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Abstract—Eye movement analysis is extensively utilized in
understanding mechanisms governing perception, cognition, and
action and proves valuable in exploring neurological and neu-
rodegenerative diseases. This paper introduces GlobeMetrics, a
healthcare application designed for ocular analysis from video
data. Our emphasis in this study is on estimating the saccadic
profile of the subjects utilizing the GlobeMetrics framework. The
framework includes a setup for data recording, an appearance-
based gaze estimation system, a module for analyzing gaze
data specifically for saccade analysis, and an interactive GUI
application that interfaces with each aspect of the framework.
The proposed gaze estimation network consists of a convolu-
tional neural network (CNN) based segmentation and regression
network that maps input frames to gaze points. The proposed
gaze estimation architecture achieves a prediction error of
0.467± 0.133 cm on our database. Additionally, the segmentation
network attains mean IOUs of 95.19 and 97.39 for sclera and
iris, respectively. Our proposed framework, GlobeMetrics, offers
an interactive platform for conducting ocular analysis in clinical
settings. This application seamlessly integrates data recording,
stimulus generation, database management, and data analysis
within a unified framework. The overall framework is accurate,
robust, and generalizes well to new subjects.

Index Terms—eye movement, saccade analysis, healthcare
application, convolutional neural network

I. INTRODUCTION

Gaze tracking finds extensive application in the examination

of perception, cognition, and action mechanisms [1] and is

useful for investigating neurological and neurodegenerative

diseases [2]. Analysis of eye movement patterns, especially

rapid shifts in gaze, also known as saccadic eye movements,

is often crucial for non-invasive diagnosis of neurocognitive

diseases [3]. In clinical practice, saccade analysis often in-

volves assessment of eye movements to a visual stimulus. This

stimulus may appear randomly or in a predetermined sequence,

requiring subjects to quickly and accurately shift their gaze.

By examining patterns, velocities, and accuracies of these eye

movements, clinicians can identify markers of cognitive health.

Earlier gaze analysis techniques relied on simple visual

observation, often necessitating the use of specks or eye-

cups placed over the eyeball. As eye movement research

*These authors contributed equally to this work†
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has advanced, non-intrusive methods like video-based eye-

gaze tracking, which relies on video cameras, have become

increasingly popular. In particular, the appearance-based gaze

estimation method directly estimates gaze direction through

eye images. This approach eliminates the necessity for special-

ized hardware that can be restrictive and expensive. Recently,

many works have incorporated appearance-based methods to a

broad range of gaze-related tasks, including emotion analysis

[4], ASD diagnosis [5], and visual attention detection [6].
In this work, we developed a gaze recording setup along

with an interactive application designed specifically for clini-

cians. The application produces visual stimuli on a screen, and

the associated eye movements are captured using a camera

placed beneath the display. Furthermore, we developed an

automated processing pipeline to directly analyse saccades

from video data. Initially, a segmentation map is obtained

for both the sclera and pupil. This segmentation map is then

utilised to create a mapping for acquiring the 2D gaze point,

which, in turn, is employed for saccade analysis. The overall

system allows for the recording and analysing of subjects’

eye movements, providing an interactive graphical interface

for evaluating ocular movement patterns.

Fig. 1. Gaze direction corresponding to a gaze point on screen.

Eye movements allow for the selection and processing of

visual information from our environment [7]. Broadly, eye

movements can be classified into fixations, smooth pursuit, and

saccades. Fixations refers to a state in which the eyes are rel-

atively still and remain focused on a particular point. Smooth

pursuit involves a fluent eye motion smoothly following a vi-

sual stimulus in motion, and saccades refer to rapid transitions

from one fixation point to another [8]. These eye movements

can be estimated from gaze data, which is generally recorded
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using some eye-tracking method. The vector representing gaze

data can take two forms: a 2D Cartesian point for spatial

location on the screen or a 2D polar angle for direction

and magnitude. The analysis of saccades has proven crucial

for distinguishing and monitoring neurocognitive diseases [3].

Saccadic eye movements are assessed using spatiotemporal

and kinematic variables like velocity, acceleration, frequency,

timing, and duration. For the analysis of saccades, the first

step involves eye detection in the video frame, which is

then utilized to estimate the gaze point at that instant of

time. Gaze estimation, especially appearance-based methods

[9], has drawn considerable interest in a variety of research

fields and applications. Such an approach directly predicts

gaze direction or gaze point (see Fig. 1) from eye images

[10]. In general, these techniques leverage CNNs to acquire

hierarchical features from eye images, employing them to

estimate gaze direction [11], [12]. In this paper, we initially

acquire segmentation masks for the sclera and iris of both eyes

utilizing a CNN-based architecture, specifically UNet, in light

of the successes of UNet architecture in many medical imaging

applications [13], [14] and computer vision tasks [15], [16].

Subsequently, we estimate the gaze point using a lightweight

CNN network.

Many software packages such as SMI BeGaze [17], Tobii

Pro Lab [18], and imotions [19] have been utilised in literature

to study and analyse eye movements. These provide solutions

to eye tracking, offering in-depth insights into visual attention

patterns across a broad spectrum of application domains.

While such solutions provide a holistic approach to eye

analysis, they can be complex and expensive, with a steep

learning curve for less experienced professionals. In this paper,

we propose to provide a lightweight and open-source platform

for ocular studies, emphasising its simplicity to cater to the

needs of healthcare professionals.

In summary, the main contributions of this paper are listed

as follows:

• We propose GlobeMetrics, a healthcare framework for

ocular analysis.

• We introduce the characterization of saccades from gaze

data as a module within the framework. To accom-

plish this, we utilize an appearance-based deep learning

method.

• We have compiled a database “GlobeMetrics Dataset”

consisting of data from eight subjects. Subsequently, we

conducted thorough experiments on this dataset for the

purpose of saccade characterization.

II. METHODOLOGY

GlobeMetrics Framework is a software package for ocular

research with a focus on studying patient responses to visual

stimuli. It comprises of: (i) Recording setup and calibration,

(ii) Visual stimuli apps, (iii) Synchronization, (iv) Preprocess-

ing, (v) Experimental modules, and (vi) GUI interface. Our

software package provides an interactive user interface, which

allows for patient-wise data collection, including grouping

patients based on health records. We introduce the charac-

terization of saccades from gaze data as a module within the

framework, comprising three primary stages: Eye segmenta-

tion, Gaze prediction, and Saccade analysis. Our objective

is to assess an individual’s saccadic profile through video

data analysis while also developing a user-friendly graphical

interface for clinicians. The overview has been presented in

Fig. 2. Other ocular experiments can be added as experiment

modules. GlobeMetrics allows the combination of different

experiment modules and the export of results to data visu-

alization software.

A. GlobeMetrics Framework
1) Recording Setup and Calibration: The experimental

setup comprises a desk-mounted chin rest for head stability,

with a 27-inch LCD screen positioned 60 cm in front. A

high fps camera, capable of recording 120 fps or higher, is

centrally located just below the screen to capture each session

(see Fig. 2). The camera must also have audio recording

capabilities, as the audio track will be utilized to synchronize

the footage with the data from the visual stimuli app. It is

ensured that the recording is done with minimal background

noise. Measurements, such as the height from the desk to

the observer’s eye, the height from the desk to the screen’s

bottom edge, and the height and width of the screen, are

manually recorded. For determining the perceived centre of

the screen, the visual target apps include a calibration step;

therein, the observer looks straight at the screen, and the

perceived centre is adjusted using the mouse pointer and is

recorded. The patient is instructed to place their head on

the chin rest in a relaxed position. To mitigate eye fatigue

during extended experiment sessions, the visual stimuli apps

incorporate interval breaks.

Fig. 2. Experimental Setup: A participant seated comfortably at the desk-
mounted chin rest, engaged in the eye-tracking experiment. The 27-inch
LCD screen, positioned 60 cm in front, and the high-speed camera below
the screen capture precise eye movements. Calibration ensures accurate data
synchronization with visual stimuli, providing a controlled environment for
the study.

2) Generating Visual Stimuli: For saccade characterization,

the visual targets app contains a red circular target on a white

background, displaying these targets sequentially after a pause

of a few seconds (see Fig. 3). Additionally, the app provides

options for generating various sequential patterns, such as

moving the target serially across the full grid, following a

diamond pattern on the grid, employing a completely random
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sequence, or adopting a random sequence with a constraint

within a specified radius from the last displayed position.

The app includes calibration tools to record measurements,

including the perceived centre of the screen, and an option to

include interval breaks. The target coordinates are converted

to polar coordinates, theta and phi, using the calibration data.

At the start of each session, the app produces a buzzer sound,

which is later used to synchronize the recorded footage. At

the end of each session, the app outputs a JSON file, which

contains a dictionary of timestamps and corresponding target

polar coordinates, as well as the measurements and calibration

data. Together, this JSON file and the recorded footage are the

inputs to the preprocessing pipeline.

Fig. 3. Illustration of the red circular target’s movement on the app screen,
showcasing key features for precise saccade characterization in eye-tracking
experiments.

3) Synchronization: Due to a disparity in the system clocks

between the recording camera and the system running Globe-

Metrics, there arises a necessity for synchronization between

the two clocks. Saccade analysis requires precise timing at

the millisecond level, with the average duration of a saccade

being 20–200 ms, depending on its amplitude. Therefore, the

GlobeMetrics package is equipped with a synchronization tool

to address this requirement. The synchronization tool can be

found under the Capture tab (see Fig. 4). Users are required

to upload recorded footage and the corresponding JSON file

from the visual target app for preprocessing. As mentioned

before, the visual targets app generates three consecutive beep

sounds, and the camera captures the video footage along with

the audio. The synchronization tool extracts the audio channel

from the captured footage and displays an audio waveform

and an interactive slider that controls a cue point on the

audio track. The three beeps in the recording align with

three clear peaks in the early part of the waveform, easily

identifiable through visual inspection. The user moves the

slider to accurately position the cue point at the conclusion of

the third peak. The tool computes the time difference between

the system clock and the camera clock and designates the

frame at the instant of the 3rd beep with the zeroth timestamp.

Subsequently, all frames are assigned timestamps accordingly.

This synchronization step between the video footage and the

system clock is necessary to give meaningful utility to the

timestamps in the JSON file.
4) Preprocessing: After the footage has been synchronized,

the preprocessing pipeline then extracts all frames and per-

Fig. 4. Interactive slider aligns with audio peaks for clock synchronization
in GlobeMetrics, ensuring precise timestamps for saccade analysis.

forms facial landmark detection using the Dlib 68-pt landmark

detector [20] to obtain a bounding box around the eyes. It

then crops in on the bounding box for both the Left and

Right eye. All images are named descriptively. The frames

that match with the timestamps in the JSON file represent the

key moments when the eye fixates on the target, while the

frames in between timestamps capture the natural movement

of the eye before fixating on the next target. These frames

between targets are of great interest as they correspond to

saccadic movements or smooth pursuits. The resulting dataset

is a sequence of eye images with the target coordinates serving

as labels.

5) Experiment Modules: GlobeMetrics is designed to ac-

commodate a range of experiment modules, each featuring a

unique pipeline encompassing preprocessing stages, models,

and post-processing with visualization steps. The outcomes of

these experiments are exportable to other data visualization

software. We explore a novel eye saccade analysis module in

detail.

6) GUI Interface: The GlobeMetrics software package

comes with an interactive user interface. The GUI comprises

different tabs. Patient Management tab allows managing pa-

tient and health records (see Fig. 5). It opens up a section

that allows viewing, creation, deletion, and modification of

patients and the systematic data collection of patient health

records. A section within the Patient Management tab displays

a list of experiments that have been performed, its associated

processed data, and outputs of the experiment modules. Next,

the Visual Targets tab contains different visual target apps.

Each app contains its own set of options that are specific

to the task. For saccade characterization, these apps include

tasks such as moving the target serially across the full grid,

following a diamond pattern on the grid, and employing

a completely random sequence, among others. All visual

targets app includes a calibration tool to record measurements,

including the perceived centre of the screen. The Capture

tab contains tools related to capturing and preprocessing. The

upload sub-menu under the Capture tab allows the user to

upload the recorded footage and the JSON output file from the

visual target app. The synchronize sub-menu under the Capture

tab brings up the interactive audio waveform tool, enabling

users to set the cue point. Various parameters that affect the
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Fig. 5. Patient management in the GlobeMetrics Framework involves an interactive user interface for systematic data collection and grouping based on health
records. Several types of visual target apps exist within the Targets tab, such as moving the target serially across the entire grid, following a diamond pattern
on the grid, and employing a completely random sequence. These apps include a calibration tool to record measurements, including the perceived centre of
the screen. The Capture tab contains tools that allow users to upload the recorded footage and the corresponding JSON file from the visual target app. The
Analyze tab contains experiment modules such as the eye saccade characterization module.

preprocessing stage can be adjusted within the preprocessing

section. The Analyze tab contains various experiment modules,

including a built-in eye saccade characterization module. Cus-

tom ocular experiments can be added as experiment modules

to GlobeMetrics. The outputs from the experiment modules

are organized patient-wise, and the GUI allows this data to be

exported to data visualization software.

B. Saccade Analysis Module

The module provides a comprehensive examination of the

saccadic profile of individuals through a detailed analysis of

video data. Fig. 6 gives a schematic overview of the saccade

analysis pipeline. The process of saccade determination begins

with the estimation of gaze, involving the extraction of eye

position from each frame. Subsequently, the gaze data is

analyzed to identify abrupt eye movements within the video

sequence. For the estimation of gaze, the objective is to regress

the 2D gaze point by learning features from a series of eye

images. The overall structure consists of two high-level build-

ing blocks: Eye segmentation network and a gaze prediction

network. The segmentation network delineates the sclera and

iris regions, and the gaze prediction network produces the gaze

direction from the sequence of segmentation masks.

a) Eye Segmentation: The segmentation network is based

on U-Net architecture [21]. It employs a symmetrical encoder-

decoder structure to learn contextual information with high-

level semantics. The encoder consists of convolutional blocks,

with each block containing two 3×3 convolution layers acti-

vated with ReLU. A Max pooling layer with a kernel size of

2 is applied after each block, which essentially downsamples

the feature representations in successive convolutional blocks

while the number of feature channels is gradually increased.

The Decoder, having a similar architecture to the encoder,

takes the encoded feature representation and reconstructs the

spatial information through upsampling and skip connections.

The model receives cropped eye patches as input and

generates segmentation masks with three distinct classes:

background, sclera, and iris. Given an input frame image,

I ∈ RH×W×3 with corresponding labels representing the

three classes. For the task of eye segmentation, the network is

trained to minimize cross-entropy loss, which is given by Eq.

1.

Ls = − 1

N

N∑
n=1

C∑
c=1

yn,c logPs (1)

Where Ls represents the segmentation loss, N represents

the total number of input images in a given batch, C is the

total segmentation classes, and Ps represents the probability

scores of segmentation by the network. Both the left and right

eyes utilize the same segmentation network. The resulting

segmentation mask is then input into the gaze regression

network for further processing.

b) Gaze Regression: The gaze regression network com-

prises of two branches of CNN corresponding to the left and

right eye, one for the left eye and one for the right eye. Each

branch incorporates two stacked convolutional layers with

ReLU activation and a stride of 2, followed by a subsequent

max pooling layer. The features extracted by both branches

for the eyes are subsequently fused and input into a fully

connected network for regression. It utilizes the segmentation

mask of the eyes to regress to the gaze point, employing the

Huber loss defined in Eq. 2.

Lr(ĝp, gp) =

{
0.5(ĝp − gp)

2, if |ĝp − gp| < β.

β ∗ (|ĝp − gp| − 0.5 ∗ β), otherwise
(2)

Where Lr represents the regression loss, ĝp refers to the

predicted gaze point for the corresponding ground truth of ĝp.

β represents the threshold governing the transition between

the two components of the loss; for this work, β was set to 1.

III. SACCADE ANALYSIS: RESULTS AND DISCUSSION

In this section, we first evaluate the performance of our

segmentation network.

A. Database

1) UBIPr Dataset: UBIPr dataset [22] comprises 10,254

images taken from 261 subjects, capturing diverse lighting

conditions, varying distances, and common occlusions en-

countered in everyday environments. The dataset includes
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Fig. 6. Schematic overview of the proposed approach.

segmentation masks that outline the skin, eyebrows, sclera,

and iris. We employ this database exclusively to pre-train our

segmentation model.

2) GlobeMetrics Dataset: A database contains a set of

video clips of 8 healthy subjects. The videos are recorded with

a fixed head motion under laboratory conditions. Participants

were instructed to maintain their gaze on these red dots as they

appeared sequentially at ten random positions. Following this

sequence, a 15-second rest period was recorded. This entire

process was repeated five times for each subject during a single

session. For the purpose of calibration, an additional recording

involving four subjects was conducted. In this configuration,

the generation of dots was systematically adjusted in a linear

manner across the screen. This was undertaken to capture

all potential gaze movements achievable within the specified

setup.

B. Preprocessing

Given the limited number of images in our calibration

dataset, utilizing them directly for training the segmentation

network could lead to overfitting the network. To overcome

this, we employed data augmentation in the form of horizontal

and vertical flips along with Gaussian blur.

C. Evaluation Metrics

To evaluate the performance of the segmentation model,

we employ four common quantitative metrics, including Dice

similarity coefficient (DSC), positive predictive value (PPV),

Intersection over union (IOU) and Hausdorff distance (HD).

For gaze estimation, we utilize the Euclidean distance in

centimetres relative to the screen as the performance metric.

D. Eye Segmentation

For training, we first pre-train the network using images

from the UBIPr Dataset consisting of 10,254 images. For

subsequent downstream training, we employ the calibration

set from the GlobeMetrics dataset, which comprises a total

of 1152 images. The images from our calibration dataset are

preprocessed using the preprocessing pipeline described in

Section III-B. Table 1 provides the segmentation performance

across the testing database. For sclera segmentation, the model

achieved average DSC, HD, PPV and IOU for 95.12%, 3.910

mm, 95.71% and 95.19, respectively and similarly, for iris the

model achieved an IOU of 97.39 and HD of 1.347 mm. These

metrics collectively indicate a high level of accuracy and pre-

ciseness in delineating the sclera and iris region within the eye

patches. Additionally, Fig. 7 visually presents segmentation

maps for four subjects, providing a qualitative representation

of the model’s performance.

TABLE I
SEGMENTATION PERFORMANCE

Region DSC(↑) HD(↓) PPV(↑) mIOU(↑)

Sclera 0.951 3.910 95.71 0.952

Iris 0.971 1.347 97.46 0.974

Fig. 7. Visualization of segmentation mask (bottom row) obtained by the
segmentation network for the input eye patches (top row).

Table 2 presents the performance of gaze estimation. As

can be observed that the proposed approach, incorporating

segmentation maps of both sclera and iris, achieved the lowest

estimation error with a mean Euclidean error of 0.46± 0.133
cm. The setup utilizing direct eye patches resulted in a slightly
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larger prediction error of 0.798 ± 0.410 cm. Configurations

using segmentation maps of either sclera or iris exhibited

the highest errors of 1.099 ± 1.164 cm and 0.956 ± 0.536
cm, indicating the importance of incorporating complemen-

tary information from both sclera and iris for accurate gaze

estimation.

TABLE II
GAZE ESTIMATION ERRORS ON GLOBEMETRICS DATASET FOR DIFFERENT

CONFIGURATIONS

Configuration Euclidean error (cm)

Without segmentation 0.798 ± 0.410

Only sclera 1.099 ± 1.164

Only iris 0.956 ± 0.536

Both sclera andd iris 0.467 ± 0.133

Fig. 8. Histogram of saccade distribution for a subject.

In Fig. 8, we showcase a saccade distribution plot, which

represents the occurrence and duration of saccadic eye move-

ments. It illustrates the frequency of saccades across a range of

durations. Each bar on the plot represents a specific duration

range, and the corresponding height or value indicates the

number of saccades falling within that duration. It helps

understand the temporal dynamics of eye movement behaviour

and may reveal underlying conditions influencing saccadic

patterns.

IV. CONCLUSION

In this study, we presented GlobeMetrics, a healthcare

framework for ocular analysis. GlobeMetrics is developed

specifically to aid clinicians and hospital administrators in

conducting and evaluating ocular studies. GlobeMetrics fea-

tures an easily accessible GUI via the web server. We demon-

strated saccade characterization as an application within the

framework. The framework serves as an integrated platform

encompassing various functionalities, including data record-

ing, health record management, analysis, and visualization. In

the future, we aim to expand the GlobeMetrics framework by

integrating additional application modules for ocular studies

and as well as behavioural studies. In addition, we want to

deploy our method as an adjunct to clinical decision support

systems.
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