ED-Analysis.
Keywords—forecasting,  infectious  diseases,  forecast

combinations, machine learning

1. INTRODUCTION

In recent years, the global burden of infectious and
parasitic diseases has increased significantly, posing a
tremendous challenge to public health systems worldwide [1].
These diseases, which include influenza, malaria, dengue, and
various other viral, bacterial, and parasitic infections, have led
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to millions of deaths and a substantial impact on economies
and healthcare systems [2]. The urgency of managing and
controlling infectious and parasitic diseases is further
exacerbated by the ongoing threat of pandemics and emerging
pathogens [3].

One critical aspect of the public health response to
infectious and parasitic diseases is the management of
emergency care demand. Emergency departments (EDs) are
often viewed as the primary entry point to a hospital, as they
serve as an essential stop for patients before admission to
various hospital services [4]. EDs play a vital role in providing
timely and effective treatment to patients, as well as in
identifying and containing potential outbreaks by isolating
individuals infected with emerging diseases. Across the years,
there has been a consistent increase in the demand for ED
services. As a result, EDs face considerable pressure due to
the high patient flow, making them some of the most
congested areas within hospitals [5]. Managing the demand
for ED services is a challenge encountered by numerous
hospital systems. Various studies on EDs have shown that
these facilities increasingly struggle to fulfill their
responsibilities. Poor management of overcrowding can lead
to inadequate ED functioning [6], potentially resulting in
negative patient outcomes [7].

As the demand for emergency medical care continues to
grow, it is crucial for EDs to integrate an adequate degree of
resilience by incorporating forward guidance into their
operations. This will allow them to foresee ED care requests
and quickly mobilize essential resources [8]. Throughout the
years, numerous methods have been developed to enhance
modeling and forecasting of emergency department ED
demands. Time series models are the most prevalent among
the various models employed for forecasting ED demands [9].
These methodologies encompass autoregressive integrated
moving average models (ARIMA) and its derivatives, as well
as Holt-Winters methods [10]. The majority of existing
research employing time series models utilized multivariate
ARIMA models for single-step forecasting or univariate
ARIMA models for multi-step forecasting. [10] presented a
method using a multivariate ARIMA model to forecast ED
visits at Lille hospital in France. [11] suggested a univariate



multi-step forecasting approach for electricity load based on
the ARIMA model. A primary disadvantage of time series
models is that time series models and their extensions may not
achieve satisfactory performance when the time series data
hardly exhibit regular variations. To counter this drawback,
more adaptable non-parametric models and machine learning
techniques can be employed to enhance forecasts. These
comprise of and are not limited to statistical models using
meteorological variables, including generalized additive
models, etc. [12], traditional machine learning models such as
the Random Forest (RF) regressor and deep learning methods
such as the recurrent neural network (RNN). For traditional
machine learning methods, length of stay for inpatients in a
hospital has been predicted using Naive Bayesian classifiers
[13]. Random forest regression has also been applied to
forecast the arrival of emergency department patients by
incorporating both meteorological and calendar information
[14]. For deep learning methods, [15] carried out a
comparative analysis of various deep learning techniques to
forecast ED visits and the results highlighted the promising
performance of these deep learning models, with the
Variational AutoEncoder (VAE) outperforming the rest.
Several deep learning-based combination approaches,
including a combination of Gated Recurrent Units and
Convolutional Neural Networks, Generative Adversarial
Networks-based ~ Recurrent  Neural — Networks and
Convolutional LSTM Network, have also been developed to
leverage the benefits of different models to enhance forecast
accuracy [16, 17]. While these studies have achieved
satisfactory predictive results, they have neglected the
combination of traditional machine learning models.
Traditional machine learning methods can not only perform
well on relatively small datasets, but they also provide insights
into the relationships between input features and target
variables, making them generally easier to interpret and
explain. Therefore, forecast combinations that combine
baseline time series models and ensemble machine learning
approaches [18] and combine large sets of environmental
variables can potentially enhance forecast accuracy of disease
burden [19].

In this paper, we included meteorological and atmospheric
covariates as well as time series of other diseases’ ED
attendences for forecasting nationwide weekly infectious and
parasitic diseases (IPDs) emergency department attendances.
In addition, to guide short— and long—term ED demand
management, multi-step forecasts were considered in this
study using 6 sub-models, including baseline naive forecasts,
time series linear models, ensemble machine learning models,
and deep neural networks. Moreover, among the submodels,
we also extended the classical deep learning models LSTM
and CNN for direct ED attendance point forecasts. We further
explored the use of forecast combinations based on simple
averaging and trimmed means. All submodels and forecast
combinations specifically optimized forecasting accuracy
over a 2-month time horizon. We evaluated forecast
combinations against sub-models constituents on point
forecast accuracy in the 1-8 week ahead forecast horizons. We
demonstrated that our forecasting framework was able to
generate predictions quickly and accurately, and that its
deterioration rate did not increase significantly as the forecast
horizon increased from 1 to 8 weeks.
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II. MATERIALS AND METHODS

A. Disease Surveillance Data

Nationwide daily emergency department attendances for a
total of 25 Singapore burden of disease categories such as
infectious and parasitic diseases, respiratory infection (RI),
malignant neoplasms, skin diseases and diabetes mellitus were
obtained from the Ministry of Health, Singapore from January
1, 2009, to December 31, 2018. Although most respiratory
infections (RIs) are caused by bacteria, viruses, and fungi,
some less common cases result from parasites. One example
is paragonimiasis, a lung fluke infection caused by
paragonimus species. Infections with these parasites can lead
to symptoms such as cough, chest pain, and difficulty
breathing [20]. We included all 25 categories in the set of
predictive covariates and aggregated the temporal resolution
of the data to epidemiological weeks (EW) comprising EW1
2009 to EW52 2018.

B. Meteorological and Ambient Air Pollution Data

We collected a total of 25 well-established environmental
variables known to influence virus and vector survival, as well
as parasite fecundity. These variables included daily total
rainfall, mean, maximum, and minimum temperature, wind
speed, vapor pressure, etc. Meteorological data were obtained
from ERAS-Land, published by the European Centre for
Medium-Range Weather Forecasts. Data related to ambient
air pollution was obtained from National Environment
Agency, which compiles air quality details for Singapore from
2009 to 2018, on a daily basis. The data included
measurements for 5 major ambient air pollutants: PMz.s, NOa,
03, SO2, and CO. Subsequently, meteorological and ambient
air pollutant exposures values were aggregated at a weekly
level and their averages were calculated.

C. Point Forecast Submodels and Forecast Combinations

We aim to generate point forecasts for IPDs ED
attendances 1-8 weeks ahead. The high-dimensional set of
covariates here include 4 weeks lag of ED attendances for all
25 diseases burden categories, meteorological variables as
well as air pollutant variables collected in the data sources
described above (Refer to supplementary material). A lag-
order of four was chosen for all variables, to encompass the
potentially large generation interval of disease transmission,
and further lag orders were not included for model parsimony.

We considered an autoregressive linear model (AR), using
only past lags of IPDs ED attendances as predictors. Least-
squares-based methods may not only tend to overfit but also
lead to high prediction variance when a large number of
covariates are incorporated. Therefore, in addition to using
AR, we also proposed multivariate linear methods that
incorporate regularization, ensemble-based methods, and
deep neural networks as described below.

We augment the AR model by including exogenous
variables (AREV). We regard the following conditional
expectation E(.|.) as the h-week ahead forecast for IPDs ED
attendances.
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Where ¢ represents the current time point, and Yy p*
denotes the weekly IPDs ED attendances at #+4. It is important
to note that we use D to represent the set of diseases
considered as predictors, excluding I[PDs, and D* as the index
for weekly IPDs ED attendances. Autoregressive terms
incorporate past and current observations of IPD ED weekly
attendances, denoted as y,_; o+, where / represents the lag
order up to a maximum of L, lags. The transmission of a
disease of interest may also be partially explained by factors
related to other diseases. Consequently, additional predictors
of IPDs include ED attendances of other infectious diseases,
represented asy,_;4,d € D. In addition, the influence of
environmental factors on the future burden of disease is also
significant. The environmental covariates at ¢~/ are denoted as
X¢—1m > Where m represents the meteorological and air
pollutant variables. X={y;_; p*, V¢—1 4, Xr—1m } represents the
predictor matrix and S € {ﬁ(ﬁﬂl,y!ﬂl,d,y' Bl,m,y}denotes the
set of coefficients. We assumed that y, ., p+ follows a normal
distribution, and the conditional mean of y, ., p+ serves as the
h-week ahead point forecast.

We considered the Least Absolute Shrinkage and
Selection Operator (LASSO) strategy to estimate the
coefficients § and the set of parameters {D*, D, M} of AREV
specification. LASSO induces variable shrinkage and sparsity
by simultaneously selecting which parameters to include in
the model and determining their appropriate values. The
objective function of LASSO is as follows:

argmnin (y — XB)* + AlBll, )
where it represents the total squared difference between
the dependent variable y and the multiple between predictor
matrix X and coefficients f, as well as a penalty term
controlled by a parameter A. Larger A induces greater variable
shrinkage and sparsity. The optimal 1 is selected at the value
which minimizes prediction error of the model in the training
set through cross-validation. Therefore, models calibrated
with the optimal regularization parameters tend to provide
more robust predictions.

In addition to regularization, we also explored the Random
Forest (RF) method. RF was originally developed by [21] and
can be applied to either classification or regression. The RF
method for regression is a predictor created by aggregating the
predictions of many regression trees. The bootstrap bagging
method is employed to select random sample sets from the
training data set, fit multiple regression trees to these samples,
and then aggregate the predictions from each tree. The
bootstrap method improves model performance by reducing
the prediction variance of the model without increasing bias
or error. After training, the Random Forest prediction for a test
sample is obtained by taking the average of the predicted
values from all individual trees. As this study required 6 sub-
models to respectively forecast ED attendance 1-8 weeks
ahead, and we used a cross-validation strategy for each
model's  forecasting, ~which  consumed substantial
computational resources and time costs, we used the default
parameter settings for all sub-models.

We also explored using gradient boosting machines
(GBM). GBM is an ensemble learning model that uses
decision trees sequentially, with each tree trained on the bias
of previous trees. It aggregates the set of predictions from each
tree to form an aggregate forecasts. In GBM, new decision
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trees are created by reducing existing forecast residuals. This
process was carried out iteratively until the discrepancy
between the predictions and the actual data surpasses a
predetermined threshold.

We also employed Long short—term memory networks
(LSTM) combined with convolutional neural networks
(CNN) to forecast IPD ED attendances. LSTM can retain prior
network information and connect it with current data, resulting
in superior performance, while CNN networks are recognized
for their capacity to automatically identify important features,
enabling them to learn the internal structures of time-series
data [22]. We therefore considered combining the features of
these two deep learning techniques. A hybrid deep learning
architecture called the LSTM-CNN model (Fig. 1) was
constructed with LSTM and CNN combined and trained
concurrently. The CNN then acts on the LSTM’s output,
further extracting and compressing these temporal features
into a spatial feature map.

Increasing the number of LSTM layers and hidden units
can allow the network to learn more complex patterns in the
input data, but it also increases the computational cost of
training the network. However, as the dataset in this study is
small, we designed only 2 layers for the LSTM module [23].
The rationale for the convolution module to also be designed
with 2 convolutional layers is to extract deep features [24], as
these layers are highly resistant to noise. One-dimensional
convolutional layers were employed, which effectively extract
location-invariant features from short segments of the time
series. During the training process, we divided the training
sequence of each cross-validation fold into a training set and
a validation set in the ratio of 6:1 respectively, where the
validation set can help us select the appropriate parameters
during the training process. Mean Squared Error (MSE) was
used as the loss function, and the Adam algorithm [25] served
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Fig. 1. Hybrid LSTM-CNN structure. The LSTM module consists of 2
layers with 16 hidden units each. The CNN includes 2 convolutional layers
with kernel sizes of 3 and 2, both using a stride of 1 and Rectified Linear Unit
(ReLU) as the activation function. The dashed box depicts the internal
structure of the LSTM unit: x;, ¢;, and h; represent the input information, cell
state, and hidden information at 7, respectively. The orange and blue circles
correspond to the sigmoid and tanh functions, respectively.



as the optimizer. Within the Adam algorithm, L2
regularization is incorporated to prevent training overfitting,
with a regularization parameter of 0.001.

We also considered a naive forecast, using the latest
observations of IPDs ED attendances as the point forecast.
Naive forecast is also often used as a baseline to compare with
forecasts generated by more sophisticated methods. It tends to
work well in situations where trends in the data remain
relatively constant over time [26].

Lastly, we proposed two forecast combinations based on
simple averaging (CombM) and trimmed mean (CombT),
respectively. The trimmed mean is used to remove extreme
and outlying predictions. Here, we set the trimming
percentage to 20% to remove the outlying maximum and
minimum value of forecasts generated from the 6 submodels
and calculated the average of the remaining data. Forecast
combinations combine the forecasts from Naive, AR, AREV
(LASSO), LSTM-CNN, RF, GBM. This approach can
integrate the predictive information of each model, potentially
resulting in more robust and consistent forecast performance.

D. Optimization of Forecast Accuracy

To incorporate the latest information into model
estimation, we performed cross-validation for all sub-models.
An extended window splitting method was employed to
evaluate forecasts. First, we divided the full dataset into an
initial training set and a full forecast set to comprise 70% and
30% of the data respectively. Following this, folds over time
were generated using an expanding window, where the length
of the training sequence was increased by 1 week each time.
Also, the forecast set is the subsequent epidemiological week
of the current training sequence, whose length is always 1. At
each time point, individual sub-models will be calibrated for
each forecast time step, for each forecasting framework, to
generate 1 to 8 weeks-ahead direct forecasts. This procedure
was done until the final week of the dataset is incorporated for
assessment. The accuracy of each model's forecast was
evaluated by comparing the discrepancy between the
forecasted and observed values in the full forecast set.

E. Performance Evaluation of Models

We used the mean absolute percentage error (MAPE),
mean absolute forecast error (MAFE), and mean absolute
scaled error (MASE) to evaluate the accuracy of ED
attendances forecasting. The summary statistic MAPE
summarises the percentage error each forecasting model
makes relative to the actual observations. MAFE measures the
absolute difference between forecasted and actual values,
while MASE compares a model's accuracy to a naive forecast.
A value less than 1 implies better performance than the naive
forecast, while a value greater than 1 suggests worse
performance. Furthermore, the Diebold-Mariano hypothesis
test was performed pairwise among models to statistically
determine whether the forecasts were equivalent or non-
equivalent throughout all forecast horizons at a 5%
significance level [27].

III. RESULTS

A. Summary Statistics in Study Setting

Fig. 2 shows the trend of some of the variables over time
in our study setting. From 2009 to 2018, the case counts of ED
attendances for IPDs in Singapore were relatively stable in the
range of 900-2000 (Fig. 2A). The case counts of RIs ED
attendances also fluctuated without displaying any discernible
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Fig. 2. Weekly time series data from epiweek 1 2009 to epiweek 52 2018
on (A, B) nationwide emergency department attendances for infectious and
parasitic diseases (IPDs) and respiratory infections (Rls), (C) average daily
total precipitation (Millimeter), (D, E, F) average daily mean temperature
(Celsius), wind speed (Kilometer/hour), relative humidity (%) and (G, H)
average daily PM2.5 and SO2 surface concentration (micrograms per cubic
meter).

pattern. However, in 2009, a significant increase in Rls ED
attendances was noticed and may be attributed to the HIN1/09
pandemic. Afterward, the ED attendances gradually returned
to pre-pandemic levels by 2010 (Fig. 2B).

Meteorological variables remained relatively constant
overall with an average value of 6.520mm (Fig. 2C, Range:
0.000mm — 27.362mm), 27.840° C (Fig. 2D, Range: 25.040
° C-30.015° C), 8.130km/h (Fig. 2E, Range: 5.145km/h —
18.954km/h) and 79.460% (Fig. 2F, Range: 63.546% -
91.475%) for average daily total precipitation, average daily
mean temperature, mean wind speed and relative humidity
respectively. PMz s (Fig. 2G) had a relatively high peak in the
middle of the years 2010, 2013, and 2015, but was relatively
constant otherwise. As for the SO», aside from a peak in the
middle of 2012, concentrations remained relatively constant
(Fig. 2H).

B. Overall Performance of Forecast Models

For each forecast method, 6 sub-models were trained using
covariates with 4 weeks lags as predictors, with each model
respectively generating 1 to 8-step direct forecasts. In general,
forecast error increased as the forecast time horizon expanded
(Fig. 3). However, different forecast models had noticeably
different rates of performance deterioration. We found that
AR, AREV (LASSO) and forecast combinations were the best
performing models in the 1-3 weeks horizon (Fig. 3A-3C).
After 3 weeks, the forecast combinations and GBM showed
superior forecasting performance in comparison to the other
models. While RF did not perform well in the 1-3 weeks
horizon, it had similar forecasting performance as the forecast
combinations in the 4-week or more forecast horizon (Fig.
3A-3C). AR and AREV (LASSO) performed relatively
poorly in the forecast horizon of 4 to 8 weeks ahead, but mean
absolute percentage errors for both models consistently stood
below 11.5% (Fig. 3A).

At 4-week, the MAPE of RF decreased (Fig 3A: MAPE at
3 and 4 weeks: 9.10%, 9.00%), and at 7-week, the same
pattern was observed for GBM (Fig 3A: MAPE at 6 and 7
weeks: 9.25%, 8.94%), which highlights that the RF may be
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Fig. 3. Evaluation of forecasts throughout the full forecast dataset. First row: comparing forecast performances of the 8 forecasting models, which include
the baseline Naive forecast, baseline AutoRegressive (AR) model, AutoRegression with Exogenous Variables (AREV) using LASSO, LSTM-CNN, random
forest (RF), gradient boosted machines (GBM), a simple mean of all forecasts (CombM) and a trimmed mean of all forecasts (CombT) across the forecast horizons
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comparing the forecast performance of forecast combinations that include LSTM-CNN with the forecast combinations that exclude LSTM-CNN (L-C) across
the forecast horizons of 1 - 8 weeks ahead using (D) mean absolute percentage forecast error, (E) mean absolute scaled error and (F) mean absolute forecast error.

more suitable for medium and long—term forecasting and models in all considered horizons. This may be due to LSTM-
GBM may be more suitable for long—term forecasting (Fig. ~ CNN requiring more data to adequately calibrate the model,
3A, 3C). In addition, the mean absolute scaled errors of all Whlch cannot be fulfilled given the small sample size of
models except LSTM-CNN were below 1 in all considered training data.

forecast horizons, demonstrating outperformance over the
naive forecast (Fig. 3B). For LSTM-CNN, forecast
performance was noticeably worse compared to all other

Given the poor forecasting performance shown by LSTM-
CNN, it was necessary to explore whether its use as a sub-
model constituent affects the performance of forecast
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Fig. 4. Visual representation of the Diebold-Mariano (DM) test for assessing the statistical equivalence of forecast errors across different models and
forecast horizons. Distinct panels indicate forecast non-equivalence (NE) in purple or equivalence (E) in black for a particular forecasting horizon. This was
computed for forecast residuals in the full forecast set in the Naive forecast, AutoRegressive (AR) model, AutoRegression with Exogenous Variables using
LASSO (LASSO), LSTM-CNN (L-C), random forest (RF), gradient boosted machines (GBM), a simple mean of all forecasts (CombM) and a trimmed mean
of all forecasts (CombT).
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combinations. We compared the forecast error of the two
forecast combinations schemes before and after excluding
LSTM-CNN. We found that error rates for forecast
combinations in both cases were not significantly different. In
addition, we also found that the forecast accuracy of forecast
combinations using the trimmed mean approach is
consistently slightly higher than that of the simple averaging
approach in all forecast horizons (Fig. 3D-3F), which
highlights that trimming extreme forecasts can help improve
forecast performance.

We employed the Diebold-Mariano (DM) test to examine
whether forecast errors were equivalent across forecast
models and forecast combinations. The hypothesis tests
indicated that there were significant differences in forecast
errors among models at a 5% significance level throughout all
forecast horizons. In particular, the GBM model's
performance was significantly superior to at least half of the
forecasts produced by other models for horizons of 7 to 8
weeks (Fig. 4G—4H; Fig. 3A-3C). This finding also indirectly
suggested that the GBM model may have been more
appropriate for long-term forecasting. AR and AREV
(LASSO) were always equivalent in the horizon of 1-8 weeks.
(Fig. 4A-4H). Forecast combinations based on trimmed
means consistently performed significantly better than most
forecast models, especially in the 1-3 weeks and 7-8 weeks
horizon (Fig. 4A-4B; Fig. 4G—4H; Fig. 3A-3C).

C. Forecast Performance and Errors by Time

Since forecast combinations integrated the strengths of
various forecast sub-models and yielded smaller forecast
errors, we focused on examining forecasts generated by
forecast combinations which aggregated forecasts using the
trimmed mean across time (See supplementary material for
forecasts from each forecasting model and each horizon).

A B c D
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Observations Observations Observations Observations
E F G H
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Fig. 6. Visual representation of the forecasts produced through forecast
combinations based on trimmed mean compared to the observed data in
the full forecast dataset. Each panel illustrates the comparison between
forecasts and observations for each forecast horizon within 1 - 8 weeks.
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Throughout 2016, a substantial discrepancy between forecasts
and observations was observed for 8-week ahead forecasts

(Fig. 5).

The majority of forecast errors were evenly dispersed
along the equality line throughout the time series, suggesting
that the forecasts did not exhibit significant bias versus
observations (Fig. 6A—6H). However, forecasts in 2016 were
consistently underpredicted and led to large, negative forecast
errors in this period. Overall, underprediction was most
notable for the forecast horizon of 3 to 8 weeks ahead (Fig.
6C—6H).

D. Effects of Environmental Variables on Forecasts

To explore the effects of environmental variables on IPDs
ED attendances, we used LASSO to first select predictors
from the set of covariates used for forecasting. Thereafter, a
linear model was fitted to the LASSO-selected subset and
confidence intervals for each regression coefficient were
obtained by post-selection inference. As it is difficult to
conduct inference on the parameters in a high-dimensional
linear model, we only described general patterns of
associations between environmental variables and IPDs ED
attendance for all horizons (See supplementary material).

Increases in past total precipitation increased IPDs ED
attendances, but the regression coefficients were only
significant at the 5% level for the l-week ahead of the
forecasting window. A 1 millimeter increase in the past 1-
week total precipitation is associated to a 3.86 (95% CI: 1.97
— 5.75) expected increase in IPD ED attendance. In contrast,
increases in past PMas were associated with increased IPDs
ED attendances for the 1- and 6-week ahead forecasting
window. For instance, in the 6-week ahead horizon, a 1
microgram per cubic meter increase in the past 4-week PM2.5
surface concentration is associated to a 1.30 (95% CI: 0.03 —
2.57) expected increase. Increases in CO (coefficient: -203.07,
95% CI: -374.10 — 32.05) and Os (coefficient: -2.38, 95% CI:
-4.32 — -0.43) were associated with decreases in IPDs ED
attendances only in the 2-week forecasting window. Increases
in past temperature and wind speed were associated with
decreased IPDs ED attendances. For past temperature, the
relationship held in the 1-5 weeks window. For example, in
the 1-week ahead horizon, a 1 degree increase in the past 2-
week minimum temperature is associated to a 31.90 (95% CI:
-46.79 —-17.02) expected decrease. However, the relationship
between past wind speed and IPDs ED burden only held in the
horizon of 8-week ahead. A 1 kilometer per hour increase in
the past 4-week max wind speed is associated to a 6.75 (95%
CI: -12.08 — 1.41) expected decrease.

IV. DiscussioN

Our results demonstrated that our proposed trimmed
mean-based forecast combinations yielded the best
performance in the forecast horizon of 1-8 weeks ahead for
the full forecast dataset. Forecast errors under this forecast
combination scheme were less than 10.5% in the 1 — 8 week
ahead forecast horizons. The proposed forecasting framework
can therefore offer substantial value in supporting resource
management in EDs, by providing forward guidance on the
estimated number of ED attendances related to IPDs. This can
help aid proactive management of crowding situations in EDs.
By employing forecasts, ED resource planners can make
informed decisions between balancing demand for ED
services and available resources, crucially during outbreaks
where ED attendances are high.



The forecast combination incorporated forecast inputs
from each forecasting model and provided improvements and
consistent performance across different forecast horizons. In
addition to the forecast combination, AR and AREV (LASSO)
also performed well in short—term forecasting. LASSO
allowed for fast selection of predictors and tuning using cross-
validation on the training data, which helped to optimize in-
sample forecast performance, achieving similar performance
to the baseline AR model. RF can achieve similar forecasting
performance as the forecast combination in the medium and
long—term forecast horizon. Although the GBM model did not
perform well in the 1-3 weeks horizon, it performed well in
the 6-8 weeks horizon and could outperform forecast
combinations. GBM employs an ensemble approach to
iteratively decrease the prediction variance resulting from
individual weak predictors and as a result, can provide robust
forecasts. LSTM-CNN had forecast performance which was
worse compared to other sub-models in all forecast horizons
(Fig. 3), which may be attributed to insufficient data available
to calibrate the LSTM-CNN model. While in certain
instances, deep learning models can be trained on a few
hundred samples to generate satisfactory results, that is
because the trend of the data is not very complex. However,
visual inspection reveals that the IPDs ED time series exhibits
non-stationarity and drift (Fig. 2A), which are characteristics
that are possibly difficult to capture with a few hundred
training samples. For deep learning models, a large amount of
training data is wusually required to get satisfactory
performance. This is because these models have many
parameters requiring sufficient data to enable effective
parameter calibration. In subsequent work, LSTM-CNN can
be explored as a methodology to forecast with higher sample
size and temporal resolution.

Epidemiological analysis was also performed using
LASSO, which could account for the high-dimensional nature
of our considered covariates. In this analysis, we found that
our conclusions generally aligned well with the related
literature in this field. Past studies have shown that higher
precipitation is associated with a higher burden of IPDs, such
as diarrhea. The incubation period for enteroviruses and
bacillary dysentery is 2 to 10 days (about 1 week), which has
corroborated with our finding [28]. One possible explanation
is that high precipitation can heighten the spread of diarrheal
pathogens to humans through contact with polluted water
sources [29]. Furthermore, higher temperatures and higher
wind speed may reduce the transmission of other infectious
diseases [30] with one explanation being that some pathogens
may not survive well at warmer temperatures, and higher wind
speeds have the potential to dilute the concentration of
infectious particles, thereby reducing infection risk [31]. Past
studies have also shown that an increase in PMas was
associated with increased IPD ED attendance [32]. One
possible explanation is that infections resulting from PMas
primarily affect the respiratory system, particularly the lower
respiratory tract. This corroborates with other work, which
found that lower respiratory infections can be attributed to
household PM2.5 pollution, with the highest burdens of
PM2.5-attributable lower respiratory infections observed
among children under 5 years old and adults over 70 years old
[33].

There are several limitations in our study. (a) We used data
from 2009-2018, a period where the study setting was not
subject to periods where structural breaks in transmission
occur (i.e. the COVID-19 pandemic period), so model
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robustness to these phenomena cannot be tested. [34].
Therefore, future work should incorporate data beyond 2020
to understand forecast performance in the presence of
structural breaks. (b) Additionally, hospital emergency
department admissions are rapidly changing and
unpredictable during outbreaks, and models which forecast
under different temporal resolutions (i.e. daily) should be
explored, but outside the scope of this study. (¢) While the
suggested models demonstrated the potential of utilizing
information from additional exogenous variables to
understand determinants which lead to increased IPDs ED
attendances, the interpretation of coefficients was challenging
due to the inclusion of numerous predictors and lags selected
to train respective model in each forecast window. Ensemble
machine learning methods such as RF and GBM do not offer
easy means to interpret the impact of exogenous variables on
IPDs ED attendances either, as they aggregate predictions
from many sub-models. While variable importance plots for
ensemble methods can help triangulate influential predictors,
it does not provide insights into how each influential predictor
affects the disease of interest. The post-selection inference
approach was thus used to examine associations between
exogenous variables and the outcome of interest. Here, we
observed that some estimated coefficients had large absolute
values but were not significant after performing post-selection
inference. In a multiple regression setting, this situation is
likely to be a sign of multicollinearity, i.e., a high correlation
between predictor variables. When the predictor variables are
highly correlated, the model has difficulty isolating the effect
of each predictor, which can inflate the variance of the
coefficient estimates, rendering estimates unstable and
difficult to interpret. A limitation of LASSO is that when faced
with multicollinear predictors, it may select one of them and
shrink the other predictors to zero. This means that while
LASSO may help provide a more interpretable model in the
presence of multicollinearity, it can't alleviate the estimation
issue between highly correlated variables. Therefore, it is
essential to consider methods that can be effective in avoiding
inaccurate estimates due to multicollinearity. (d) Only point
forecasts were considered for our study. Performing and
evaluating density has many advantages over point forecasts
[18], as point forecasts cannot describe the associated
uncertainty surrounding the forecast. Uncertainty can provide
valuable information to policy makers on how confident we
are about our forecasts. Ignoring this uncertainty may
potentially lead to misinterpretation of forecasts. Therefore,
frameworks based on point and density forecasts and forecast
evaluation should be established to alleviate these drawbacks.
(e) Lastly, we only considered the direct forecast strategy and
did not apply recursive forecast approach, as the study
included many environmental variables that would have
imposed a much higher computational burden if a recursive
forecast was applied. However, as recursive forecasts were not
employed, potentially important dependencies between
forecasts could not be modelled. Future work can consider
combining recursive and direct forecast strategies, to
overcome the inherent limitations of each approach [35].

V. CONCLUSIONS

Our proposed forecast combination scheme has the
potential to provide forward guidance on short— to long—term
healthcare resource allocation and minimize patient wait-time.
Its forecast performance remained consistently at the top of all
models across a 2-month forecast horizon, with acceptable
deterioration rates with increasing forecast horizons.
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