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Abstract—With the development of information technology, 
solving large-scale optimization problems (LSOPs) has become an 
urgent issue in the artificial intelligence (AI) for solving practical 
problems. LSOPs are optimization problems with high dimensions 
and large search space. Although many improved evolutionary 
computation (EC) algorithms have been proposed as promising AI 
approaches for dealing with LSOPs, they still face two challenges, 
which are easily falling into local optima and having slow 
convergence speed. Focusing on these two challenges, this paper 
proposes to integrate the gene targeting (GT) technology in the 
biotechnology with the particle swarm optimization (PSO), so as 
to propose a gene targeting particle swarm optimization (GTPSO) 
algorithm. The GTPSO works well in solving LSOPs due to the 
following three novel designs. Firstly, a Monte Carlo 
probabilistically targeting strategy is used to determine the 
poorly-performing dimension(s) of the globally best particle, so as 
to balance the targeting chance of all the dimensions. Secondly, a 
dual GT (DGT) strategy is proposed, including two GT strategies 
called GT1 and GT2, to modify the poorly-performing 
dimension(s), which can balance diversity and convergence at the 
same time. Thirdly, a greedy strategy is used to accept the targeted 
new solution only if it is better than the original globally best 
particle, so as to ensure the quality of the evolution. In the 
experiment, the GTPSO algorithm is evaluated on 12 benchmark 
functions and obtains excellent results, which demonstrates the 
effectiveness of the GT strategy and the GTPSO algorithm. 

Keywords— Gene targeting (GT), evolutionary computation 
(EC), particle swarm optimization (PSO), large-scale optimization 
problem (LSOP) 

I. INTRODUCTION 

In recent years, artificial intelligence (AI) becomes a 
promising approach to solve the optimization problems faced in 
the real world. Evolutionary computation (EC) algorithms, 
including evolutionary algorithms (EAs) and swarm intelligence 
(SI) algorithms [1-3], are representative AI approaches that have 
been widely used in a variety of global optimization problems 
with excellent performance. Particle swarm optimization (PSO) 
[4] is one of the most widely used SI algorithms, which imitates 
the bird foraging. Considering for solving an optimization 
problem in D-dimensional search space, the position of the ith 
particle at tth generation is denoted as xi(t) = (xi,1(t), xi,2(t), …, 
xi,D(t)) and the velocity is represented by vi(t) = (vi,1(t), vi,2(t), …, 
vi,D(t)). The rules for updating the velocity and position of the ith 
particle can be summarized as follows: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i iv t v t c r pbest t x t c r gbest t x t�� � � � � �  (1) 

 ( 1) ( ) ( 1)i i ix t x t v t� � � �  (2) 

r1 and r2 are two random numbers in [0,1]; ω is inertia weight; 
c1 and c2 are two learning factors that control the influence of 
the personal historical optimal position of the ith particle (i.e., 

pbesti) and the global optimal position of the swarm until now 

(i.e., gbest), respectively. 

Because of the characteristics of simple and efficiency, PSO 
has been widely used in various optimization problems. Based 
on the characteristics of different problems, researchers have 
proposed different variants of PSO, mainly including different 
parameter settings [5], topology structure settings [6], multi-
swarm strategies [7], parallel and distributed techniques [8][9], 
and hybrid with other algorithms [10]. 

The optimization problems with high dimensions and large 
search space for the solutions is called large-scale optimization 
problems (LSOPs). In the era of big data, the complexity of 
optimization problems increases exponentially as the 
dimensions of optimization problems increasing rapidly. As a 
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result, the performance of PSO and other traditional EC 
algorithms will rapidly deteriorate. Therefore, improving 
algorithms’ performance in solving optimization problems with 
the increasing dimensions has become a research hotspot. 

In general, there are two categories of methods to improve 
the EC algorithm efficiency for solving LSOPs: using 
cooperative coevolution (CC) frameworks or designing new 
search strategies. CC framework was first proposed in [11] and 
has been introduced into different EC algorithms [12][13], 
including CC-genetic algorithms [14], CC-differential evolution 
(DE) [15] and CC-PSO [16].  

CC framework provides an effective approach for solving 
LSOPs, but it still has significant limitations and drawbacks, 
such as the high dependency on decomposition strategies, 
increased computational complexity, and effectiveness only for 
separable problems. And researchers also consider designing 
novel non-CC strategies to enhance the population diversity for 
full exploration and avoid falling into local optima. 

In non-CC methods, researchers have designed various new 
operators [17] and strategies [18]. Moreover, some works adopt 
distributed paradigms [19] and multiple populations [20] to deal 
with LSOPs. However, how to balance exploration and 
exploitation is still a challenge that wait to be addressed. 

Recently, Wang et al. [21] are inspired by the gene targeting 
(GT) [22] technology in biotechnology and introduce it into DE 
to design an effective GTDE for solving LSOPs. The GT is an 
experimental method in biotechnology that modifies specific 
genes to improve the characteristics of organisms and has 
achieved remarkable results. In detail, GT first uses the 
deoxyribonucleic acid (DNA) homologous recombination 
technology to construct a homologous targeting vector after 
obtaining the location of the disease-causing gene. Then, these 
homologous targeting vectors are inserted into embryonic stem 
cells to form mutated embryonic stem cells. Similarly, GTDE 
modifies the best solution in every generation of DE, thus 
breaking out the poorly-performing dimensions and balancing 
evolution across all dimensions. 

 GT improves the convergence of the algorithm, but how to 
jump out the local optima is also an urgent challenge for solving 
LSOPs. The social learning strategy, which concluded from 
social learning PSO(SLPSO), can help avoid falling into the 
local optimal solution prematurely in LSOPs by making full use 
of information on different particles in the swarm via social 
learning. Although SLPSO can better maintain the diversity of 
the swarm for exploration and prevent premature convergence, 
it has poor convergence in the later evolutionary stage, resulting 
in insufficient solution accuracy. Therefore, some enhanced 
algorithms with social learning have also been proposed. For 
example, Jian et al. [24] propose a region coding scheme 
combined with social learning to generate more solutions in 
every generation to speed up the convergence. Molina et al. [25] 
propose iteratively use a variety of local search strategies based 
on social learning strategy to enhance the convergence.  

This paper combines GT and the social learning strategy to 
develop the GTPSO algorithm for solving LSOPs. The main 
contributions are as follows: 

(1) This paper proposes a dual GT (DGT) method, which 

contains two novel GT strategies, i.e., GT1 and GT2. Among 
them, GT1 can limit the search range of the target solution to 
deviate not too much from the whole population, and GT2 is 
used to help the target solution better conduct small-scale 
random searches around the stagnation state. 

(2) A new metric named effective evolution ratio (EER) 
metric is proposed to investigate the effectiveness of GT in 
improving the success rate of evolution. 

(3) An algorithm called GTPSO is proposed, which 
integrates GT with social learning strategy. GTPSO can not only 
better maintain the diversity of the population, but also enhance 
the optimization accuracy of the algorithm, which provides 
efficient solutions for LSOPs. 

The rest of this paper is organized below. The second section 
provides a brief overview of related work. The proposed GTPSO 
algorithm is described in detail in Section Ⅲ. Section IV 
describes the experimental settings and results analysis. Section 
V summarizes the paper and discusses future research directions. 

II. BACKGROUND AND RELATED WORK 

A. SLPSO 
Among the numerous optimization algorithms used to solve 

LSOPs, SLPSO is one of the most widely used algorithms. 
SLPSO inherits the advantages of easy implementation of PSO 
and improves it to address the problem of insufficient population 
diversity in LSOPs. In SLPSO, except for the particle with best 
fitness currently, each particle undergoes evolutionary learning 
from the particles in the current population that perform better 
than itself, a strategy known as social learning mechanism. 

In SLPSO, the particles within the current swarm are initially 
sorted from best to worst based on their fitness values at the start 
of each generation. When a particle has multiple superior 
particles, it randomly selects one as a guide for updating. 
Different dimensions can be guided by different particles. 
Considering particle i chooses to learn from particle k at the dth 
dimension. The update process is as follows: 

, 1 , 2 , , 3 ,( ) ( ) ( ( ) )( )) ( ( ) ( )1i d i d k d i d i ddv t rv t r x t x t r t xx t�� � � � � �  (3) 
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where r1, r2, and r3 are three random numbers in [0,1]; dx  is the 

mean position of all the particles in the dth dimension; ε is 
proportional to the problem dimension and defined as: 

D
M

� �� 
    (5) 

where a small value of β = 0.01 is used to avoid premature 
convergence in this work. D is the dimension of the optimization 
problem, and M = 100. The Pi is the learning probability for ith 
particle, and it is defined as: 

log( )1
(1 )

D
M

i
iP
N

� � �
� �� ��

� �
log(

� �D
�M� �� �M   (6) 

The ith particle will update its position only if a randomly 
generated value in [0,1] is smaller than Pi. N is the population 
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number set as N = M + ⌊0.1D⌋ and μ = 0.5. 

B. GT 
The concept of GT was first put forward in biological [22], 

which means to modify the information of biological genes, so 
as to change of biological traits, and then achieve the desired 
biological performance. Taking CRISPR-Cas9 gene editing as 
an example, GT constructs a homologous targeting plasmid 
containing a specific gene after obtaining the specific gene 
position that needs to be modified. The plasmid is then moved 
into the embryonic stem cell, forming a mutated embryonic stem 
cell that modifies disease-causing genes. Due to the targeted 
modification of the path, the mutated spared stem cells often 
exhibit better characteristics or traits than the original cells. 

Inspired by GT technology, Wang et al. [21] propose a 
GTDE algorithm that applies the ideas of GT to the evolution of 
DE, helping the population balance the evolution between all 
dimensions in LSOPs. Although the GT has shown promising 
results on DE, how to apply the GT to PSO has not attracted 
enough attentions. Therefore, this paper makes the first attempt 
to apply GT technology to the PSO and tries to find a better 
evolutionary direction by modifying the solutions in the 
population and get a better solution for the optimization problem.  

III. PROPOSED GTPSO METHOD 

A. DGT Strategy 
Inspired by GT in biotechnology, we design a DGT strategy 

to modify the particles and help the algorithm have better 
performance for solving LSOPs.  

Before conducting the DGT, it is necessary to select a 
suitable particle as the embryonic stem cell, which means DGT 
modification should only use on this particle. We choose the 
particle with the best fitness currently as the embryonic stem cell, 
named target particle. There are three reasons for this choice. 
First, the target particle has the current global optimal position 
of the swarm, so it can be regarded as potential with its current 
performance. Second, the target particle plays an important role 
in guiding the evolution direction of the population, so using this 
best particle as the target solution might have a greater positive 
influence than other particles. Finally, the search space around 
the target particle may have more probability of finding the 
better solution as its performance is better than any other 
particles in current population. Based on the above, the target 
particle is chosen to carry out the GT strategy. The process of 
the GT strategy can be concluded as the following three steps. 

1) Bottleneck dimension selection 
In solving LSOPs, the poorly-performing dimension(s) 

which limit(s) the particle to find global optimal solution can be 
regarded as the causative gene(s), considered to be the 
bottleneck dimension(s). In GT strategy, we use the Monte 
Carlo method [26] with probability Pj to decide whether the jth 
dimension is a bottleneck dimension. 

The Monte Carlo method is a mathematical method used to 
predict the possible result of uncertain events, which is suitable 
for us to balance all the dimensions.  Herein, we design a sample 
probability Pj, which is a random variable drawn from a 
univariate Gaussian distribution with 0.01 as the mean and 0.01 

as the standard deviation for all the dimensions. For each 
dimension, we generate a uniformly distributed random value in 
[0,1]. The current dimension will be marked as a bottleneck 
dimension if the generated random value is smaller than Pj, 
otherwise, it is regarded as a normal dimension. 

 Although the Monte Carlo method is simple, it allows every 
dimension to have the probability of breaking out the bottleneck, 
which is a good approach to balance all the dimensions. 

2) DGT modification 
This step aims to modify the homologous targeting vector, 

and it is conducted by using the DGT modification method in 
GTPSO. In order to balance the exploitation and exploitation of 
the population, based on the idea of cooperative game, we 
propose the GT1 and GT2 that works cooperatively in the DGT.  

GT1 is mainly used to maintain the stability of the target 
particle, making its position deviate not too much from the 
population. This is considered to make full use of the historical 
information obtained from the evolution until current process. 
The updating formula for GT1 is shown as: 

 
1 2, , 1 1 , , 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))tar d i d k d k d d dv t v t c r pbest t pbest t c r x t x t�� � � � � � (7) 

where vtar is the velocity of the target particle, k1 and k2 are two 
randomly selected particles from the swarm. 

GT2 helps the target particle to conduct a local search nearby, 
thus helping the target particle out of stasis when the population 
falls into local optima and enhancing the diversity of the 
population. The updating formula for GT2 is shown as: 

1 2 1 2, , , , ,

1
1 (

2

1
( ) ( ( ) ( )), ( ( ) ( )))

2
tar d k d k d k d k dv t Gaussian v t v t v t v t�� � �  (8) 

The new value of vtar is a Gaussian distributed random 
number with a mean as the midpoint of two randomly selected 
particles k1 and k2 at dth dimension and a standard deviation as 
half of the distance between these two particles at dth dimension. 

To preserve the evolutionary information of the population, 
the mutation strategy should be paid attention. Pm is a 
probability that is set to help determine which GT mutation is 
used, and it is set relatively small as 0.01. We generate a uniform 
distribution random value in [0,1] to help choose the specific GT 
strategy. If the value is smaller than the Pm, we choose GT1 to 
mutate. Otherwise, we use GT2. 

Due to the two different goals of GT1 and GT2, there is a 
conflict effect between the two strategies. Besides, both GT1 
and GT2 are used to update the target solution through evolution, 
so there is a cooperative effect between the two strategies in the 
population. Thus, the balance of stability and diversity in the 
process of population evolution is realized. By setting GT1 and 
GT2 respectively, the DGT strategy can help improve the 
algorithm’s ability of solving LSOPs. 

3) Target particle update 
After the modification, the homologous targeting vector will 

be inserted into the embryonic stem cell, which means that the 
velocity and position of the target particle will be updated. To 
further ensure the effectiveness of the algorithm, we use the 
greedy strategy to update the target particle. The velocity and 
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position of the target particle is only updated when the target 
particle updated by the DGT strategy has a better evolution 
fitness than before.  

Based on the above three steps, we implement the whole 
process of DGT strategy and provide a target particle that have 
more change to find different better positions. To make this, we 
set a gene targeting times NGT, which allows the DGT strategy 
to repeat more times in every generation to provide more 
potential global optimal solutions. 

Algorithm 1 shows the pseudo-code of the DGT strategy. 
First, we adopt the Monte Carlo method with Pj to select the 
bottleneck dimensions. Second, the DGT modification is used 
to help the target particle have a greater probability of finding 
the global optimal solution and improve the algorithm’s ability 
for solving LSOPs. The convergence of the algorithm is 
promised by the GT1 strategy and the GT2 strategy lets the 
population still have robuster exploration ability. Third, we 
compare the new fitness of the target particle updated by DGT 
modification with the before one and choose the better one to 
save. The procedure is repeat for NGT times.  

B. GTPSO 
The DGT strategy mainly focus on the modification of the 

target particle, but one of the advantages of PSO is that it can 
use the intelligence of the swarm. As a result, only focusing on 
the updating of the target particle is not enough, instead, we also 
need to consider other particles’ evolution, so as to keep the 
diversity of the population and make fully exploration within the 
large search space. 

Based on the above, social learning strategy is a suitable 
strategy to combine with DGT. In the social learning strategy, 
for every dimension d of the current particle, we generate a 
uniform distributed random value in [0,1], and randomly choose 
a particle which has better fitness than the current one to update 

the dth dimension of ith particle according to Eq (3). This strategy 
can fully use the information of the swarm. 

The whole GTPSO algorithm can be summarized in the 
following steps. In every generation, we first sort all the particles 
from best to worst by their fitness. DGT strategy is used to 
update the particle with the best fitness currently. And we use 
the social learning strategy to update other particles. The 
procedure is repeated until meeting the maximum number of 
FEs. The pseudo-code of the whole algorithm GTPSO is shown 
in Algorithm 2. 

IV. EXPERIMENT 

A. Experimental Setting 
The experiments are carried out on the benchmark functions 

in Table Ⅰ, including five unimodal functions and seven 
multimodal functions. All the functions are of D = 1000 
dimensions. To obtain more reasonable results, each experiment 
is run 30 times independently. 

The MaxFEs is set as 3,000,000 for all competitors and 
functions, the population size N is set as 100 in GTPSO, while 
the frequency of the DGT-based modification NGT is set as 400 
in every generation. As GTDE [21] is an algorithm which is also 
inspired by GT for solving LSOPs, and SLPSO [23] uses the 
social learning strategy and combined it with PSO, we compare 
the results of GTPSO with GTDE and SLPSO. To ensure a fair 
comparison, we use the original parameter settings from the 
algorithms’ papers, which are optimized for large-scale 
optimization benchmarks. To enhance clarity, the best results 
are highlighted in boldface. 

B. Comparison Results 
Comparison results on the 12 benchmark functions are 

shown in Table II. The ‘+’, ‘-’, and ‘=’ represent GTPSO is 
significantly better, worse, and similar to the corresponding 

Algorithm 2 GTPSO 

Input: the fitness evolutions FEs, the maximum fitness evolutions 
MaxFEs, the population size N, the particle dimension D, M = 100, β = 
0.01 
Output: the final solution gbest 
Begin 
1:   ε = βD/M; 
2:   Population initialization; 
3:   FEs = FEs + N; 
4:   While FEs ≤ MaxFEs: 
5:          Sort all the particles according to fitness from best to worst; 
6:          For i = 1 to N: 
7:               If i == 1: 
8:          Execute DGT strategy using Algorithm 1; 
9:               Else: 
10:           For d = 1 to D: 
11:                             If rand(0, 1) ≤ Pi: 
12:                                    k = rand_int[1, i – 1]; 
13:                                    Update dth dimension of particle i; //Eq.(3)-(6) 
14:                             End If 
15:           End For 
16:           Calculate and update the fitness value of particle i; 
17:           FEs = FEs + 1; 
18:               End If 
19:         End For 
20:  End While 
End Algorithm 1 Dual Gene Targeting 

Input: the target particle xtar, gene targeting times NGT = 400,  
Pm = 0.01 
Output: the updated target particle xtar 
Begin 
1:   For i = 1 to NGT: 
2:          For d = 1 to D: 
3:                 Pj = Gaussian(0.01, 0.01); 
4:                 Randomly select two particles xk1 and xk2; 
5:                 If rand(0, 1) < Pj 
6:                 //dth dimension is targeted as bottleneck dimension 
7:          If rand(0, 1) < Pm 
8:                               Generate the vtar,d using the GT-1 strategy in (7); 
9:           Else: 
10:                  Generate the vtar,d using the GT-2 strategy in (8); 
11:           End If 
12:           x'tar,d = xtar,d + vtar,d; 
13:   Else: //dth dimension is not targeted as bottleneck dimension 
14:           x'tar,d = xtar,d; 
15:               End If 
16:          End For 
17:          If f(x'tar) ≤ f(xtar): 
18:                 xtar = x'tar; 
19:          End If 
20:          FEs = FEs + 1; 
21:   End For 
End 
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algorithm according to Wilcoxon’s rank-sum test at 0.05 level. 
It can be seen that the proposed GTPSO performs better than 
SLPSO and GTDE on the vast majority of functions.  

To verify the effectiveness of different parts of GTPSO, we 
compared GTPSO with GTPSO only using GT1 or only using 
GT2. The comparison results on the 12 benchmark functions are 
shown in Table III. 

As shown in Table III, it is evident that the combined action 
of GT1 and GT2 yields superior performance on the vast 
majority of functions, which highlights the distinct contributions 
of GT1 and GT2 in enhancing GTPSO in different aspects. This 
outcome underscores the importance of employing both GT1 
and GT2 simultaneously. 

C. Further Analysis of GT 
To facilitate a more comprehensive analysis of the results, 

we propose an indicator called EER per generation to examine 
the performance of GT and SLPSO across different functions. 
During the algorithm operation, the EER of every generation is 
calculated using Eq. (9) and Eq. (10). 

 validGT
GT

totalGT

NEER
N

�  (9) 

 validSLPSO
SLPSO

totalSLPSO

NEER
N

�  (10) 

NvalidGT and NvalidSLPSO are the number of times that all the 
particles successfully replace their original pbest after the action 
of GT and SLPSO, while the NvalidGT and NvalidSLPSO are the 
numbers of times that generation undergoes GT or SLPSO 
evolution. 

Fig. 1 shows the EER of GT and SLPSO in every generation 
on different functions. The EER of SLPSO is generally stable 
on the vast majority of functions, such as f1, while the GT 
gradually becomes effective and surpasses SLPSO after SLPSO 
has evolved to a certain stage. In f2 the whole evolution process 
is guided almost entirely by GT. 

In some functions, i.e., f4, GT has a smaller EER, probably 
because f4 is a downward rounding function. Small disturbances 
in some dimensions have little effect on improving the target 
particle when solving this kind of functions. However, from the 
above Table III, we can also see that the GTPSO significantly 
outperforms its variants that do not have GT1 or GT2. This may 
be because that although the GT does not have significant EER 
on the target particle, it can help the population obtain better 
solutions. Based on the above, the GT is promising for 
improving the PSO.  

TABLE Ⅱ 
RESULTS ON THE 12 BENCHMARK FUNCTIONS 

Function 
GTPSO SLPSO GTDE 

mean std mean std mean std 

f1 4.01E+00 3.06E+00 4.17E+02(+) 1.33E+02 2.51E+05(+) 3.26E+04 

f2 5.02E+05 8.94E+04 1.13E+06(+) 7.55E+04 7.95E+06(+) 1.95E+06 

f3 8.59E+01 8.83E+00 9.22E+01(+) 3.40E+00 4.80E+01(-) 4.27E+00 
f4 1.04E+02 6.53E+01 1.04E+03(+) 2.42E+02 2.43E+05(+) 2.65E+04 

f5 1.79E+00 5.36E-01 1.21E+01(+) 1.45E+00 2.10E+03(+) 4.93E+02 

f6 3.14E+03 1.15E+03 3.05E+04(+) 2.22E+03 2.19E+06(+) 5.65E+05 

f7 1.29E+05 3.77E+04 2.37E+05(+) 1.03E+04 3.68E+05(+) 4.31E+03 

f8 2.70E+02 8.73E+01 1.19E+03(+) 4.92E+01 9.53E+03(+) 2.48E+02 

f9 4.86E-01 4.67E-01 2.60E+00(+) 1.47E-01 1.43E+01(+) 3.90E-01 

f10 2.16E-01 1.48E-01 2.89E+00(+) 5.50E-01 2.20E+03(+) 3.00E+02 

f11 4.93E+00 1.11E+00 1.03E+01(+) 1.29E+00 3.78E+07(+) 2.23E+07 

f12 1.02E+09 1.44E+08 6.49E+10(+) 1.44E+09 5.44E+08(-) 1.82E+08 

Total (+/-/=) 12/0/0 10/2/0 

TABLE Ⅲ 
ABLATION EXPERIMENT RESULTS 

Function 
GTPSO GTPSO-GT1 GTPSO-GT2 

mean std mean std mean std 

f1 4.01E+00 3.06E+00 5.22E+01(+) 6.43E+01 6.01E+00(=) 7.66E+00 

f2 5.02E+05 8.94E+04 1.11E+06(+) 1.14E+05 5.23E+05(+) 1.02E+05 

f3 8.59E+01 8.83E+00 9.08E+01(=) 4.18E+00 8.89E+01(+) 2.42E+00 

f4 1.04E+02 6.53E+01 3.24E+02(+) 1.96E+02 1.22E+02(=) 5.69E+01 

f5 1.79E+00 5.36E-01 5.54E+00(+) 1.95E+00 1.72E+00(=) 5.18E-01 
f6 3.14E+03 1.15E+03 1.73E+04(+) 6.02E+03 3.04E+03(=) 1.44E+03 
f7 1.29E+05 3.77E+04 1.54E+05(+) 3.45E+04 1.32E+05(+) 3.98E+04 

f8 2.70E+02 8.73E+01 9.30E+02(+) 7.94E+01 7.24E+02(=) 1.44E+02 

f9 4.86E-01 4.67E-01 1.44E+00(+) 4.75E-01 5.61E-01(=) 4.86E-01 

f10 2.16E-01 1.48E-01 1.25E+00(+) 6.68E-01 1.87E-01(=) 1.35E-01 

f11 4.93E+00 1.11E+00 7.23E+00(+) 1.29E+00 4.81E+00(=) 1.16E+00 

f12 1.02E+09 1.44E+08 2.06E+10(+) 1.29E+09 1.08E+09(+) 1.33E+08 

Total (+/-/=) 11/0/1 4/0/8 
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V. CONCLUSION 

Inspired by GT, this paper proposes a simple and effective 
algorithm called GTPSO for solving LSOPs. In the algorithm 
design, we propose the DGT strategy. It includes two mutation 
schemes, including the use of excellent solutions and average 
information of the population to maintain the stability of the 
population, and the use of Gaussian distribution to generate 
random numbers to assist particles in jumping out of the local 
optimal solution and maintain the diversity of the population. 
GTPSO maintains the simple structure of the PSO algorithm, 
and shows good performance in a variety of experiments. It has 
effectively contributed to solving LSOPs. 

In future work, we will consider finding more suitable traits 
to guide the search for bottleneck dimensions and the use of GT, 
such as starting GT after the population evolution reaches a 
certain stage, so as to avoid wasting the resource of fitness 
evaluation in the early evolutionary stage. 
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Fig. 1 The EER of GT and SLPSO in the 1st, 2nd, and 4th benchmark problem 
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