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Abstract—In past research on self-supervised learning for
image classification, the use of rotation as an augmentation has
been common. However, relying solely on rotation as a self-
supervised transformation can limit the ability of the model to
learn rich features from the data. In this paper, we propose a
novel approach to self-supervised learning for image classification
using several localizable augmentations with the combination of
the gating method. Our approach uses flip and shuffle channel
augmentations in addition to the rotation, allowing the model to
learn rich features from the data. Furthermore, the gated mixture
network is used to weigh the effects of each self-supervised
learning on the loss function, allowing the model to focus on
the most relevant transformations for classification.

self-supervised learning, supervised learning, transforma-

tions, mixture of expert, gating network

I. INTRODUCTION

Recently, self-supervised learning [1], [2] has shown sig-

nificant results in feature learning. Self-supervised learning

is a promising approach to fixing the fundamental problem

in training machine learning models where labeled data is

scarce or expensive. For self-supervised learning, one of the

most important techniques is data augmentation. In the case of

image classification, self-supervised learning involves giving

the model a set of unlabeled images and asking it to predict

some properties of the images [3], [4]. By predicting the

images, the model can learn valuable features for classification.

Using data augmentation techniques in image recognition

enhances the model’s ability to generalize by teaching in-

sensitive features to spatial changes. This can be achieved

by applying various modifications, such as geometric trans-

formations (cropping, flipping, rotating) and photometric ad-

justments (brightness, contrast, and color). Recent methods

have demonstrated the best performance, balancing complexity

with accuracy and robustness. In addition, various methods

for feature learning have specific to certain locations, which

can also be used to transfer knowledge to tasks related to

localization, like object detection or image labeling. These

features allow the model to understand what and where to

focus on making correct predictions.

The rotation has been attempted to be used for these aug-

mentations, but relying solely on rotation as a self-supervised

transformation can limit the ability of the model to learn

rich features from the data. In this paper, we propose to use

additional localizable augmentations, such as flip and shuffle

channels, to provide a more diverse set of self-supervised

signals. These augmentations allow the model to learn more

complex features relevant to classification.

To ensure that the model focuses on the most relevant

augmentations for classification, we use a Mixture of Expert

(MoE), which gates the effects of each augmentation on

the loss. This allows the model to dynamically adjust the

importance of each augmentation, allowing it to focus on the

most useful transformations for classification.

By utilizing these additional augmentations and the MoE

method, our proposed approach can improve performance on

image classification benchmarks, allowing the model to learn

more complex features relevant to classification. Furthermore,

our approach can improve the performance of other computer

vision tasks, such as object detection and image annotation,

as the learned features are transferable and localizable. Addi-

tionally, our approach can be used to improve the performance

of models trained with scarce or expensive labeled data.

Overall, our proposed method of using additional localizable

augmentations and the MoE method to adjust the weighting

of their importance can effectively improve self-supervised

representation learning and computer vision tasks.

622

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00120



II. RELATED WORK

Self-Supervised Learning: Self-supervised learning has

gained significant interest in recent years. It aims to learn

general characteristics by solving tasks explicitly created for

this purpose, known as pretext tasks. Depending on the number

of examples used for these tasks, self-supervised learning

can be divided into relation-based and transformation-based.

Relation-based approaches focus on increasing the similarity

between a sample and its transformed positive counterparts,

and some also treat other samples as negative examples.

Notable techniques in this category include memory bank

[5] and in-batch [6] sampling. On the other hand, some

methods use positive pairs with Siamese networks [7] or add

a relationship module [8] to perform the self-supervised task.

Transformation-based self-supervision is another popular

approach, which involves generating new classes with data

augmentation, predicting relative positions of patches, solving

puzzles, or predicting rotations. One unique method in this

category is LoRot [3], designed for a different objective: to

aid supervised learning.

Recently, there have been attempts to transfer the benefits

of self-supervised learning to supervised learning. SupCLR [9]

adapted the relation-based self-supervised framework to utilize

labeled data since class labels clearly define both positive

and negative examples. Additionally, self-label augmentation

(SLA) [10] expanded the label space by combining the su-

pervised class labels with data transformation labels, as using

auxiliary pretext tasks can decrease performance. On the other

hand, LoRot is a self-supervised method that can be directly

applied to improve supervised learning.

Mixture of Experts: Sparsely-gated MoE [11] is the first

model to show major improvements in model capacity, training

time, or model quality upon activation. Switch Transformer

[12] simplifies activation by selecting only the best expert for

each token using softmax in the hidden state and exhibits better

scalability than previous works. All previous work required

ancillary losses to encourage balance. This provision for loss

must be carefully considered not to overwhelm the original

loss. However, the auxiliary loss does not guarantee balance,

and a hard power factor must be applied. Therefore, many

tokens may not be affected by the MoE layer. Hard MoE [13]

with a single decoding layer can be trained effectively in large-

scale hashtag prediction tasks. Base Layers [14] construct a

linear assignment to maximize the token-expert relationship

while ensuring that each expert receives an equal number

of tokens. Hash classes design hashing techniques on input

tokens. Unlike previous works, our method is a learned one

that enables heterogeneous MoE and effectively improves

downstream fine-tuning performance. We use MoE as a way to

control the effect of each self-supervised transformation on the

loss function. Thus, we can ensure that the model focuses on

the most relevant augmentations for classification. Our method

is similar to [15] where the gates are attached to the last

classification layer to fuse the two-stream CNN backbone on

video classification. This approach differs from previous self-

Fig. 1. Diagram of Transformation

supervised methods, which typically rely on a single task or

set of tasks and do not have a way to adjust the importance

of different augmentations.

III. METHODOLOGY

We first discussed each transformation we used as data

augmentation in Sec. III-A. Then, we used LDAM-DRW

to train the imbalanced dataset in Sec. III-B. Finally, we

proposed Gated Self-Supervised Learning based on a Mixture

of Expert approaches, allowing the model to focus on relevant

transformations.

A. Transformation

The first instances of the usefulness of data augmentation

were shown using simple modifications like flipping images

horizontally, changing the color space, and applying ran-

dom croppings (Figure 1). These techniques address issues

related to image recognition tasks, such as insensitivity to

spatial changes. This section will cover various augmenta-

tions based on geometric transformations and other image-

processing methods. The augmentations discussed are notable

for their simplicity of implementation. Understanding these

basic transformations will serve as a foundation for exploring

more advanced data augmentation techniques.

Our proposed method uses a combination of data augmenta-

tion, LDAM-DRW, and a Mixture of Expert (MoE) approaches

to improve image classification performance on imbalanced

datasets. We utilized the different transformations as data

augmentations, including rotation (using Lorot-E [3]), flip, and

shuffle channels. These augmentations are chosen as they are

easy to implement yet are effective in encoding invariances and

challenges present in image recognition tasks. Then, LDAM-

DRW is used to train imbalanced datasets, which improves

the performance and accuracy of the model by balancing the

distribution of the classes. Finally, the MoE is attached to gat-

ing every self-supervised task. This allows the model to learn

the importance of each transformation and dynamically adjust

the weighting of each one for classification. Additionally,

the gating network is built with a fully-connected layer with

softmax activation to output a class for each transformation.

1) Rotation: We use Lorot-E [3] as the transformation for

the rotation transformation. The image will be divided into

four quadrants (2x2 grid), then randomly selected and rotated

from 0, 90, 180, 270. This transformation will create 16
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Fig. 2. Diagram of Mixture of Expert

classes. The rotation degree parameter heavily determines the

degree of rotation augmentations.

2) Flip: Flipping is one of the easiest to implement and

has proven useful on datasets. This task will randomly flip the

selected quadrant of the image along the x-axis. The number

of classes resulting from this transformation is two classes.

3) Shuffle Channel: This transformation is used to shuffle

the arrangement of the RGB channel of the selected quadrant

of the image. The number of classes resulting from this

transformation is six classes (3P3 permutation).

B. LDAM-DRW

LDAM-DRW (Label-Distribution-Aware Margin - Deferred

Re-Weighting) is a combination of two techniques designed

to improve the performance of machine learning models in

situations where the training data is heavily imbalanced among

different classes, and the evaluation criteria require good gen-

eralization to the less common classes [16]. In this experiment,

we use the LDAM-DRW method with Gated Self-Supervision

Method, which we propose to improve the performance and

accuracy of the model.

C. Mixture of Experts

Mixture-of-Experts (MoE) is a type of deep learning archi-

tecture that combines multiple models, referred to as experts,

to divide a complex task into simpler sub-problems that can

each be addressed by an individual expert [17]. In this work,

we use MoE to gating every self-supervision task, which is

used to learn the importance of each transformation used

in self-supervised learning as illustrated in Figure 2. Each

transformation has its linear head to output the class of

the transformation. The weight gate of each transformation

is also learned using an MoE, which allows the model to

adjust the importance of each transformation for classification

dynamically. We use a fully-connected layer with softmax

activation function for the gating network as in eq. 1:

G = softmax(WTX + b) (1)

Where G, X , W , and b refer to the gate, baseline output,

weight gating network, and bias gating network, respectively.

Specifically, we gates every loss from each self-supervision

task L and sum all the gating loss. Then, we combine the

loss of the classifier (supervised) LC and the loss of the self-

supervision as follows in eq. 2:

Ltot = LC + λ

t∑

n=1

GT
nLn (2)

where t is the number of the self-supervision task and λ is

SSL ratio.

IV. EXPERIMENTAL SETUP

In the imbalanced task experiment, we tested the gated

self-supervised learning method using the Google Colab Pro

environment. The GPU that we use for this experiment is

Nvidia T4 GPU. For a fair comparison, we use the same

backbone and baseline as previous research to train the model

for the experiment. We use the Resnet-32 architecture for the

backbone of the network and LDAM-DRW [16] as the baseline

and follows the baseline settings. We set the batch size to 128

and the epochs for training the model to 300. For the learning

rate, we set the initial value to 0.1, which is dropped by a factor

of 0.01 at the 160-th epoch and 180-th epoch. The optimizer

we use in this experiment is Stochastic Gradient Descent with

the momentum of 0,9 and weight decay 2×10−4. For the SSL

ratio, we set all of the experiments to 0.1.

We also train the model using our proposed method in the

Tiny-Imagenet dataset [18] using a single GPU Nvidia Quadro

RTX 8000. For a fair comparison, we use the same backbone

and setups in each method that will be tested. To train the

model, we set the batch size to 256 and the epochs for training

the model to 300. Resnet18 will be used as the backbone,

with Stochastic Gradient Descent as the optimizer. We set the

momentum to 0,9 and weight decay to 2 × 10−4. For the

learning rate, we set the initial value to 0.1, decaying by a

factor of 0.1 every 75 epochs. Finally, for the SSL ratio, we

set all of the experiments to 0.1.

V. EXPERIMENTS

For the experiment, we use LDAM-DRW [16] to do

the Imbalanced Classification and Cifar dataset to design

the imbalanced scenario. We create three combinations of

gated self-supervised learning for the proposed method,

such as Lorot-E+flip, Lorot-E+ShuffleChannel, and Lorot-

E+FLip+ShuffleChannel. Moreover, we also vary the imbal-

ance scenario of Cifar 10 and Cifar 100 datasets. We apply

the imbalance ratio to 0.01, 0.02, and 0.05. To compare our

proposed method with other self-supervision techniques, we

report the result of LDAM-DRW [16], SSP [19], SLA+SD

[20] and, Lorot-E [3].
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TABLE I
IMBALANCED CLASSIFICATION ACCURACY (%) IN CIFAR-10/100

Imbalance Ratio 0.01 0.02 0.05 0.01 0.02 0.05
LDAM-DRW 77.03 80.94 85.46 42.04 46.15 53.25
+SSP 77.83 82.13 - 43.43 47.11 -
+SLA-SD 80.24 - - 45.53 - -
+LoRot-E 81.82 84.41 86.67 46.48 50.05 54.66
+MoE(LoRot-E+Flip) 81.65 83.93 86.64 46.48 49.96 54.63
+MoE(LoRot-E+ShuffleChannel) 81.91 84.33 86.91 46.53 49.95 54.85
+MoE(LoRot-E+Flip+ShuffleChannel) 81.67 84.65 86.35 47.37 50.57 54.75

TABLE II
ADDITIONAL EXPERIMENTS ON TINY-IMAGENET

Val accuracy
ResNet 18 46.68
+LoRot-E 48.65
+LoRot-E+Flip+ShuffleChannel 48.86
+MoE(LoRot-E+Flip) 47.86
+MoE(LoRot-E+ShuffleChannel) 48.52
+MoE(LoRot-E+Flip+ShuffleChannel) 48.99

The results of the imbalanced classification are shown in

Table I. As we can see, all of the combination tasks for

MoE have a clear complementary effect and improve the

accuracy of the LDAM-DRW, SSP, and SLA+SD method,

with a gain of up to +4.87%. However, several combinations

of MoE improve the Lorot-E method, such as Lorot-E +

flip and Lorot-E + flip + shuffle channel. However, the

MoE combination of Lorot+Flip can not improve the Lorot-

E model in two imbalanced datasets, such as Cifar 10 and

Cifar 100, thus reducing the model’s accuracy. Meanwhile, the

other combinations of Lorot-E + ShuffleChannel, and Lorot-

E+flip+ShuffleChannel improve the accuracy of the Lorot-E

model in the imbalanced Cifar 10 ad Cifar 100. Specifically,

the Lorot-E+flip+Shuffle-Channel combination successfully

improves the model’s accuracy in all imbalanced scenarios in

Cifar 100 dataset. Therefore, Lorot-E+flip+ShuffleChannel is

the best combination to improve the model’s accuracy in the

imbalanced task.

In order to further evaluate the effectiveness of our proposed

method, we tested our method on the Tiny-Imagenet dataset.

We found that it consistently outperformed other methods, as

shown in Table II. This was particularly impressive given the

large number of classes in the Tiny-Imagenet dataset, as our

method improved even on this challenging dataset. Overall,

our results demonstrate the versatility and effectiveness of our

method, as it was able to achieve better performance on all

datasets tested, so our method has the potential to be widely

applicable and useful for a variety of image classification tasks.

This work considers each of these transformations as a

non-linear one. Therefore, the gated self-supervised learn-

ing method can tackle the problem of determining which

transformation is important for the model to learn. However,

to make further improvements, we need to find and select

the combination self-supervision task of MoE that will best

improve the model’s accuracy.

VI. CONCLUSION

Self-supervised learning has gained increasing attention in

recent years as a way to train deep learning models using

large amounts of unlabeled data. The main idea behind self-

supervised learning is to use the inherent structure in the data

to create a supervised learning problem that can be used to

train a model. In this work, we proposed a self-supervised

learning method that adds additional transformations, such

as flip and shuffle channels, to the past method, rotation

transformation. Our results show that adding these additional

transformations helps to increase the accuracy of the model,

especially when using larger datasets such as CIFAR 100. Fur-

thermore, compared to other methods, our proposed method

gave better accuracy in all experiments when using CIFAR

100. On CIFAR 10, our method also gave better accuracy

in certain experiments. Finally, on Tiny-Imagenet, we achieve

better results using a self-supervised learning method on top

of the model.

Overall, our results suggest that adding more transforma-

tions to self-supervised learning, in combination with the

gating method, can help improve the model’s performance.

This highlights the potential of self-supervised learning as a

powerful tool for training deep learning models in various

settings.
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Aarti Singh, Eds. 13–18 Jul 2020, vol. 119 of Proceedings of Machine
Learning Research, pp. 5714–5724, PMLR.

626


