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Abstract—Contrastive learning and supervised contrastive
learning (SCL) have proven their effectiveness in graphs. How-
ever, they suffer from representation collapse when meet imbal-
ance. To address these, we first proposed a quantitative model,
similar to the Thomson problem when all classes are of equal
size. It maps classes on the hypersphere where different classes
repel each other. Based on this, we theoretically showed that
when applied to imbalanced node classification, tail classes will
be pushed together due to the dominating repellent forces from
head classes. Therefore, we recalibrate the gradient of SCL loss
to enforce all classes to maintain a uniform distribution in feature
space, improving the visibility of tail classes. Extensive experi-
ments on graph datasets indicates that the proposed method can
significantly enhance the uniformity of class representation, thus
achieving better performance for imbalanced node classification.

Index Terms—graph neural network, supervised contrastive
learning, Thomson problem, representation collapse

I. INTRODUCTION

Graph contrastive learning (GCL), for graph-structured data,

is a representations learning technique by pulling positive

pairs close and pushing negative pairs away in the embed-

ding space. Existing GCL algorithms generally break the

underlying semantic structures due to the uniformity of the

embedding distribution [1]. SCL [1] is then proposed to better

preserve semantic information by leveraging label information.

However, in real-life scenarios, graph datasets are usually

imbalanced [2]. When meet this situation, they suffer from

representation collapse and tend to map nodes from tail classes

into similar representations [3]. Fig. 1 depicts the heat maps of

node-wise similarity based on the representations learned by

three models on an imbalanced dataset, including GRACE [4],
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Fig. 1. The heat maps of node similarity matrices in the feature space of
GRACE, GRACE (SCL), and OURS on the Amazon-Computers dataset.

GRACE (SCL)which replaces the CL loss with SCL loss, and

our proposed approach (OURS). The X-axis represents the

class index, reflecting the size of each class in descending

order. Fig. 1(a) shows that the similarity within a class is

not well revealed, which is then alleviated by leveraging the

SCL loss instead, as shown in Fig. 1(b). However, the high

similarity between the tail classes(the three rightmost classes

on the X-axis), indicates representation collapse, which maps

different data into the same representation, making it difficult

for a classifier to separate samples into their respective classes.

To solve this problem, we propose the Gradient-

Recalibrated SCL Loss (GR-SCL Loss) to avoid represen-

tation entanglement for tail classes. We first model classes

as repellent electrons on a unit hyper-sphere to quantita-

tively analyze the impact of class sizes on the representation

distribution learned from SCL. Secondly we start with the

solutions provided by the Thomson Problem [5] as the stable

state of representation in the balance setting and deduct the

representation collapse in the imbalance setting. Then, we

reduce the gradient from head classes and increase the gradient
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from tail classes. Finally, extensive experiments demonstrate

that with the Loss the distribution of features from different

classes becomes more uniform, as Fig. 1(c) shows.
Contributions:(1)We proposed a quantitative model to eval-

uate the impact of class sizes on representation distribution,

which resembles the Thomson problem. Based on that, we

theoretically showed that when applied to imbalanced node

classification, SCL suffers from representation collapse. (2)We

designed a novel GR-SCL Loss for imbalance setting, which

can learn the discriminative embedding to avoid representation

collapse. (3)We experimented on benchmark datasets to show

the validity and superiority of our method compared to the

state-of-the-art imbalanced node classification competitors.

II. RELATED WORK

The majority of exsting methods for graph imbalance learn-

ing can be basically regarded as sample-based, and mainly

consider at the data level. Reference [6] attempted to oversam-

ple tail classes to balance the datasets. However, this type of

methods usually overfits tail and hurts the performance of the

head [7]. GraphSMOTE [8] synthesizes nodes in the feature

space for tail classes, but the process of calculating the nearest

node pairs is time-consuming. DR-GCN [9] introduces a class-

conditioned adversarial training process and pursues unlabeled

and labeled node consistency. ImGAGN [10] train a generator

for the tail to balance the distribution. Its extension to multi-

class classification, unfortunately, disregards sub-tail classes,

resulting in suboptimal performance. DPGNN [11] uses a

class prototype-driven balance training scheme to transfer

knowledge from head to tail. On datasets with many classes,

however, the dimension of the concatenated embedding differ-

ence becomes excessively high, resulting in poor performance

due to the curse of high dimensionality [12]. This paper

is considered from representation learning and explores the

application of graph contrast learning in imbalanced datasets.

III. PRELIMINARY

A. Problem Formulation
Let G = (V, E , X) denote an attributed graph, where V is

the set of n nodes, E is the set of edges and X ∈ Rn×f

is the node attribute matrix. C = {0, 1, ..., C − 1} is the

set of C classes, and Y ∈ Rn×C is the one-hot node label

matrix, where yi denotes the label of vi. For convenience,

we uniformly use lowercase letters with arrows to denote

node representations. Let {N0, ..., NC−1} be the number of

nodes for corresponding classes. The classes are sorted by

their cardinality in decreasing order (i.e., if i1<i2, then

Ni1 ≥ Ni2 ) [7, 13]. The imbalance ratio ρ is defined as
N0

NC−1
[14, 15], indicating the degree of imbalance in the

dataset. With the notations above, the imbalanced node clas-

sification is formulated as: Given a graph G with imbalanced
node classes(ρ >> 1), the goal is to learn a boundary-clear
feature extractor g which outputs H ∈ Rn×d as the node
embedding matrix, which remarkably reduces classification
errors against tail classes. Formally,

g(G[,Y]) = H.

With Y considered, it becomes a SCL problem.

B. Conventional SCL Loss

Contrastive learning (CL) generally uses augmented views

as the only positive samples and ignores other potential

positive samples. Therefore, semantically similar samples from

the same class are pulled apart, which hurts the representation

alignment. SCL takes instances from the same class into

consideration as positive samples. Given an labeled embedding

set {−→hi}ni=1, the SCL loss of node vi is formulated as

Li = − 1

|P (i)|
∑

p∈P (i)

log
exp(Sip/τ)∑

k∈V (i)∪P (i) exp(Sik/τ)
, (1)

where Sij =
−→
hi

T−→hj is the similarity between the embed-

dings of the node vi and node vj . P (i) = {vp ∈ V : yp = yi}
is the set of positive samples with the same label as vi, while

V (i) = {vk ∈ V : yk �= yi} is the set of negative samples with

different labels from vi. τ is a temperature hyper-parameter.−→
hi is the normalized representation: ∀i ∈ V, ||−→hi || = 1.

IV. GRADIENT ANALYSIS FOR BALANCED DATA

This section analyzes the gradient-based representation up-

dates for balanced data, focusing on investigating how negative

samples contribute to representation updates for convenience.
For node vi, the gradient of its SCL loss Li (1) with respect

to the negative similarity Sij (yj �= yi) is1:

∂Li

∂Sij

= − 1

|P (i)|
∂
∑

p∈P (i) log
exp(Sip/τ)∑

k∈V (i)∪P (i) exp(Sik/τ)

∂Sij

= −
∑

p∈P (i)

|P (i)|
(∂(Sip/τ)

∂Sij

−
∂(log

∑
k∈V (i)∪P (i) exp(Sik/τ)

∂Sij

)

=
exp(Sij/τ)∑

k∈V (i)∪P (i) exp(Sik/τ)
· 1
τ

(2)

As node vi and vj belong to different classes, they are the

negative sample of each other. Thus, Sij can be updated by

the gradient backward of the loss Li and Lj . Similarly, we can

compute the gradient of Lj with respect to Sji. Let ∂Li

∂Sij
= αi

j

and
∂Lj

∂Sji
= αj

i , where Sij = Sji. The gradient of the

representation
−→
hi provided by all negative nodes {vj}|V (i)|

j=1 can

be explained as the repulsive force pushing the node vi away

from negative nodes in the embedding space. Specifically,

given the total loss L =
∑

i∈V Li, the gradient of L w.r.t.−→
hi provided by vj can be formulated as:

−−→
F

vj
vi

= − ∂L

∂Sij

· ∂Sij

∂
−→
hi

=
∂L

∂Sij

· (−−→hj) = (
∂Li

∂Sij

+
∂Lj

∂Sji

) · (−−→hj)

= (α
i
j + α

j
i ) · (−

−→
hj),

(3)

which can be thought of as analogous to a force altering vi
position that aims to push node vi far away from node vj .

Then, given a class Cyj
∈ V (i), yj �= yi, we formulate the

cumulative repulsive force imposed on vi by the class Cyj
as:

−−−→
F

Cyj
vi

=
∑

xm∈Cyj

(α
i
m + α

m
i ) · (−−→hm) ≈ NCyj

· (αi
Cyj

+ α
Cyj
i ) · (−−−−→hCyj

)

(4)

1As vi and vj form a pair of negative, vj /∈ P (i). Therefore,
∂Sip

∂Sij
= 0.
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(a) SCL on balanced classes (b) SCL on imbalanced classes (c) Our method on imbalanced classes

Fig. 2. Prototypes’ distribution of (a) SCL with a balanced dataset when the loss converges. (b) SCL with an imbalanced dataset during training. (c) Our
method with an imbalanced dataset during training. Node vi, vj , vk belong to the orange class, blue class, and yellow class, respectively.

The last approximate equation in (4) holds due to the mild

assumption that SCL leads to compact classes [16]. NCyj
is

the number of all nodes in class Cyi and αi
Cyj

denotes the

approximated gradient of the loss w.r.t. Cyj .

Note that it’s common knowledge that CL/SCL conducts the

representation learning on the unit hypersphere [17]. There-

fore, in a scenario of balanced data, which has N classes with

equal size, it resembles the Thomson Problem, which strives to

find the equilibrium distribution of N electrons, which repels

each other, constrained to the surface of a unit sphere.

Remark 1: The solution to Thomson Problem – the determi-
nation of the stable equilibrium configurations of N electrons
confined to the surface of a sphere and repelling each other
by a specified force law – corresponds to the representation
assignment via gradient update w.r.t the SCL loss under a
scenario of balanced data.

Suppose that there are 3 classes in a classification task.

The stable equilibrium configurations of 3 classes are that the

3 electrons produce an equilateral triangle on the sphere, as

depicted in Fig. 2(a). At this stage, the gradient in (2) has not

been minimized to 0 as it requires an infinitely large distance

between the particles. And it can never reach 0 because of

the unit hypersphere requirement of CL/SCL. However, as we

prove below, the gradient updates will still converge despite

the fact that the updating gradient isn’t 0.

Considering the case of three classes in Fig. 2(a),
−→
h Cyi

,−→
h Cyj

, and
−→
h Cyk

represent the prototypes of three classes,

respectively. Similar to (4), the cumulative repulsive force

imposed on vi by the class Cyk
is deducted as

−−−→
F

Cyk
vi ≈ NCyk

· (αi
Cyk

+ α
Cyk
i ) · (−−−−→hCyk

). (5)

Due to their similarity, it’s reasonable to analogy the gradients−−−→
F

Cyj
vi and

−−−→
F

Cyk
vi to the repulsive forces of two electrons in the

Thomson Problem. Fig. 2(a) illustrates the stable convergence

state. Based on (4) and (5), the information of the forces can

be computed as below.

• The magnitude of the force. |NCyj
· (αi

Cyj
+α

Cyj

i )| and

|NCyk
·(αi

Cyk
+α

Cyk
i )| mainly determine the magnitude of

two forces, respectively, as ||−−→hCyj
|| = 1 and ||−−→hCyk

|| = 1.

• The direction of the force. Addressing the negative sign

in front of the direction vector in (4)–(5), the directions

of two forces
−−−→
F

Cyi
vi and

−−−→
F

Cyk
vi should be opposite to the

directions of
−−→
hCyj

and
−−→
hCyk

, respectively.

The gradients used to update vi are composed of two parts,

which are equivalent to the fact that the resultant force
−→
Fvi

is the sum of the repulsive forces

−−−→
F

Cyj
vi and

−−−→
F

Cyk
vi from the

other two classes, given as:

−→
Fvi =

−−−→
F

Cyj
vi +

−−−→
F

Cyk
vi (6)

According to the symmetrical distribution of the hypoth-

esized electrons, the resultant force
−→
Fvi is perpendicular to

the tangent line at the point of vi
2. According to (4)–(6), the

resultant force given to vi is parallel to the node embedding−→
hi :

−→
Fvi ‖

−→
hi . During training, the stochastic gradient descent

optimizer will combine forces, i.e., gradients and learning rate
l, to optimize the loss function:

−−−−→
h̃
(t+1)
i =

−−→
h
(t)
i − l · ∂L

∂hi

∣∣∣∣∣
hi=h

(t)
i

= (1 + λ) ·
−−→
h
(t)
i (7)

−→
h
(t)
i denotes the representation of node vi at epoch t. It

should satisfy the stable equilibrium configurations of Thom-

son problem, and λ = l ∗ ||−→Fvi || > 0. Consequently, the node
embedding hi moves from pos1 to pos2 (Fig.2(a)). As CL
requires that the latent representations are limited to the unit
hypersphere through normalization we then have :

−−−−→
h
(t+1)
i =

−−−−→
h̃
(t+1)
i

||
−−−−→
h̃
(t+1)
i ||

=
−−→
h
(t)
i . (8)

Thus, we can conclude that gradient-based updates driven

by SCL are now “converged”.

Remark 2: Even if the gradient isn’t zero, showing that
the loss hasn’t reached the global minimum, the model has
reached a stable state where the embedding no longer updates
with epochs. Perfect uniformity among classes indicates that
they are distinguishable in the latent embedding space.

2All nodes of the same class are considered to be located at the same spot
during classes-level analysis.
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V. GRADIENT ANALYSIS FOR IMBALANCED DATA

Though CL/SCL works flawlessly for balanced datasets,

however, this is no longer the case for imbalanced datasets.

Assume that many samples are added to the blue class, making

it the head class while the others remain unchanged. The

blue electron would now have greater charge than the others.

Therefore, for node vi, the repulsive force from class Cyj

is much larger than that from class Cyk
. Consequently, the

resultant force
−→
Fvi would push vi to rotate clockwise during

the backpropagation. Similarly, vk would rotate counterclock-

wise. Eventually, the model reaches a stable state when the

orange and yellow particles move to pos2 and pos4 (Fig. 2(b)),

where the components of the tangential directions of

−−−−→
F

Cyj/i
vi/k

and

−−−−→
F

Cyk/j
vi/k at pos2 (Fig. 2(b)) cancel each other.

Note that the orange and yellow particles are equally
charged, which is consistent with a mild assumption that the
sizes of the tail classes are comparable, considering the head
classes typically dominate the entire dataset. It is reasonable
to infer that the three particles constrained in the hypersphere
form an isosceles triangle, as shown in Fig. 2(b). Denoting

∠(−−→hCyi
,
−−→
hCyk

) as θ, the deduction with the fundamental elec-
tromagnetic and geometric principles leads to:

||
−−−→
F

Cyj
vi

||

||
−−−→
F

Cyk
vi

||
=

cos(θ − π/2)

sin(θ/2)
=

sin(θ)

sin(θ/2)
= 2cos(θ/2) (9)

where θ = arccos(Sik). As ||
−−−→
F

Cyj
vi || is greater than ||

−−−→
F

Cyk
vi ||

in the imbalanced setting, θ is smaller than that in Fig. 2(a).

Remark 3: The uniformity pursued by SCL no longer holds
in imbalanced scenarios. The dominant head classes could
drive the tail classes indistinguishable.

Sharpen the repulsive force for imbalanced data
As the imbalanced data compromises the embedding uni-

formity, the representations of tail classes will intertwine. To

address the issue, recalibration should be applied to the repul-

sive force to close the gap of sample numbers between classes.

Specifically, the repulsive force should increase substantially

when prototypes of different classes are too close and decrease

substantially when they are too far away. Thus, we propose

to rescale the repulsive force by applying linear scaling to the

gradient. Then, the corresponding GR-SCL Loss becomes:

L
GR−SCL
i = − 1

|P (i)|
∑

p∈P (i)

log
exp(Sip/τ)∑

k∈V (i)∪P (i) exp(γ · Sik/τ)
(10)

The magnitude of the repulsive force between vi and vj is

||
−−→
F

vj
vi
|| = ∂LGR−SCL

i

∂Sij

=
γ

τ
· exp(γ · Sij/τ)∑

k∈V (i)∪P (i) exp(γ · Sik/τ)

=
γ

τ
· exp(Sij/τ)

∑
k∈V (i)∪P (i)

exp(Sik)

τ · exp( (γ − 1)

τ
· (Sik − Sij))

︸ ︷︷ ︸
contraction factor

(11)

where γ is the scaling factor that controls the sharpness of the

force/gradient. The proposed solution is a generalized form of

SCL and is specialized to deal with imbalanced data. When

γ = 1, the loss degenerates to the conventional SCL loss.

Suppose node vj is the most distant negative sample for vi
(∀vk ∈ V, Sik ≥ Sij), when γ > 1, the contraction factor

becomes no smaller than 1, and the greater γ, the greater

the contraction factor. In comparison with (2), the gradient

of the loss with respect to Sij is smaller, which mitigates the

dominating impact from head classes by their large numbers

of samples. Similarly, our solution increases the gradient for

the hardest sample to counteract the impact of insufficient

samples of tail classes. This allows the gradient-based updates

to converge before class Cyi
reaches pos2 as shown in Fig.

2(c), leaving a clearer boundary between the two tail classes.

Although based on a 3-class configuration, the GR-SCL can

be easily extended to multi-class configurations.

VI. EXPERIMENT

We extensively experimented, including imbalanced node

classification and ablation study, on four datasets to indicate

the efficacy of the proposed method, aiming to answer the

following questions: Q1: How effective is GR-SCL Loss com-

pared with the SOTA baselines on imbalanced node classifica-

tion tasks under different imbalance ratios? Q2: Can GR-SCL

Loss learn the node embeddings such that the representation

of each class achieves better uniformity in the hypersphere?

A. Experimental setup

Datasets For a comprehensive comparison, we experi-

mented on four widely-used datasets for imbalanced node

classification tasks, including Amazon-computers, Amazon-

photo [18], CoraFull, and Cora-ML [19]. To eliminate the

impact of imbalanced data during evaluation, the sample size

for each class in the test set is the same. The training set was

sampled with an exponential decay across classes, controlled

by the imbalance ratio ρ. We set ρ to 20, 50, 100, and 200.

Comparison Models
• GCN[20]+RW: A reweighting method that gives higher

weight to tail classes and lower weight to head classes.

• GraphSMOTE [8]: An interpolation-based method that

synthesizes minority samples in the embedding space.

• ImGAGN [10]: A generative adversarial graph network

model which utilizes a generator to produce synthetic mi-

nority nodes and a discriminator to discriminate between

minority nodes and majority nodes.

• DPGNN [11]: A class prototype-driven method uses

distance metric learning to balance the sample difference.

• OURS: Following [21], we employed a two-stage strat-

egy to implement our method. In the 1st stage, we

generated graph views by masking node features and

removing edges, and then applied GR-SCL Loss. In the

2nd stage, a linear classifier was trained on top of the

learned representation with loss re-weighting.

• OURS[-scl][w/o RW]: Variants of OURS, with “-scl”

indicating that GR-SCL loss is replaced with the SCL

loss and “w/o RW” indicating that the reweight strategy

for the classifier training is spared for the 2nd stage.

Evaluation protocol The performance is measured with Top1-

accuracy over the entire dataset. Following [21], the classes
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Dataset Amazon-computers Amazon-photos CoraFull Cora-ML

Imbalance ratio 20 50 100 200 20 50 100 200 20 50 100 200 20 50 100 200

ImGAGN 0.735 0.696 0.644 0.606 0.791 0.752 0.694 0.646 0.441 0.436 0.420 0.387 0.681 0.614 0.578 0.53

GCN +RW 0.903 0.879 0.849 0.793 0.922 0.880 0.8265 0.806 0.575 0.576 0.554 0.517 0.848 0.803 0.789 0.616

GraphSMOTE 0.894 0.805 0.787 0.751 0.925 0.895 0.879 0.833 0.526 0.521 0.485 0.445 0.83 0.76 0.67 0.563

DPGNN 0.903 0.893 0.889 0.897 0.9325 0.9205 0.9185 0.912 0.355 0.323 0.319 0.302 0.862 0.823 0.806 0.721

OURS-scl 0.912 0.908 0.903 0.901 0.928 0.928 0.918 0.915 0.554 0.586 0.577 0.532 0.843 0.807 0.771 0.697

OURS 0.934 0.933 0.929 0.922 0.946 0.938 0.932 0.925 0.592 0.611 0.601 0.558 0.882 0.844 0.822 0.757

TABLE I: The imbalanced node classification results on four real-world datasets. The best performance is marked in bold.

were divided into three subsets, including head, medium, tail,
based on the number of samples in each class, and the average

subset accuracy of which was also recorded.

B. Imbalanced Classification Performance (Q1)

Table I reports the node classification performance of all

methods. It’s evident that the proposed GR-SCL Loss substan-

tially outperforms all baselines in all datasets with varying and

significantly large imbalance ratios, proving the effectiveness

of our method. We can also observe that the performance

of ImGAGN, GCN+RW, and GraphSMOTE decreases signif-

icantly with the increase of the imbalance ratio ρ, indicating

that they fail to differentiate samples from tail classes. Notably,

DPGNN shows rather inferior performance on CoraFull. Cora-

Full has the largest number of classes among all datasets. As

DPGNN’s distance metric learning module requires concate-

nating the difference between the node’s embedding and all

class prototypes, the dimension of the concatenated embedding

for CoraFull would be quite large, resulting in the curse of high

dimensionality [12]. In comparison, our model is robust to the

highly imbalanced dataset.

C. Ablation Study (Q2)

Fig. 3 presents the performance of the variants of our model.

No matter if the reweighting strategy is utilized, it is evident

that our proposed GR-SCL Loss contributes prominently to

performance improvement.

Table II lists the performance of our model on Head,

Medium, Tail, and All subsets/classes with different imbal-

ance ratios. Specifically, we excluded the reweighting strat-

egy/component to reflect the effectiveness of GR-SCL Loss

exclusively. It’s clear that Head and Medium classes have

ρ methods Head Medium Tail All

20
OURS w/o RW 0.923 0.965 0.863 0.912

OURS-scl w/o RW 0.916 0.958 0.787 0.877

50
OURS w/o RW 0.921 0.961 0.821 0.893

OURS-scl w/o RW 0.916 0.951 0.746 0.859

100
OURS w/o RW 0.926 0.968 0.766 0.875

OURS-scl w/o RW 0.924 0.94 0.713 0.845

200
OURS w/o RW 0.93 0.960 0.576 0.797

OURS-scl w/o RW 0.928 0.936 0.527 0.770

TABLE II: Detailed performance of Head, Medium, Tail, and

All classes on OURS and OURS-scl with varying ρ.

Fig. 3. Ablation study on Amazon-computers with different ρ.

Fig. 4. Class performance between OURS w/o RW and OURS-scl w/o RW
on Amazon-Computers with ρ = 20.

slight performance enhancement, whereas Tail classes have

significant enhancement, demonstrating that our method can

discover the representation for each class with a distinct

decision boundary, especially for the tail classes.

(a) OURS-scl (b) OURS

Fig. 5. The feature visualization with t-SNE on Amazon-Computers.

For more detailed insight, Fig. 1, 4, and 5 illustrate the

qualitative and quantitative per-class analysis of OURS from

different perspectives. Fig. 1(b) shows that some classes, such

as 7, 8, and 9, share high similarities, indicating that tail
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classes are intertwined in the representation space, as depicted

in Fig 5(a). In comparison, in Fig 1(c), the heat map of node

similarity matrices in the representation space tends to be a

matrix consisting of all-ones matrices on the diagonal, which

indicates that after the gradient recalibration, the representation

entanglement between classes is substantially eased, showing

better uniformity as depicted in Fig 5(b). Relatively orthogonal

features for each class allow a classifier to better learn explicit

classification boundaries. Therefore, it is not surprising to see

these classes achieve better performance than the conventional

SCL-based approach, as shown in Fig. 4. For example, tail

class-6 is intertwined with class-1, which has a dominating

number of samples so as to prevent correct identification

of class-6, resulting in degraded performance. In contrast,

our model helps to significantly improve the visibility and

classification performance of tail classes.

VII. CONCLUSION

In this paper, we mainly focused on the imbalanced node

classification problem. This problem significantly influences

the performance of tail classes in supervised learning. To

quantitatively model the impact of class sizes on representation

learning, we used repellent electrons on the surface of a unit

hyper-sphere to simulate the search for equilibrium states of

different class configurations. We applied the stable states in

the Thomson Problem as the solutions for balanced classes,

and analyzed the reason for representation collapse in tail

classes from the perspective of the gradient. To alleviate this

problem, we recalibrated the gradient to close the gap among

classes, leading to a more balanced and uniform feature space.

Experiments on multiple imbalanced graph datasets demon-

strate the effectiveness of our method, which outperforms the

other baselines. The ablation study and case study also verify

the representation collapse of tail classes is mitigated.
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