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Abstract—Impedance control is an interaction control approach
that allows robots to perform ideal characteristics similar to a mass-
spring-damping model for safety and naturalness considerations.
Iterative learning (IL) is effective in learning desired impedance
parameters for robots under unstructured environments. In this
paper, we propose an enhanced impedance IL method to speed
up learning convergence and reduce the space complexity of data
storage, where a sparse online Gaussian process is used to model a
variable impedance strategy and is updated in the same iteration
by removing similar data points from previous iterations while
learning impedance parameters in multiple iterations. Numerical
results based on a robot manipulator with 7 degrees of freedom have
shown that the proposed method accelerates iterative convergence
compared to the classical impedance IL method.

Index Terms—Impedance variation, iterative learning, Gaussian
process, robot learning, interaction control.

I. INTRODUCTION

Impedance control is a major interaction control approach that

allows robots to perform ideal characteristics similar to a mass-

spring-damping model to ensure safe and natural interaction [1].

In many situations, impedance control with fixed impedance

parameters does not meet task requirements [2], and robots may

be required to change impedance parameters during continuous

interaction with environments. Nevertheless, efficiently learning

and adjusting robot impedance parameters to adapt to dynamic

environments is still challenging.

Iterative learning (IL) is effective in impedance learning for

robots under unknown environments, where desired impedance

parameters are iteratively updated during robot-environment

interaction to minimize an objective function so as to achieve the

desired robot behavior [3], [4]. But IL has two major drawbacks:

First, it needs to be re-iterated if the initial position or desired

trajectory is changed [5]; second, there is no suitable way to

guide the learning rate setting, making it difficult to ensure the

convergence rate [4]. Gaussian process (GP) is a nonparametric

Bayesian approach that has the ability to model complicated

functions using only a limited number of data [6], and sparse

online GP (SOGP) has the online learning ability to update the

GP model with arriving time-series data [7]–[10].
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This study proposes an enhanced impedance learning method

to accelerate impedance learning convergence, where an SOGP

is used to model a variable impedance strategy and is updated in

the same iteration by removing similar data points from previous

iterations while learning impedance parameters in multiple itera-

tions. During the same iteration, impedance parameters learned

at the current instant can immediately affect the prediction at

the next instant, speeding up the convergence process. Besides,

the variable impedance strategy resulting from the proposed IL-

SOGP method is not task-dependent such that it can effectively

exploit the original knowledge when the initial robot position or

task trajectory is changed, and thus, the number of iterations can

be shortened to accommodate a new task.

Through this paper, R, R+, Rn, and R
m×n denote the spaces

of real numbers, positive real numbers, real n-vectors, and real

m × n-matrices, respectively, ‖x‖2 and ‖x‖∞ denote the 2-

norm and ∞-norm of x, respectively, GP(m(x), κ(x,x′)) is

a GP model with a mean function m : Rn �→ R and a kernel

function κ : Rn × R
n �→ R, diag(x1, x2, · · · , xn) is a diagonal

matrix with diagonal elements x1 to xn, I is an identity matrix

with a proper dimension, where x,x′ ∈ R
n, xi ∈ R, i = 1 to n,

and n and m are positive integers.

II. THE PROPOSED METHOD

A. Iterative Impedance Learning Framework

Consider a robot-environment interaction problem, where the

robot kinematics is described by

x = f(q), ẋ = J(q)q̇, (1)

where x(t) ∈ R
6 is the pose in the Cartesian space, q(t) ∈ R

n

is the position in the joint space, f : Rn �→ R
6 maps from the

joint to Cartesian spaces, J(q) ∈ R
6×n is the Jacobian matrix,

and n is the number of degrees of freedom (DoFs). The robot

dynamics is described by

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q, q̇) = τ − JT (q)fe, (2)

where M(q) ∈ R
n×n is an inertia matrix, C(q, q̇) ∈ R

n×n is

a centripetal-Coriolis matrix, F (q, q̇) ∈ R
n denotes a friction

torque, G(q) ∈ R
n is a gravitational torque, τ ∈ R

n is a control

torque, and fe(t) ∈ R
6 is an interaction force at the robot end-

effector that can be measured by a force/torque sensor.
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An unknown environment is represented by a mass-damping-

spring model in the Cartesian space as follows [11]:

Me(t)ẍ+Be(t)ẋ+Ke(t)x = fe, (3)

in which x(t) ∈ R
6 is the pose of the environment, and Me(t) ∈

R
6×6, Be(t) ∈ R

6×6, and Ke(t) ∈ R
6×6 are diagonal inertia,

damping and stiffness matrices of the environment, respectively.

Then, (3) can be rewritten into a state-space form{
χ̇ = A(t)χ+B(t)fe

v = Cχ
(4)

with v(t) ∈ R
6 and χ(t) := [xT (t), ẋT (t), (

∫ t

0
fe(ς)dς)

T ]T ∈
R

18, where A(t) ∈ R
18×18 and B(t) ∈ R

18×6 are given by

A =

⎡
⎣ 0 I 0
−M−1

e Ke −M−1
e Be 0

0 0 0

⎤
⎦ , B =

⎡
⎣ 0
−M−1

e

I

⎤
⎦

and C ∈ R
6×18 is determined based on the desired interaction

effect. Different interaction effects can be achieved by setting a

proper C to change the expected output v. When the elements

corresponding to the position x in C are set larger, robots are in

pursuit of position tracking, and the force tracking performance

may be degraded. In scenarios focusing on compliant interaction,

the elements regarding the integrated force (
∫ t

0
fe(ς)dς) in C

can be chosen larger and the position tracking error may increase.

For (4), the interaction force fe(t) is iteratively updated by

fk
e (t) = fk−1

e (t) + α′[v̇d(t)− v̇k(t)] (5)

with vk(0) = vd(0), where k is the iteration number, vd(t) ∈
R

6 is the desired output, and α′ ∈ R
+ satisfies ‖I−α′BC‖∞ <

1 with CB being nonsingular. Then, it follows from the generic

betterment scheme [4] that vk(t) → vd(t) uniformly in t ∈
[0, tf ] as k →∞, where tf ∈ R

+ is the iteration period.

The target impedance model is described by

Md(t)(ẍr−ẍd)+Bd(t)(ẋr−ẋd)+Kd(t)(xr−xd) = fe, (6)

where xd(t) ∈ R
6 and xr(t) ∈ R

6 are desired and reference

poses of the end-effector, respectively, and Md(t)∈R
6×6, Bd(t)

∈ R
6×6 and Kd(t) ∈ R

6×6 are desired inertia, damping, and

stiffness parameters, respectively. Consider an objective function

L(t) = ‖v(t)− vd(t)‖2. (7)

Then, Bd and Kd can be iteratively updated by⎧⎪⎨
⎪⎩
Bk

d(t) = Bk−1
d (t)− β

(
∂fk(t)

∂Bk
d (t)

)T (
∂Lk(t)
∂fk

e (t)

)T

Kk
d (t) = Kk−1

d (t)− β
(

∂fk
e (t)

∂Kk
d (t)

)T (
∂Lk(t)
∂fk

e (t)

)T (8)

with β ∈ R
+ being a learning rate. Note that Md is not updated

as arbitrarily setting Md may cause instability. It is clear to get

(∂fk(t)/∂Kk
d (t))

T = ek(t) and (∂fk(t)/∂Bk
d(t))

T = ėk(t),
in which ek(t) := xk(t)− xd(t) is a position tracking error at

the kth iteration. According to (5), one has vk(t)→ vd(t) such

that the objective function L can be minimized. Therefore, Bk
d

Fig. 1. The fundamental principle of the proposed IL-SOGP impedance learning
method. Note that the proposed method models a variable impedance strategy
with an iterative update of the SOGP, where the update part includes the task
level (k-iteration) and the time level (t-axis).

and Kk
d can be iteratively updated by{
Bk

d(t) = Bk−1
d (t)− αėk(t)(v̇k(t)− v̇d(t))

T

Kk
d (t) = Kk−1

d (t)− αek(t)(v̇k(t)− v̇d(t))
T

(9)

where α ∈ R
+ is a learning rate that absorbs β and α′. In sum-

mary, the impedance parameters Bd and Kd can be iteratively

updated by (9) to minimize L. However, the impedance IL needs

to store learned impedance parameters at every instant of the

previous iteration and is applicable only for a single task [5].

B. Impedance Learning with Gaussian Process

The basic principle of the proposed IL-SOGP method for

impedance learning can be seen in Fig. 1. Here, we apply the

position x and velocity ẋ at the robot end-effector, the desired

position xd and velocity ẋd, and the interaction force fe at

the robot end-effector to estimate the impedance parameters B
and K [12]. To enhance the generalization ability of IL-based

impedance learning and to reduce the space complexity of data

storage, we define a variable impedance strategy{
Bd(t) = πBd

(x(t), ẋ(t),xd(t), ẋd(t),fe(t))

Kd(t) = πKd
(x(t), ẋ(t),xd(t), ẋd(t),fe(t))

(10)

where πBd
and πKd

are represented by iterative GPs [13]

πBd
∼ GPk(0, κ(z, z′)), πKd

∼ GPk(0, κ(z, z′)) (11)

with z, z′ ∈ Z := {(x(t), ẋ(t),xd(t), ẋd(t),fe(t))|t ≥ 0}, in

which GPk denotes the GP at the kth iteration, and κ(z, z′) :
R

18 × R
18 → R is a Gaussian kernel function that represents a

measure of the correlation of two points (z, z′). We employ an

SOGP because it can provide stable prediction while keeping a

small size of the representative data set. Later, this set will be

called a basis vector (BV) set. Note that the proposed IL-SOGP

only requires the signals x, ẋ, xd, ẋd, and fe, where x and ẋ
can be measured by encoders, xd and ẋd are desired signals,

and fe is generated by the target impedance model (6).

SOGP keeps the BV set based on the metric of data points

in the reproducing kernel Hilbert space (RKHS) by adding and

deleting data schemes. In the update of a SOGP, for a new arrival
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point z∗ ∈ Z , the residual error γz∗ is given by [7]

γz∗ = Kz∗z∗ −Kz∗ZK−1
ZZKT

z∗Z (12)

where Z collects all points in the BV set, and KZZ denotes a

covariance matrix. Note that γz∗ can be seen as the “novelty”

measure of z∗ for the BV set. If γz∗ is greater than a threshold

ε ∈ R
+, z∗ is added to the BV set. Then, if the size of the BV

set is excessive, a data point is selected for deletion based on an

RKHS-based similar metric.

It is not feasible to use SOGPs directly for modeling the vari-

able impedance strategy in (10). With the continuous iterations

of the task, the SOGP will not be updated for similar inputs.

Hence, a pre-deletion operation can be added at the beginning

of the update process to delete the points that are similar to the

previous iterations. We introduce a hyperparameter w ∈ [0, 1] as

the threshold of similarity and delete the points whose similarity

exceeds the threshold w in the BV set. Let zk−1
i be a data point

in the BV set before the previous (k−1)th iteration and zk ∈ Z
be a new arrival point at the current kth iteration, where i = 1

to N , and N denotes the size of the BV set. Then, the similarity

between the two data points is measured as follows:

di = κ(zk−1
i , zk), i = 1 to N, (13)

where the data points zk−1
i with the similarity di > w compared

to the new arrival point zk need to be deleted before each update

of the SOGP. Thus, the proposed IL-SOGP method has an extra

computational burden compared to the classical IL method,

because of the selection and deletion operations of data points

in SOGP. The detailed algorithm is shown in Algorithm 1.

Let t be the “current” instant at any iteration cycle. If w is set

too small, it causes the deletion of many data points in the BV set

from the (k−1)th iteration. Although this allows learning new

knowledge rapidly, leading to a lack of data points in the BV set

beyond the instant t of the (k−1)th iteration, resulting in possibly

less accurate prediction. If w is set too large, few data points

will be deleted, which leads to a lack of data points from the

current kth iteration. This means that the SOGP has difficulty

learning new knowledge, so its predicted values converge to

those in the (k−1)th iteration. The setting of w is related to the

hyperparameters of the kernel function κ, which can be a value

Algorithm 1 Update process of IL-SOGP in kth iteration

Require: zk, BV set, ε
Compute di = κ(zk−1

i , zk) by (13)

Delete the corresponding point in BV set with di > w
Compute the residual error γzk by (12)

if γzk > ε then
Add the new arrival point zk to BV set

else
Only update the corresponding variables of SOGP

end if
if size(BV) > N then

Delete a point based on RKHS-based scheme [7]

end if

where some newly arriving data points are inserted into the BV
set. With the exploitation of both the knowledge of the current

kth iteration and the previous (k−1) iterations, the proposed

IL-SOGP is expected to have better learning convergence than

the original IL. Note that stability analysis is not a focus of this

study, and it can be referred to [14].

III. NUMERICAL VERIFICATION

A. Simulation Environment Setup

This section validates the convergence performance of the

proposed IL-SOGP method based on a 7-DoF robot manipulator

called Franka Emika Panda in MATLAB, where the dynamic

parameters are from the identified result in [15], and more details

on the robot kinematics can be seen in [16]. The inner loop uses

a computed torque position controller with a sampling delay of

1 ms, and the outer-loop sampling delay for admittance control

is 10 ms. We only consider variable impedance for the z-axis

translation direction for clear illustrations.

The environment (3) is to be an uneven object with a height h
= 0.5 + 0.003 sin(80 xz(t) + 1.2) + εn, where xz(t) ∈ R is the

z-direction of x(t), εn ∼ N (0, 0.00062) is Gaussian noise with

mean 0 and variance 0.00062, Me = 0.01Φ(t)I , Be = 0.1Φ(t)I
and Ke = 450Φ(t)I with Φ(t) = (0.5 sin(2πt) + 0.5)2 [4]. The

initial position of the end-effector is x0 = [0.555, 0, 0.515]T m,

the desired interaction force is fd = 0 N, and the desired motion

is the end-effector moving downward the object and sliding a

distance after contact with the object surface.

The damping parameter Bd and the stiffness parameter Kd

in the z-axis direction are modeled by two GPs as in (11), and

are initialized as 100 and 20, respectively. Choose a squared

exponential kernel κ(z, z′) = σ2
s exp(−(z−z′)TΛ(z−z′)/2)

and set w = 0.8, ε = 0.001, N = 15, σs = 1, σn = 0.001, and

Λ = diag(3, 3, 3, 3, 4) for both GPs, where σ2
s ∈ R

+ is a signal

variance, and Λ = diag(λ1, λ2, · · · , λ5) with λi ∈ R
+ (i = 1 to

5) is a length-scale matrix of the input vector.

B. Comparison of Convergence Performance

The convergence performance of the classical IL method in

[4] and the proposed IL-SOGP method is explored under two

cases: Case 1 for accurate tracking with α = 10 and C = [25,

0, 1] and Case 2 for compliant interaction with α = 20 and

C = [100, 0, 0.1]. From Figs. 2 and 3, it is clear that in Case

1, the damping parameter Bd and the stiffness parameter Kd

become larger for better position tracking, and in Case 2, Bd

and Kd become smaller, resulting a smaller interaction force

fe for compliant interaction. Yet, the convergence rate of the

proposed IL-SOGP is higher than that of the classical IL for both

Bd and Kd. This is because the proposed IL-SOGP exploits

the new iteration values learned from the previous instants in

the same iteration, which provides a trend for the subsequent

prediction and thus accelerates convergence. The proposed IL-

SOGP exhibits more sharp changes of Bd and Kd, which is

caused by the low frequency of the admittance control part and

results in a sharp acceleration when data points are added to

the BV set. But for the variable impedance control, these low-

frequency changes are subtle, and no sudden changes in the
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(a) Case1: Bd(t) (b) Case1: Kd(t) (c) Case2: Bd(t) (d) Case2: Kd(t)

Fig. 2. Convergence performances by two learning methods, where red curves are by the classical IL method, blue curves are by the proposed IL-SOGP method,
deeper color denotes higher iterative times, and arrows indicate the evolving direction of the iterations from k = 1 to 10.

(a) Case1: fe(t) (b) Case1: x at z-axis (c) Case2: fe(t) (d) Case2: x at z-axis

Fig. 3. Interaction processes by two learning methods, where red curves are by the classical IL, blue curves are by the proposed IL-SOGP, orange curves are the
desired trajectories, deeper color denotes higher iterative times, and arrows indicate the evolving direction of the iterations from k = 1 to 10.

interaction force fe or the robot position x will be introduced

during the interaction. In summary, compared to the classical

IL, the proposed IL-SOGP has better position tracking and

faster iterations in Case 1 and has a smaller interaction force fe,

resulting in more compliant interaction in Case 2.

IV. CONCLUSIONS

This paper has proposed an IL-SOGP impedance learning

framework to improve the convergence speed during robot-

environment interaction. Numerical verification has shown that

compared with the classical impedance IL method, the proposed

method provides better convergence in modeling the variable

impedance strategy for a 7-DoF robot arm. However, hardware

experiments of our method are still challenging due to the high

computational cost of SOGP [17], and more efficient GP models

can be resorted to overcome this problem in further studies.
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