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Abstract—Recently, with increasing interest in pet healthcare,
the demand for computer-aided diagnosis (CAD) systems in
veterinary medicine has increased. The development of veterinary
CAD has stagnated due to a lack of sufficient radiology data.
To overcome the challenge, we propose a generative active
learning framework based on a variational autoencoder. This
approach aims to alleviate the scarcity of reliable data for
CAD systems in veterinary medicine. This study utilizes datasets
comprising cardiomegaly radiographic image data and chronic
kidney disease ultrasound image data. After removing anno-
tations and standardizing images, we employed a framework
for data augmentation, which consists of a data generation
phase and a query phase for filtering the generated data. The
experimental results revealed that as the data generated through
this framework was added to the training data of the generative
model, the frechet inception distance decreased from 84.14 to
50.75 in the radiographic image and from 127.98 to 35.16 in an
ultrasound image. Subsequently, when the generated data were
incorporated into the training of the classification model, the
true negative of the confusion matrix also improved from 0.16 to
0.66 on the radiograph and from 0.44 to 0.64 on the ultrasound
image. The proposed framework has the potential to address the
challenges of data scarcity in medical CAD, contributing to its
advancement.

Index Terms—Artificial intelligence, generative model, active
learning, variational autoencoder, veterinary medicine
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I. INTRODUCTION

Pets have become important members of our lives, forming

strong bonds and emotional connections with their owners.

The healthcare of pets has become a subject of increased

interest. With the continuous evolution of artificial intelligence

(AI), there is a noticeable trend towards incorporating AI into

computer-aided diagnosis (CAD) systems for pet healthcare.

The effectiveness of AI models is highly dependent on ac-

cess to high-quality training data [1]. However, acquiring a

substantial amount of medical data for CAD has challenges

due to the sensitive personal information in such data. Conse-

quently, there is a persistent effort to explore the application

of generative models for the generation of medical data.

Among these efforts, numerous studies have leveraged

generative adversarial networks (GAN) [2]. Yoon et al. [3]

achieved a fretchet inception distance (FID) of 42.19 for

Sessile serrated lesion images using style-based GAN. The

FID is a metric of which calculates the disparity in fea-

tures between generated and real images. A lower FID value

signifies better performance. Salvia et al. [4] proposed the

use of GAN to generate synthetic hyperspectral images of

epidermal lesions, addressing the challenge of limited large

datasets. These academic efforts demonstrate the potential of

GAN in generating medical images to improve research and

diagnostics. Zhu et al. [5] explored the concept of generative

adversarial active learning, employing a generative model in

active learning to improve the performance of classification

models. Although this approach involved queries to augment

the training dataset for labeling, they emphasized the proposed

framework, rather than focusing on criteria for queries.

In this study, we have used active learning in the context of

generative models, incorporating a unique criterion for data
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Fig. 1. The data preprocessing pipeline for training a generative model. If doctors draw annotations for diagnosis, the annotations are extracted to create
masks. Then, image inpainting techniques are applied to remove the annotations. Subsequently, the resolution of the images is standardized.

filtration through a variational autoencoder (VAE) [6]. The

approach of using the feature vectors generated by encoder as

features has been utilized in other studies [7]. In this research,

it has significantly enhanced the robustness of the generative

model’s performance. We focused on addressing the scarcity

of medical data for CAD, especially in the field of veterinary

medicine. The introduced approach leverages query processes

facilitated by a VAE to improve the performance of generative

models in generating medical image data. This method shows

the solution to address the persistent challenge of limited

medical image data in CAD applications.

II. GENERATIVE ACTIVE LEARNING WITH VAE

A. Dataset
This research used the pet’s thorax medical image datasets

from ‘The Open AI Dataset Project (AI-Hub, S. Korea)’ and

ultrasound images of chronic kidney diseases (CKD) from

Konkuk University Animal Hospital. Radiograph data infor-

mation can be accessed through ‘AI-Hub (www.aihub.or.kr)’.

We selected 100 images from the cardiomegaly disease data

and 100 images from stage 4 of CKD as the initial training

data set, focusing on the visually prominent characteristics of

the disease. Data on cardiomegaly disease can visually confirm

that the heart is enlarged and CKD data can visually confirm

that the surface of the kidney becomes rough [8], [9]. We used

these selected data as initial training data for the generative

model and VAE.
Before training the model, a preprocessing step was per-

formed to standardize the data used for training. For ultrasound

images, annotations made by veterinarians for diagnosis were

present. As the model could potentially learn from these

annotations as features of the data, we performed a task to

remove the annotations. Initially, the data in RGB format was

transformed into the HSV color space. Subsequently, since the

color of the annotations was in kinds of green, we extracted

the green color to create a binary mask. The mask obtained

was then utilized in the image inpainting technique to restore

the image. This method replaces pixels in the masked area

using neighboring pixels.

Algorithm 1 Overall process of proposed framework

Step 1: Data Preprocessing

Input: Raw dataset

Output: Preprocessed dataset

if Annotations exist in Raw dataset then
Convert RGB images to HSV images

Extract green tones to create masks

Inpainted dataset = Use masks for image inpainting

Preprocessed dataset = Standardize resolution of Inpainted dataset

Step 2: Data Generation

Input: Preprocessed dataset

Output: Augmented dataset

while Augmented dataset size < 500 do
for epochs = 1 to 20 do

if epochs is even then
New FID = Evaluate the generative model

if Saved FID > New FID then
Saved FID = New FID

Saved weights = Save the generative model’s weights

Generated dataset = Generate 1000 data using Saved weights

Calculate the cosine similarity of Generated dataset

F iltered dataset = Select the top 10% Generated dataset

Augmented dataset+ = Filtered dataset

Second, we standardized the resolution of both radiographic

and ultrasound images. The raw data had diverse resolutions.

Inconsistent image resolutions in the training dataset can lead

to unstable learning due to variations in the size of the feature

maps extracted by the neural network. To address this, we

employ the center-cropping method, which uses center-based

image cropping to ensure that essential organ information,

such as the heart and kidney, is not lost. Radiographic images

were resized to 256×256 pixels, while ultrasound images were

resized to 512×512 pixels. The data preprocessing procedure

is depicted in Fig. 1.
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Fig. 2. Overall flow of the proposed framework. (a) The projectedGAN is trained with filtered image data and real image data to generate a new radiographic
and ultrasound image. (b) VAE trained with 100 original data are used to calculate cosine similarity. (c) The top 10% cosine similarity of the data is added
to the training dataset. (d) Finally, classification is performed using the object detection model after labeling to prove the usefulness of the data.

B. Proposed Framework

The framework is composed of the two phases. First, the

data generating phase trains the generative model and gener-

ates data. Second, the query phase filters the generated data

through the query strategy before incorporating them into the

dataset for training the generative model. Algorithm 1 details

the steps involved in this process with data preprocessing. The

term cycle refers to the process of generating data in the data

generating phase, filtering through the query phase, and adding

the filtered data to the training dataset of the generative model.

We repeated the cycle until the train dataset has 500 data. The

overall flow is depicted in Fig. 2.

1) Data generating phase: The study utilized the pro-

jectedGAN model proposed by Sauel et al. [10] due to its

state-of-the-art performance across various datasets during

the experiment. ProjectedGAN comprises a generator and

a discriminator. The generator is trained to learn the data

features to generate images that can effectively deceive the

discriminator. The discriminator learns the data in a way that

distinguishes between ground truth data and generated data.

The evaluation of the generative model was based on the

FID [11], which measures the dissimilarity of the character-

istics between the generated and ground truth images. The

formula to calculate the FID is provided below. T represents

ground truth images, and G represents generated images. Tr
is defined as the sum of elements from the upper left to the

lower right of the vector.

FID = ‖μT − μG‖2 − Tr((ΣT +ΣG − 2(ΣTΣG)
1
2 ) (1)

The GAN initiates training by using 100 selected ground

truth data. Training progresses through a total of 20 epochs

per cycle, with a performance evaluation conducted every 2

epochs. Consequently, each cycle yields a total of 10 FID

assessments. During evaluation, if the current FID value is

lower than the previously recorded FID value, we save the

model’s weights. We utilize these saved weights to generate

1,000 images per cycle.

2) Query phase: The evaluation of image similarity in this

study used a VAE, comprising a decoder and a encoder. In

VAE, the decoder aims to regenerate the input in a form that is

most similar to when a latent vector is given. The encoder, on

the other hand, seeks to find the mean and standard deviation

of the input and generates a latent vector with noise epsilon in

Gaussian distribution. The study focused on utilizing the latent

vector generated by the encoder. The generated latent vector

has a shape of 200×1. Training the VAE involved using 100

selected ground truth data for a total of 25 epochs.

To assess image similarity, cosine similarity was employed

[12]. Unlike distance measures such as the Euclidean distance,

which evaluate vectors based on their magnitudes, cosine

similarity examines whether both vectors are aligned in the

same direction. This characteristic makes cosine similarity par-

ticularly suitable for gauging significant similarities between
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Fig. 3. Data generating phase’s results of each cycle. (a) The graph of the FID value over the cycles. (b) The generation results of each cycle.

images. The formula for cosine similarity is provided below. In

the given equations, T denotes the latent vector of the ground

truth, whereas G represents the latent vector of the generated

image.

Cosine similarity = 1− T ×G

‖T‖ ‖G‖ (2)

The original images and the images generated through the

data generating phase were passed to the VAE’s encoder to

obtain embeddings. The cosine similarity between the 100

original images and the generated image was calculated. The

generated images with the top 10% of cosine similarity were

selected and added to the training set.

C. Classification phase

To demonstrate the validity of our framework, we applied a

object detection model for classification to images generated

using our framework. The model we used for this purpose

is YOLOv8, which is an enhancement of YOLOv5 based on

additional layer modifications to improve the model’s perfor-

mance, achieving state-of-the-art results. The YOLO series

is a well-known model extensively utilized in various CAD

applications [13]. We considered the classification to be correct

if the intersection over union (IoU) of the predicted bounding

box by YOLO was above 0.7 and the class probability was

higher than 0.5. IoU is a measure indicating the degree to

which the predicted bounding box matches the ground truth

bounding box.

We generated data for cardiomegaly and CKD diseases dur-

ing the data generating phase. The number of data increased

from 100 in the Cycle-1 to 500 in the Cycle-5. We labeled

these data as abnormal. Eventually, since the data increased to

500 images, we prepared 500 normal data to train YOLOv8.

For example, in the classification phase, Cycle-3 refers to

training with 300 abnormal data and 500 labeled normal data.

For testing, we extracted 50 data samples per class from

ground truth data that were not duplicated with the training

data.

For evaluation metrics, we utilized the confusion matrix,

along with accuracy, precision, recall, and F1-score [14]. The

confusion matrix is a table used in machine learning to assess

the performance of a classification model, summarizing the

relationship between the model’s predictions and ground truth

values. From this matrix, accuracy, precision, recall, and F1-

score can be calculated using the following formulas. In these

formulas, true positive (TP) represents the number of correctly

predicted positive observations, while true negative (TN) de-

notes the number of correctly predicted negative observations.

False positive (FP) indicates instances predicted as positive,

but actually negative. False negative (FN) indicates the number

of instances that are actually positive but are incorrect.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 score =
2 · (Precision ·Recall)

Precision+Recall
(6)

III. EXPERIMENTS

A. Data generating phase

The FID values obtained from the experiment on generat-

ing radiographic image data and ultrasound image data are

illustrated in Fig 3. (a). The FID values are the best results

obtained from a cycle’s iteration. In Cycle-4, the generated

radiographic image data showed the best performance with a

FID value of 50.75. For the generation of ultrasound image

data, Cycle-5 produced the best results with an FID value

of 35.16. Additionally, a tendency was observed in which

performance tended to be less favorable with a smaller amount

of data. On the contrary, as the amount of data increased,

there was an improvement in performance, although the final

cycle did not consistently yield the best results for radiographic

images.
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Fig. 4. Confusion matrix results of classification phase. The above results represent training and testing results using cardiomegaly data at the top and CKD
data at the bottom. The cycle with the highest accuracy among the five cycles is bolded in the figure.

TABLE I
PERFORMANCE EVALUATION OF CLASSIFICATION PHASE IN

RADIOGRAPHIC IMAGE

Cycle Accuracy F1-score Precision Recall

Cycle-1 0.56 0.53 0.96 0.69
Cycle-2 0.60 0.57 0.86 0.68
Cycle-3 0.73 0.68 0.86 0.76
Cycle-4 0.77 0.72 0.88 0.79
Cycle-5 0.76 0.71 0.88 0.79

The generated radiographic image data and ultrasound im-

age data are illustrated in Fig 3. (b). The generated images

were generated using the model with the lowest FID within

each cycle and represent images with the highest cosine

similarity to the original data. Radiographic images exhibit

an average cosine similarity of 80.2762, while ultrasound

images demonstrate an average cosine similarity of 80.8931.

During individual comparisons, the highest cosine similarity

for radiographic image data was observed at 90.9575 in Cycle-

3, whereas for ultrasound image data, it was recorded at

90.2917 in Cycle-5.

B. Classification phase

The results of the classification using YOLOv8 are pre-

sented in Fig. 4. Additionally, the cycle-wise accuracy, F1-

score, precision, and recall for each confusion matrix are

presented in Table I and Table II. Fig. 4 includes the confusion

matrix, where the upper part represents the results tested on

radiographic images of dogs with cardiomegaly, and the lower

part represents the results tested on ultrasound images of dogs

with CKD. The confusion matrix is commonly employed as

an evaluation metric in various research studies involving clas-

sification tasks [15]. Each classification task was conducted

TABLE II
PERFORMANCE EVALUATION OF CLASSIFICATION PHASE IN

ULTRASOUND IMAGE

Cycle Accuracy F1-score Precision Recall

Cycle-1 0.66 0.61 0.88 0.72
Cycle-2 0.72 0.69 0.80 0.74
Cycle-3 0.65 0.63 0.74 0.68
Cycle-4 0.75 0.70 0.88 0.78
Cycle-5 0.70 0.71 0.88 0.75

to demonstrate the validity of the data and the classification

model training utilized the dataset used for the generative

model.

In the cardiomegaly dataset, Cycle-4 exhibited the highest

accuracy and F1-score, with values of 0.77 and 0.72, respec-

tively. Furthermore, Cycle-4 and Cycle-5 demonstrated the

highest recall, reaching 0.79. The precision was maximized

when trained with the original data. The Cycle-1 recorded

the lowest accuracy and F1-score, with values of 0.56 and

0.53, respectively. The cycles with the lowest precision were

Cycle-2 and Cycle-3, both with values of 0.86. Lastly, Cycle-2

exhibited the lowest recall, with a value of 0.68.

In the CKD dataset, Cycle-4 displayed the highest accuracy

and recall, recording values of 0.75 and 0.78, respectively.

Additionally, Cycle-1, Cycle-4, and Cycle-5 showed the high-

est precision of 0.88. The highest F1-score was achieved in

Cycle-5, reaching 0.71. The cycles with the lowest accuracy,

precision, and recall were Cycle-3, with values of 0.65, 0.74,

and 0.68, respectively. In addition, the lowest F1-score was

observed in Cycle-1, with a value of 0.61.
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IV. DISCUSSION

In this paper, we propose a generative active learning

framework that automates the query process using VAE.

This framework generates data during the data generating

phase and incrementally augments the training dataset of the

generative model by filtering data through the query phase.

Unlike previous research, we adopt the VAE to enhance the

robustness of the query process. The query process has the

filtering step by calculating the cosine similarity between

the generated images and the real images using 10% of the

generated data. Experimental results demonstrate that iterative

repetition of this process leads to an improved performance of

the generative model.

Observing the change in FID during the data generating

phase, we observed a consistent tendency for FID reduction

as the cycles progressed. In the case of radiographic data

generation, the FID value decreased from 84.14 to 50.75. For

ultrasound image data generation, the FID value decreased

from 127.98 to 35.16. These results demonstrate that our

proposed framework effectively enhances the robustness of the

generative model’s performance.

To validate the data’s effectiveness, we performed a clas-

sification phase. The data used for generation encompassed

all disease classes, including cardiomegaly and CKD. The

experimental results, as observed in the confusion matrix,

demonstrate that as the cycle increases, the increase in dis-

ease data leads to an increase in TN. For cardiomegaly, TN

increased from 0.16 to 0.66, and for CKD, it increased from

0.44 to 0.64. These findings indicate the utility of the data

generated using our framework in improving the performance

of the classification model.

However, there were also experimental results that raised

suspicions of overfitting. When generating radiographic image

data, the FID increased as we progressed from Cycle-4 to

Cycle-5, and similarly, when generating ultrasound data, there

was an increase in FID from Cycle-3 to Cycle-4. Additionally,

during the classification phase, the TN values were highest

for radiographic images at Cycle-4, and decreased in Cycle-5

compared to Cycle-4. Moreover, when classifying ultrasound

images, the TN values were highest at Cycle-2 and decreased

thereafter.

Furthermore, this study has some limitations. First, our

methodology involved the utilization of an existing GAN vari-

ant instead of the proposed model. In particular, contemporary

image generative models lean toward diffusion models [16]

rather than GAN. Second, while there is a plethora of medical

image data available, we restricted our application of the

framework to radiographic and ultrasound image data. Given

the limited dataset that encompasses only these two modali-

ties, further exploration is essential across diverse datasets to

establish the generalizability of our findings. These limitations

highlight avenues for future research and improvements in our

approach.

V. CONCLUSION AND FUTURE WORKS

This study proposed the VAE-based generative active learn-

ing framework. The potential of this framework to address

the issue of medical data scarcity in CAD was demonstrated

through experimental results, including the FID of the genera-

tive model and the confusion matrix, accuracy, F1-score, pre-

cision, and recall of the classification model. Future research

will extend to proposing generative models such as diffusion

models and using various types of data, such as computerized

tomography (CT), magnetic resonance imaging (MRI), etc. It

will have a positive impact on the performance improvement

of the CAD system in the future and provide an opportunity

to promote the development of the medical AI field.
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