
Group Correction-based Local Disturbance Particle
Swarm Optimization algorithm for solving

Continuous Distributed Constraint Optimization
Problems

1st Meifeng Shi
College of Computer Science and Engineering

Chongqing University of Technology
Chongqing, China

Faculty of Information Science and Electrical Engineering
Kyushu University
Fukuoka, Japan

shimf@cqut.edu.cn

2nd Haitao Xin
College of Computer Science and Engineering

Chongqing University of Technology
Chongqing, China

XinHaitao163@163.com

3rd Makoto Yokoo
Faculty of Information Science and Electrical Engineering

Kyushu University
Fukuoka, Japan

yokoo@inf.kyushu-u.ac.jp

Abstract—Continuous Distributed Constraint Optimization
Problems (C-DCOPs) are a significant constraint handling frame-
work to model continuous variable problems of multi-agent
systems. Many excellent algorithms have been designed to solve
C-DCOPs in recent decades. However, these algorithms are prone
to falling into local optimum, which is a major challenge in
solving C-DCOPs. This paper proposes a Group Correction-
based Local Disturbance Particle Swarm Optimization algorithm
named GC-LDP to improve its solution quality. In GC-LDP, we
introduce two items, the average of the personal best positions
and the average of the personal current positions, into the velocity
update formula of traditional Particle Swarm Optimization to
utilize the group knowledge to correct the exploitation direction.
In addition, a local disturbance strategy is designed in GC-LDP
to increase the swarm diversity by searching the nearest particle
group in the solution space to enhance the algorithm’s exploration
ability. GC-LDP has been theoretically proven to be an anytime
algorithm. Furthermore, based on the extensive experiments on
four types of benchmark problems, we demonstrate that GC-
LDP outperforms state-of-the-art C-DCOP algorithms in terms
of convergence speed and solution quality.

Index Terms—Group Knowledge, Group Correction, Local
Disturbance, Particle Swarm Optimization, Continuous Dis-
tributed Constraint Optimization Problems

I. INTRODUCTION

Distributed Constraint Optimization Problems (DCOPs) [1]

are a fundamental framework for modeling cooperative multi-

agent systems. Researchers have explored various DCOPs

This work is supported by Graduate Education High-Quality Development
Action Plan of Chongqing University of Technology (No. gzlcx20233215),
JST ERATO JPMJER2301, and JSPS JP21H04979.

solving algorithms in the past decade, leading to the classi-

fication of these algorithms into two categories: complete al-

gorithms and incomplete algorithms. Complete algorithms like

ADOPT [2], DPOP [3], and PT-FB [4] are designed to find the

global optimal solution for the given DCOPs. However, with

the increase of the problem scale, complete algorithms face

challenges related to exponential memory requirements and

computational overhead since DCOPs are NPHard. Different

from complete algorithms, incomplete algorithms such as DSA

[5], MGM & MGM2 [6], Max-Sum [7], CoCoA [8], AED

[9], MIF-DCOP [10], and ACO DCOP [11], seek to quickly

approximate the global optimal solution by prioritizing lower

memory requirements and shorter execution time.

However, several real-world applications, such as target

tracking sensor orientation [12] and sleep scheduling of

wireless sensors [13], are more appropriate to be modeled

with continuous variables. In order to solve the limitations,

Continuous Distributed Constraint Optimization Problems (C-

DCOPs) [14] were proposed to model continuous variable

problems to solve the limitations of discrete variable space.

To cope with C-DCOPs, some innovative algorithms have

emerged recently. Continuous Max-Sum (CMS) [7] is in-

troduced to approximate complex constraint utility functions

using piece-wise linear functions. However, CMS is limited

in its real-world application due to the scarcity of scenarios

where piece-wise linear functions are relevant. To overcome

these limitations, a Hybrid CMS (HCMS) [15] methodology is

introduced, combining the discrete Max-Sum framework with

continuous non-linear optimization techniques.

663

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00128

Furthermore, a suite of algorithms [16], Exact Functional

DPOP (EF-DPOP), Approximate Functional DPOP (AF-

DPOP), and Clustering Approximate Functional DPOP (CAF-

DPOP), are simultaneously proposed to solve C-DCOPs,

where EF-DPOP can solve C-DCOPs by performing addition

and projection operations, and AF-DPOP and CAF-DPOP will

only produce approximate solutions. However, they still face

challenges related to exponential memory and computation

overhead.

To decrease the memory requirements and excessive com-

putational overhead, a Particle Swarm Optimization based F-

DCOP algorithm (PFD) [17], a distributed version of PSO,

is proposed. However, the search ability of PFD is poor, and

it is easy to fall into the local optimum due to the lack of

swarm diversity. To deal with these issues, an improved PFD

algorithm with Local Decision (PFD-LD) [18] is proposed to

reduce the dependence of PFD on the root agent through local

decisions. The Continuous Cooperative Constraint Approxi-

mation (C-CoCoA) algorithm [19] is a non-iterative algorithm

and employs continuous nonlinear optimization techniques to

achieve quick convergence and reduce computational over-

head. However, C-CoCoA is easily affected by initialization

parameters and is very difficult to solve large-scale problems.

The Dual population Search Diferential Evolution Algorithm

for F-DCOP (DSDE-FD) [20] is designed to balance the

exploration and exploitation by dividing the population into

the local search population and global search population. The

solution quality of DSDE-FD is good, but the convergence

speed is poor. Recently, the Distributed Bayesian (D-Bay)

algorithm [21] is proposed to address C-DCOPs by employing

Bayesian optimization for the adaptive sampling of variables.

However, D-Bay can only solve problem instances with less

than ten agents.

Based on the above analysis, falling into local optima is a

common inevitable issue for most algorithms. Therefore, how

to design an algorithm to avoid falling into local optimum as

much as possible is a worthwhile topic and challenge. This

paper proposes a Group Correction-based Local Disturbance

Particle Swarm Optimization algorithm named GC-LDP to uti-

lize the group knowledge to correct the exploitation direction.

In addition, a local disturbance strategy is designed in GC-

LDP to increase the swarm diversity by searching the nearest

particle group in the solution space to enhance its exploration

ability. Unlike the traditional swarm optimization algorithm

based on purely elite strategy, GC-LDP provides a novel

idea of using group information to correct the evolutionary

direction, which may be a new perspective for the research of

optimization algorithms.

II. BACKGROUND

This section presents the definition of Continuous Dis-

tributed Constraint Optimization Problem and Particle Swarm

Optimization, respectively.

A. Continuous Distributed Constraint Optimization Problem

A C-DCOP can be defined as a tuple 〈A,X,D, F 〉 where,

• A = {a1, . . . , an} is a set of n agents and X =
{x1, . . . , xn} is a set of n variables. We assume each

agent ai can control exactly one variable xi. Thus, we

use the terms “agent” and “variable” interchangeably.

• D is a set of continuous domains {D1, D2, . . . , Dn},

where each Di is given as a range [LBi, UBi], with LBi

and UBi representing the lower and upper bounds of the

variable xi.

• F is a set of cost functions {f1, f2, . . . , fl}, where each

f ∈ F is defined over a subset of variables Xf ⊆ X .

It is defined for every possible value assignment of Xf ,

that is, f : Πxi∈XfDi → R. In this paper, for simplicity,

we only consider binary constraints, i.e., |Xf | = 2.

Let θ = (θ1, . . . , θn) denote one possible assignment of all

variables, where LBi ≤ θi ≤ UBi holds for all θi ∈ θ. Let Θ
denote the set of all possible assignments. For θ, let θf denote

the projection of θ on the set of variables Xf . Let f̂(θ) denote∑
f∈F f(θf). The solution of a C-DCOP is an assignment θ∗

that minimizes the sum of cost functions as shown in Equation

(1).

θ∗ = argmin
θ∈Θ

f̂(θ) (1)

Figure 1 presents a simple example of a C-DCOP, where

Figure 1 (a) showcases a constraint graph involving four

variables, with each variable xi under the control of agent

ai. The edges in the graph represent constraint cost functions,

and their definitions are presented in Figure 1 (b). Notably,

the domain Di for variable xi is given as [-10, 10].

(a) Constraint Graph (b) Cost Functions

Fig. 1. Example of a C-DCOP.

B. Particle Swarm Optimization

PSO [22] is a computational algorithm that optimizes a

problem by having a swarm of candidate particles. In our

DCOP context, each swam has its current assignment θj as

its position. Then, at each iteration, it updates the velocity

and position according to Formula (2) and (3), where vj is

the velocity, c1 and c2 are positive constants, r1 and r2 are

random parameters, and w is the inertia weight. pBestj is j’s

personal best position, and gBest is the global best position.

vj ← w ·vj+c1 ·r1 ·(pBestj−θj)+c2 ·r2 ·(gBest−θj) (2)

θj ← θj + vj (3)

Algorithm 1 gives the sketch of PSO.

664

Algorithm 1: The Particle Swarm Optimization

1 for each Particle j ∈ K do
2 Initialize velocity vj and position θj

3 Evaluate Particle j and set pBestj = θj

4 gBest = argminj∈K f̂(pBestj)
5 while Termination condition not met do
6 for j =∈ K do
7 Update the velocity and position of Particle j

according to Formula (2) and (3)
8 Evaluate Particle j

9 if f̂(θj) < f̂(pBestj) then
10 pBestj = θj

11 if f̂(pBestj) < f̂(gBest) then
12 gBest = pBestj

13 Output gBest

III. THE PROPOSED GC-LDP ALGORITHM

The details of the proposed GC-LDP algorithm are de-

scribed in this section.

In GC-LDP, two items are added to the traditional PSO

velocity update formula to utilize the group knowledge to

correct the exploitation direction. The innovation idea of GC-

LDP is exhibited in Figure 2, where Personal knowledge and

Social guidance represent the pBest and gBest in Equation

(2), respectively. In GC-LDP, we use the average personal best

position of all particles to express the Group knowledge,

and the average current position of all particles as Group
correction information to correct the exploitation direction.

Fig. 2. Innovation idea of GC-LDP.

It is worth mentioning that an agent only holds one dimen-

sion of information for all the particles, a particle represents

a solution, as shown in Figure 3.

Fig. 3. Distributed population in GC-LDP.

The GC-LDP algorithm consists of five phases: Initializa-
tion, Evaluation, Local Disturbance, Output, and Update.

The details of GC-LDP are exhibited in Algorithm 2.

In the Initialization phase, as shown in Figure 4, GC-

LDP constructs a Breadth-First Search (BFS) pseudo-tree and

initializes parameters and the population. Subsequently, each

agent, denoted as ai, transmits the message θji to its neighbors

within Ni. Each agent initializes the velocity to 0 and the

position to a random value in the domain Di (Algorithm

2: Lines 4–6). Further, agent ai sends θji to lower priority

neighbors Li (Algorithm 2: Line 7).

Fig. 4. Pseudo-tree construction and ordered arrangement.

In the Evaluation phase, agent ai undertakes the compu-

tation of its partial fitness by processing the θji message dis-

patched by its higher-priority neighbors in Hi. Following this,

agent ai then forwards its calculated costs with neighbors to

the corresponding higher-priority neighbors in Hi (Algorithm

2: Lines 15 and 21). Furthermore, excluding the leaf agents,

each agent sends the partial fitness received from the lower-

priority neighbors upwards along the BFS pseudo-tree. Finally,

the partial fitness is passed to the root agent (Algorithm 2:

Lines 23–28).

In the Local Disturbance phase, the local disturbance is

carried out after agent ai receives θji sent by its neighbors in

Hi. Each agent ai calculates the local fitness of each particle to

find the particle with the smallest fitness, denoted as s. Then,

as shown in Figure 5, construct the nearest particle group

represented as Group(θs) by comparing half of the particles

closest to particle s in the current particle swarm, and send the

related position of particles in Group(θs) to the lower-priority

neighbor (Algorithm 2: Lines 16-18). Finally, find the particle

m that with the smallest fitness within Group(θs), and each

665

agent ai sends the minimum cost costmi,u with its neighbor

u ∈ Ni to the higher-priority neighbor (Algorithm 2: Lines

19-21).

Fig. 5. An example of Group(θs).

In the Output phase, the root agent aroot aggregates all

the fitness received from its lower-priority neighbors Lroot.

Given the hierarchical propagation of all fitness, the complete

fitness f̂(θ) contains the constraint cost function of each f ∈ F.

To ensure the solution quality, a comparative evaluation of the

global optimal solution is undertaken with each iteration. If the

current global solution outperforms the previous one, GC-LDP

will output the current global solution. Otherwise, output the

previous one and update the global best solution (Algorithm

2: Lines 29-41).

In the Update phase, after receiving pBestj and gBest of

the previous iteration, agent ai updates the θji and vji of each

particle j.

Before updating the particles, we referred to PFD [17] to

calculate the number of consecutive successes and failures

according to Equations (4) and (5), denoted as sc and fc
respectively (Algorithm 2: Line 45). Then, we can calculate

the exploration diameter ρ according to Equations (6), which

represents the search area of the particle.

sc(t) =

{
sc(t− 1) + 1 if PBestj(t) < gBest(t− 1)

0 otherwise
(4)

fc(t) =

{
fc(t− 1) + 1 if PBestj(t) = gBest(t− 1)

0 otherwise
(5)

ρ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 t = 0
2 · ρ(t− 1) sc(t− 1) > maxsc

0.5 · ρ(t− 1) fc(t− 1) > maxfc

ρ(t− 1) otherwise

(6)

Finally, the global optimal particle is updated by Equations

(8) and (9), and other particles are updated by Equations (7)

and (9) (Algorithm 2: Lines 47-50). Different from the velocity

update formula of traditional PSO in Equation (2), in Equation

(7), the item with parameter α is used to describe the average

current position of neighboring particles of the particle j and

the item with parameter β is the average personal best position

of neighboring particles of the particle j. α and β are two

random values in [0, 1].

vji (t) = w · vji (t− 1)

+ r1 · c1 · (pBestj(t)− θji (t− 1))

+ r2 · c2 · (gBestj(t− 1)− θji (t− 1))

+ α · (Average(θji (t− 1))− θji (t− 1))

+ β · (Average(pBestj(t− 1))− θji (t− 1))

(7)

vji (t) = −θji (t− 1) + gBestj(t− 1) + ρ ∗ (1− 2r2) (8)

θji (t) = θji (t− 1) + vji (t) (9)

IV. THEORETICAL ANALYSIS

The theoretical analysis of GC-LDP is presented in this sec-

tion. Suppose Messages are steps for communication, which

is the time needed for neighboring agents to receive messages

sent by the current agent. h is the depth of the BFS pseudo-

tree.

Lemma 1: At Messages t+h+4, root agent aroot acquires

knowledge of the f̂(θm) up to Messages t.
Proof: Each agent ai requires three Messages steps to

calculate their Group(θs). Subsequently, lower-priority agents

require one Messages step to acquire Group(θs) for comput-

ing f̂(θm). Simultaneously, the root agent root must await at

most h iterations since the depth of the BFS pseudo-tree is

h. Hence, it can be inferred that at iteration t + h + 4, the

root agent root can calculate the fitness for each particle up

to iteration t.
Lemma 2: At Messages t + 2h + 4, each agent becomes

aware of the f̂(θm) up to Messages t.
Proof: After the root agent root obtained the f̂(θm), it takes

at most h Messages for this information to propagate from the

root agent to all other agents because the depth of the BFS

pseudo-tree is h. Hence, by combining this with Lemma 1,

at Messages t+ 2h+ 4, each agent can receive the f̂(θm) up

to Messages t.
Theorem 1: GC-LDP is an anytime algorithm.

Proof: According to Lemma 2, at Messages t+2h+4+δ,

where δ > 0, each agent can receive the f̂(θm) up to Messages

t + δ. Since the f̂(θm) will be updated when a better one

is found, the f̂(θm) at Messages t + 2h + 4 + δ is at least

not worse than that at Messages t + 2h + 4. That means,

the quality of solutions does not decline over the course of

iteration. Consequently, GC-LDP is proved to be an anytime

algorithm.

V. COMPLEXITY ANALYSIS

In this section, we conduct a complexity analysis of GC-

LDP. We assume the total number of agents to be denoted

as |A| = n, and for each agent ai ∈ A, the number of its

neighbors is represented as |Ni| = |Hi| + |Li|. Considering

that the graph forms a complete structure, implying |Ni| = n.

In the Initialization phase of GC-LDP algorithm, one

agent ai transmits |Ni| messages. In the Update phase, it

666

Algorithm 2: The GC-LDP Algorithm

1 Construct BFS pseudo-tree
2 Initialize parameters: K, ω, c1, c2, maxsc , maxfc , α, β
3 for each agent ai do
4 for each particle j ∈ K do
5 vji ← 0

6 θji ← a random value from Di

7 Send θi to agent in Li

8 while Termination condition not met each agent ai do
9 for θu received from neighbor u ∈ Hi do

10 costSet ← {}
11 for each particle j ∈ K do
12 costji,u ← f(θji , θ

j
u)

13 costSet ← costji,u ∪ costSet

14 localCostj ← ∑
u∈Ni

costji,u

15 Send costSet and localCost to agents in Hi

16 if localCosts is the smallest in localCost then
17 Find s and Group(θs)
18 Send Group(θs) to agents in Li

19 for particles j, l ∈ Group(θs) (l can be equal to j)
received from Hi do

20 costmi,u ← min f(θji , θ
l
u)

21 Send costmi,u to agents in Hi

22 Wait until costmi,u and costSet received from all agent
in Li

23 if | Li | �= 0 then
24 f̂(θm) ← ∑

u∈Li
costmi,u

25 for each particle j ∈ K do
26 f̂(θj) ← ∑

costSet

27 if ai �= root then
28 Send f̂(θm) and f̂(θ) to agents in Hi

29 if ai = root then
30 if f̂(θm)(t) < f̂(θm)(t− 1) then
31 output f̂(θm)(t)
32 else
33 output f̂(θm)(t− 1)

34 f̂(θm)(t) ← f̂(θm)(t− 1)

35 pBestSet ← {}
36 for each particle j ∈ K do
37 if f̂(θj) < f̂(pBestj) then
38 pBestj ← j
39 pBestSet ← pBestj ∪ pBestSet

40 if f̂(θj) < f̂(gBest) then
41 gBest ← j

42 Send pBestSet and gBest to agents in Li

43 Wait until pBestSet and gBest are received from Hi

44 if pBestSet and gBest are received from Hi then then
45 Calculate sc and fc according to Equation (4) and

(5)
46 for each particle j ∈ K do
47 if gBest = j then
48 Calculate θji and vji according to Equation

(8) and (9)
49 else
50 Calculate θji and vji according to Equation

(7) and (9)

51 if | Li | �= 0 then
52 for each particle j ∈ K do
53 Send θji , pBestj and gBest to agents in Li

sends |Li| messages, in the Evaluation phase, the number

of messages is |Hi|, and in the Local Disturbance phase,

the agent sends |Hi|+ |Li| messages. Consequently, the total

number of messages sent by one agent ai is bounded by

O(|Ni|+2|Hi|+2|Li|). Given the complete graph assumption,

it is O(3n) in the worst case.

The size of messages sent by each agent ai are as follows: θi
is O(K ∗n), Group(θs) is O(K/2∗n), f̂(θj) is O(n), f̂(θ) is

O(K∗n), pBestj is O(K∗n), and gBest is O(n). Hence, the

total message size sent by each agent ai is O(4.5∗K∗n+2∗n),
which can be simplified to O(K ∗ n) per iteration.

The computational complexity for calculating each message

during one iteration is as follows: θji is O(K), vji is O(K),

f̂(θj) is O(K ∗ n), and costmi,u is O(n). Consequently, in the

worst case, the total computational complexity per agent for a

single iteration is O(2 ∗K+2 ∗K ∗n+n), further simplified

to O(K ∗ n).
The complexity analysis demonstrates that GC-LDP is su-

perior to gradient-based optimization algorithms in terms of

computational overhead and memory requirements.

VI. EXPERIMENTS AND ANALYSIS

A. Experimental configuration

To verify the performance of the proposed GC-LDP, we

compare it with the competing algorithms such as C-CoCoA,

PFD, PFD-LD and DSDE-CD on four benchmark problems:

Random Graphs, Scale-free Networks, Random Trees, and

Small-world Networks. Since D-Bay can only solve the

problem instances with less than 10 agents, this paper does

not exhibit the comparison results with the D-Bay. According

to the form of constraint function used in the compared

references, we employ constraints expressed in the form:

ax2 + bx + cxy + dy + ey2 + f to ensure fair and unbiased

comparison. It is noteworthy that GC-LDP can solve C-DCOPs

with any constraint forms. The coefficients, a, b, c, d, e, and f ,

are obtained randomly from the interval [-5, 5]. The variable

domain Di, controlled by agent ai, is set to [-50, 50]. The

experimental configuration to evaluate the solution quality is

exhibited in Table I.

We set the population size of GC-LDP to 2000, and other

parameters to w = 0.9, c1 = 0.9, c2 = 0.1, α = 0.1, β = 0.1,

maxsc = 15, and maxfc = 5, respectively.

For non-iterative algorithm C-CoCoA, according to the

original reference, the discrete point is set to 3, the number of

nonlinear optimizations is set to 100, and the learning rate ac
is set to 0.01.

In addition, to ensure the statistical characteristic of the

experimental results, we randomly repeat each instance 30

times independently and use the average of the 30 repetitions

as results for a question instance.

B. Comparisons with the state-of-the-art algorithms

This subsection presents the comparison results of GC-

LDP and other competing algorithms on the four types of

benchmark problems. The solution quality on these benchmark

problems is exhibited in Figure 6 to 10, respectively.

667

TABLE I
EXPERIMENTAL CONFIGURATION

Problem type Density The number of agents
Random Graphs 0.1 (sparse) from 10 to 100
Random Graphs 0.6 (dense) from 10 to 100

Scale-free Networks m1 = 10, m2 = 7 from 50 to 100
Random Trees - from 50 to 100

Small-world Networks K = 6, P = 0.5 from 50 to 100

Fig. 6. Solution quality on Sparse Random Graphs.

Fig. 7. Solution quality on Dense Random Graphs.

The comparison results demonstrate that the solution quality

of GC-LDP significantly outperforms all of the competing

state-of-the-art algorithms. Furthermore, the larger the scale

of the problem, the better the performance of GC-LDP. The

reason is that the local disturbance strategy can quickly find

better solutions when solving complex problems.

As seen from Figure 8 and 10, it is worth noting that GC-

LDP has the most obvious superiority in solving Scale-free

networks and small-world networks, which have a similar

topology. Therefore, It can be reasonably inferred that the

proposed GC-LDP is very suitable for solving problems with

such topology.

Fig. 8. Solution quality on Scale-free Networks.

Fig. 9. Solution quality on Random Trees.

Fig. 10. Solution quality on Small-world Networks.

Table II exhibits the average improvement rates of GC-LDP

compared to four competing algorithms on different bench-

mark problems. The average improvement rates are calculated

according to the improvement rate of the configuration of

different numbers of agents, and the results are rounded to

two decimal places.

TABLE II
THE AVERAGE IMPROVEMENT RATES OF GC-LDP COMPARED TO FOUR

COMPETING ALGORITHMS

Benchmark Problems PFD C-CoCoA PFD-LD DSDE-CD
Sparse Random Graphs 91.38% 73.35% 58.56% 46.67%
Dense Random Graphs 129.50% 148.24% 95.09% 86.32%

Scale-free Networks 142.32% 138.56% 99.80% 82.95%
Random Trees 40.07% 25.04% 17.13% 17.84%

Small-world Networks 99.46% 91.91% 65.23% 54.21%

668

VII. CONCLUSION

In this paper, we propose a Group Correction-based Lo-

cal Disturbance PSO algorithm named GC-LDP to enhance

the exploitation and exploration ability of PSO. Firstly, we

introduced the average of the personal best positions and the

average of the personal current positions into the PSO velocity

update formula to utilize the group knowledge to correct the

exploitation direction. Then, we design a local disturbance

strategy to increase the swarm diversity by searching the

nearest particle group in the solution space to enhance its

exploration ability. We theoretically proved that GC-LDP

is an anytime algorithm. Extensive experiment results also

demonstrate that utilizing group knowledge can correct the

evolutionary direction, which may be a new perspective for

the research of optimization algorithms.

REFERENCES

[1] Z. Chen, Y. Deng, and T. Wu, ”An iterative refined Maxsum ad algo-
rithm via single-side value propagation and local search,” Proceedings
of the 16th conference on autonomous agents and multiagent systems,
2017, pp. 195-202.

[2] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo, ”ADOPT: Asynchronous
distributed constraint optimization with quality guarantees,” Artificial
Intelligence, vol. 161, No. 1-2, 2005, pp. 149-180.

[3] A. Petcu, and B. Faltings, ”DPOP: A scalable method for multiagent
constraint optimization,” IJCAI 05. No. CONF. 2005, pp. 266-271.

[4] O. Litov, and A. Meisels, ”Forward bounding on pseudo-trees for
DCOPs and ADCOPs,” Artificial Intelligence, vol. 252, 2017, pp. 83-99.

[5] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg, ”Distributed stochastic
search and distributed breakout: properties, comparison and applications
to constraint optimization problems in sensor networks,” Artificial
Intelligence, vol.161, 2005, pp. 55-87.

[6] R. T. Maheswaran, J. P. Pearce, and T. Milind, ”Distributed Algorithms
for DCOP: A Graphical-Game-Based Approach,” PDCS, 2004, pp. 432-
439.

[7] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings,”Decentralised
coordination of low-power embedded devices using the max-sum algo-
rithm,” 2008, pp. 639-646.

[8] F. Fioretto, W. Yeoh, and E. Pontelli, ”A multiagent system approach
to scheduling devices in smart homes,” Workshops at the Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[9] S. Mahmud, M. Choudhury, M. M. Khan, T. Long and N. R. Jen-
nings, ”AED: An anytime evolutionary dcop algorithm,” arXiv preprint
arXiv:1909.06254, 2019.

[10] S. Mahmud, M. M. Khan, M. Choudhury, T. Long and N. R. Jen-
nings,”Learning optimal temperature region for solving mixed integer
functional DCOPs,” arxiv preprint arxiv:2002.12001, 2020.

[11] Z. Chen, and T. Wu, Y. Deng, and C. Zhang, ”An ant-based algorithm
to solve distributed constraint optimization problems,” Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 32. No. 1, 2018.

[12] V. Lesser, CL. Ortiz Jr, and T. Milind Tambe, ”Distributed sensor
networks: introduction to a multiagent perspective,” Distributed Sensor
Networks: A Multiagent Perspective, Boston, MA: Springer US, 2003,
pp. 1-8.

[13] C. Hsin, and M. Liu, ”Network coverage using low duty-cycled sen-
sors: random & coordinated sleep algorithms,” Proceedings of the 3rd
international symposium on Information processing in sensor networks,
2004.

[14] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings, ”Decentralised
control of continuously valued control parameters using the max-
sum algorithm,” Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems, 2009, pp. 601-608.

[15] T. Voice, R. Stranders, A. Rogers, and N. R. Jennings, ”A Hybrid
Continuous Max-Sum Algorithm for Decentralised Coordination,” ECAI
2010, IOS Press, 2010, pp. 61-66.

[16] K. D. Hoang, W. Yeoh, M. Yokoo, and Z. Rabinovich, ”New algorithms
for continuous distributed constraint optimization problems,” Proceed-
ings of the 19th International Conference on Autonomous Agents and
Multiagent Systems, 2020, pp. 502-510.

[17] M. Choudhury, S. Mahmud, and M. M. Khan, ”A particle swarm based
algorithm for functional distributed constraint optimization problems,”
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
No. 05, 2020, pp. 7111-7118.

[18] M. Shi, X. Liao, and Y. Chen, ”A Particle Swarm with Local De-
cision Algorithm for Functional Distributed Constraint Optimization
Problems,” International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 36 No. 12, 2022.

[19] A. Sarker, M. Choudhury, and M. M. Khan, ”A local search based
approach to solve Continuous DCOPs,” Proceedings of the 20th Inter-
national Conference on Autonomous Agents and Multiagent Systems,
2021, pp. 1127-1135.

[20] M. Shi, X. Liao, and Y. Chen, ”A dual-population search differential
evolution algorithm for functional distributed constraint optimization
problems,” Annals of Mathematics and Artificial Intelligence, Vol. 90
No. 10, 2022, pp. 1055-1078.

[21] J. Fransman, J. Sijs, H. Dol, E. Theunissen, and B. D. Schutter,
”Distributed bayesian: a continuous distributed constraint optimization
problem solver,” Journal of Artificial Intelligence Research 76, 2003,
pp. 393-433.

[22] J. Kennedy, and R. Eberhart, ”Particle swarm optimization,” Proceedings
of ICNN’95 - International Conference on Neural Networks, Vol. 4,
1995, pp. 1942-1948.

669

