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Abstract—Environmental disasters such as floods, hurricanes,
and wildfires have increasingly threatened communities world-
wide, prompting various mitigation strategies. Among these,
property buyouts have emerged as a prominent approach to
reducing vulnerability to future disasters. This strategy involves
governments purchasing at-risk properties from willing sellers
and converting the land into open space, ostensibly reducing
future disaster risk and impact. However, the aftermath of
these buyouts, particularly concerning land-use patterns and
community impacts, remains under-explored. This research aims
to fill this gap by employing innovative techniques like satellite
imagery analysis and deep learning to study these patterns.
To achieve this goal, we employed FEMA’s Hazard Mitiga-
tion Grant Program (HMGP) buyout dataset, encompassing
over 41,004 addresses of these buyout properties from 1989
to 2017. Leveraging Google’s Maps Static API, we gathered
40,053 satellite images corresponding to these buyout lands.
Subsequently, we implemented five cutting-edge machine learning
models to evaluate their performance in classifying land cover
types. Notably, this task involved multi-class classification, and
our model achieved an outstanding ROC-AUC score of 98.86%.

Index Terms—Image Classification, Buyout land, Land Cover,
Deep Learning, DenseNet, ResNet, Inception, MobileNet, Climate
Change, Global Warming

I. INTRODUCTION

Increasing awareness of the risks and impacts of climate

change and other related hazards is prompting communities

to consider tools for mitigating risks to people and property.

Among these options, property acquisitions, including home

buyout programs, are often considered as a means of per-

manently eliminating hazard risk [1]. Home buyout programs

provide federal funding for state or local government agencies

to purchase properties that are identified as being at risk

for significant or repeated hazard losses. Decisions about the

design and implementation of these programs are made locally,

including decisions regarding which properties to include or

exclude. In most cases, the programs are considered voluntary,

meaning each individual property owner has the option to

participate in or opt out of the program [2]. Participating

property owners sell their properties to the overseeing gov-

ernment agency, after which any structures on the property

are demolished, and the government agency is required to

maintain the purchased properties as open space in perpetuity.

Though these programs result in the relocation of residents

out of hazardous areas, significant challenges arise with the

management and maintenance of the open space that is created

when properties are depopulated. Though these properties

have the potential to be maintained as open spaces with high

ecological utility, such as forested areas or rain gardens, they

most often remain vacant lots with minimal ecological or

social value [3]. However, to date, limited data on post-buyout

land uses has made comprehensive assessments of land use

decisions and utility challenging, thus hindering efforts to

improve land use decision-making and outcomes.

Understanding the complex interplay between economic, so-

cial, and environmental factors influencing land use decisions

after buyouts is crucial. These factors grapple with the im-

mediate economic benefits versus long-term fiscal impacts [4]

[5], the psychological and community-centric consequences

of displacement [6], and the effects of policy decisions and

natural recovery processes on environmental outcomes [7], [8].

Analyzing these factors objectively requires a comprehensive

understanding of post-buyout land use.

From an emerging technological standpoint, there are two

crucial concepts directly related to the Buyout land prob-

lem. First, the ever-increasing availability of high-resolution

satellite imagery presents both exciting opportunities and

significant challenges in the fields of image classification

and land use segmentation [9], [10]. A major challenge lies

in the vastness and complexity of data, demanding efficient
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and scalable processing algorithms [11]. Additionally, the

heterogeneity of landscapes and the presence of mixed pixels

necessitate robust approaches to handling diverse spectral and

spatial characteristics [12].

Second, in the realm of artificial intelligence, research

efforts are actively exploring deep learning techniques, par-

ticularly convolutional neural networks (CNNs) [13], [14]

and semantic segmentation models [15], to achieve more

accurate and automated land use classification. One crucial

research topic involves developing methods for robust feature

extraction that can effectively capture the subtle variations

within complex land cover types [16]. Another area of in-

vestigation focuses on incorporating multi-temporal data to

enhance classification accuracy and track changes in land use

over time [17].

To this end, the expansion of buyout research through a

data-driven approach holds significant potential for advancing

our comprehension of these programs and their effectiveness,

particularly in the context of climate change, global warming,

and risk management and mitigation. Leveraging AI-enhanced

decision support and image classification tasks to scrutinize

post-buyout land use data allows for valuable insights that

can inform policy decisions, leading to improved outcomes

for communities affected by disasters and hazards. This paper

presents a novel approach to advance buyout research by

leveraging data-driven techniques and AI-powered decision

support. We utilize a comprehensive dataset of over 41,000

buyout properties acquired through the FEMA Hazard Miti-

gation Grant Program (HMGP), spanning a period of nearly

three decades. Building upon this data, we employ Google’s

Maps Static API to gather high-resolution satellite imagery

for 40,053 buyout locations. These data resources are then

integrated with five cutting-edge machine learning models to

assess their effectiveness in classifying land cover types. This

innovative application of data science and AI has the potential

to significantly enhance our understanding of buyout programs

and their impact on land use patterns.

II. METHODOLOGY

A. Datasets

In this study, two primary datasets were utilized. The first,

essential for understanding post-buyout land-use patterns, is

the FEMA HMGP Dataset [18]. This dataset comprises proper-

ties acquired through buyouts as part of the Hazard Mitigation

Grant Program and provided the necessary addresses for

analysis, encompassing over 41,004 addresses for the buyout

properties.

Secondly, the UCMerced Land Use Dataset [19] was used,

a publicly accessible collection curated by the University of

California. This 256x256 pixel dataset includes 2,100 images

for 17 classes and was crucial in training the machine learning

model. Due to the richness and diversity of this dataset, a

strong model was created, capable of accurately classifying

different types of land use patterns.

Fig. 1. Land use class distribution of UC Merced Dataset (training data)

B. Preprocessing

There are 17 land use classes in the UC Merced Land Use

Dataset, and it has been preprocessed to fit a training format.

The land use class distribution of the training dataset is shown

in Figure 1. Image augmentation techniques such as flips and

rotations are used to increase the dataset’s variability in order

to improve the models’ performance.

Please note that all images used in training phase were

in 256x256 pixels format for all models except Inception-v3

model. Since Inception-v3’s architecture needs training images

to be at least 299x299 pixels, all images in the dataset were

upscaled to 299x299 pixels only for training of Inception-v3

model.

Utilizing the addresses from the FEMA HMGP dataset,

satellite images were harvested via the Google Maps API

[20]. It is important to note that of the 41,004 addresses

in the FEMA HMGP dataset, only 40,053 satellite images

were retrieved from the Google Maps API query due to

address errors. This discrepancy is attributed to incorrect or

unidentified addresses in the FEMA-provided dataset. The

images, captured in 640x640 pixels, served as the primary

visual data for the analysis. Preprocessing steps were also

conducted on these images, resizing them to match the format

of the training dataset.

Please keep in mind that in this work, the models mentioned

above were trained with the UC Merced Land Use Dataset and

tested with the FEMA HMGP dataset.

C. Image Classification Models

The approach to analyzing land-use patterns involved train-

ing deep learning models using the preprocessed UC Merced

Land Use Dataset. Experiments were conducted to identify the

most efficient neural network architecture for the objective, uti-

lizing a range of vision models: Resnet-50 [21], Inception-V3

[22], MobileNet-V3 [23], Densenet-201 [24], and WideResnet-

50 [25].

Resnet-50 model is known for its ”skip connections” or

”shortcut connections” that skip one or more layers. In Resnet-
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Fig. 2. Training losses of different computer vision models over epochs Fig. 3. Validation losses of different computer vision models over epochs

50, these connections help in avoiding the problem of van-

ishing gradients by allowing this alternate pathway for the

gradient to flow through. It has 50 layers deep and is more

efficient in terms of computation and memory compared to

deeper models.

Part of the Inception family, Inception-V3 model is known

for its efficiency and lower computational cost. It uses modules

called ”Inception modules” which allow it to look at the

same image with different receptive fields (sizes of filters),

enabling it to capture spatial hierarchies in data more ef-

fectively. Inception-V3 introduced several improvements over

its predecessors, including factorizing convolutions and better

utilization of the computing resources inside the network.

MobileNet-V3 model is designed specifically for mobile

and resource-constrained environments. It is highly efficient

in terms of both size and performance. MobileNet-V3 uses

lightweight depthwise separable convolutions and incorporates

architecture search techniques and a squeeze-and-excitation

optimization, making it a very compact and efficient model

for mobile devices.

DenseNet architectures are unique because they connect

each layer to every other layer in a feed-forward fashion. For

each layer, the feature maps of all preceding layers are used

as inputs, and its own feature maps are used as inputs into all

subsequent layers. This leads to substantial reductions in the

number of parameters and improves efficiency.

Wide Residual Networks are a variation of Resnet where the

width (number of channels) of the network is increased while

decreasing its depth. WideResnet-50, in particular, is a version

with 50 layers. This change in architecture helps in improving

the model’s accuracy while keeping the computational budget

almost the same.

For those unfamiliar with technical jargon, the training

process involved monitoring training and validation losses and

adjusting parameters to optimize the model’s performance. For

training Python programming language, Pytorch and Pandas

libraries are used.

In Figures 2 and 3, the training and validation losses of

the tested models are shown. The training loss plot depicts

a steady decrease over the ten epochs for all models, indi-

cating successful model learning. The rate of decrease can

be analyzed for potential optimization opportunities, but it’s

not our concern for this work. The validation loss plot for

our models follows a similar trend as the training loss but

remains slightly higher. There are minor fluctuations starting

at epoch 6, which suggests overfitting. Also, this indicates that

the models can generalize well to unseen data. Based on the

training and validation loss figures, DenseNet201 appears to

be the best model among those tested as it demonstrates the

lowest overall loss and best generalization capabilities.

D. Best Model Selection

In the study, the multi-classification task is central to un-

derstanding post-buyout land-use patterns. This task involves

categorizing satellite imagery into predefined classes of land

use. The complexity of this task arises from the nuanced

differences between land use types, which can often be subtle

and overlap in visual characteristics. For instance, a single

land image might simultaneously encompass trees, cars, and

pavement. To accurately gauge the model’s performance, a

range of metrics, including accuracy, F1-score, and ROC-

AUC, was employed. These metrics are crucial as they provide

a comprehensive understanding of the model’s strengths and

weaknesses.

The most straightforward metric, accuracy, is expressed as

the percentage of accurate forecasts among all predictions

made. However, accuracy alone can be deceptive in a multi-

class context, especially if the dataset is unbalanced. To better

understand the model’s capacity to accurately identify each

class, considering any biases or imbalances in the dataset,

accuracy was supplemented with other measures.

Another statistical metric called the F1-score is used in

binary classification to assess how well recall and precision are

balanced. It is the harmonic mean of recall, which measures
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TABLE I
METRICS OF THE TESTED MODELS

Model Accuracy Precision Recall F1 ROC-AUC

Resnet-50 51.67 90.23 86.13 88.13 98.69

Inception-V3 49.52 85.53 90.79 88.08 98.73

Mobilenet-V3 51.90 88.72 87.47 88.09 98.67

Densenet-201 51.67 88.46 90.16 89.30 98.86

WideResnet-50 51.19 85.23 93.36 89.11 98.76

the percentage of real positives among all positive predictions,

and precision, which measures the percentage of genuine

positives among all positive forecasts.

A graphical plot called the Receiver Operating Character-
istic (ROC) curve shows how well a binary classifier system

can diagnose problems when its discriminating threshold is

changed. The model’s level of separability is shown by the

Area Under the Curve (AUC). It indicates the degree to which

the model can discriminate between classes. Better model

performance is indicated by higher AUC values. A flawless

classifier is represented by a ROC-AUC score of 1, whereas a

fully random classifier is represented by a score of 0.5. This

score is very helpful for assessing classifiers on datasets that

are unbalanced.This multi-faceted approach to metrics ensures

a well-rounded evaluation of the model’s performance in the

multi-classification task.

In Table I, we present a comparative analysis of vari-

ous models including Resnet-50, Inception-V3, Mobilenet-V3,

Densenet-201, and WideResnet-50, focusing on key metrics

such as accuracy, precision, recall, F1 score, and ROC-AUC

score. While Mobilenet-V3 leads in terms of accuracy and

Resnet-50 excels in precision, WideResnet-50 shows superior

performance in recall. Notably, Densenet-201 emerges as the

most effective model overall, achieving the highest scores in

both the F1 and ROC-AUC metrics, which are crucial for a

comprehensive evaluation of model performance.

Please note that the selection of an appropriate model

depends on specific performance priorities. Models such

as Resnet-50 and Densenet-201 are suitable when empha-

sizing precision and accuracy. For an emphasis on recall,

WideResnet-50 exhibits the highest recall. When seeking a

balance between precision and recall, the F1 score serves as

the primary metric, and Densenet-201 exhibits the highest F1

score. For assessing the model’s discriminatory capacity in

binary classification, ROC-AUC is pertinent, and Densenet-

201 exhibits the highest ROC-AUC.

The choice of DenseNet201 as the architecture for goal

for classifying the buyout land covers was driven by several

considerations. DenseNet201 is a convolutional neural network

known for its dense connectivity pattern, where each layer is

connected to every other layer in a feed-forward fashion. This

architecture is particularly beneficial for our task for several

reasons. Firstly, DenseNet201 exhibits improved information

flow and feature propagation, making it highly efficient in

learning distinguishing features from land use images. This is

crucial for our multi-classification task, where the differentia-

tion of subtle land-use features is key. Secondly, DenseNet201

is also known for its parameter efficiency, reducing the risk of

overfitting while handling a large number of input images. Its

architecture allows it to require fewer parameters than other

networks of similar depth, making it a more computationally

efficient choice. Finally, DenseNet201 has demonstrated supe-

rior performance in various image classification tasks both in

previous studies and in our tests as depicted in Table I, indi-

cating its potential effectiveness in accurately classifying land

use from satellite imagery. These factors collectively informed

our decision to leverage DenseNet201 for this intricate task of

land use classification.

Fig. 4. DenseNet201’s F1-scores over various confidence thresholds

E. Best Confidence Threshold

Another aspect of the methodology was establishing the best

confidence threshold for the model’s predictions. Specifically,

the best confidence threshold refers to the cutoff point for

accepting or rejecting predictions made by a machine learning

model, balancing the trade-off between accuracy and com-

pleteness. This involved an iterative process of balancing the

need for accuracy with the practicality of prediction confi-

dence. In Figure 4, F1-scores for different threshold values

were tested and 0.4 was identified as the best. The chosen

threshold ensured that the model’s predictions on images were

reliable and could be used confidently in further analysis.

F. Hardware Requirements

The training and deployment of the deep learning models

demanded significant computational resources. By harnessing

NVIDIA cloud GPU services’ robust processing capabilities, it

was possible to effectively continue the model training process

and they proved to be abundantly sufficient for the successful

completion of this project.

III. EXPERIMENTAL RESULTS

In this section, we provide experimental results of the

land cover classification through satellite image analysis. Our

primary focus is to methodically categorize distinct land cover

types, such as vegetated areas, impervious surfaces, water

bodies, and transportation infrastructure.
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Fig. 5. The sample of model’s land use class predictions of collected satellite images

Figure 5 illustrates a small sample of the model’s land

use class predictions of collected satellite images. Our model

has identified several distinct land cover categories, including

vegetated zones (trees), impermeable structures (buildings,

pavement), aquatic environments (including sandy regions and

sea areas), and elements of transportation infrastructure (cars).

Each image in the study was labeled to reflect the dominant

land cover types it displayed.

Upon scrutinizing the data, a notable predominance of

impermeable surfaces and transportation-related infrastructure

was observed in land parcels acquired through FEMA’s buyout

program dataset. It is important to acknowledge that these

parcels have previously experienced significant flooding events

or other disasters. Presently, these areas are characterized by

the presence of non-porous structures and expansive parking

facilities, which collectively signify a suboptimal use of urban

land.

Fig. 6. Distribution of DenseNet-detected land use classes of satellite images

In figure 6, we present a pie chart illustrating the dis-

tribution of various land cover types detected within land

areas purchased through FEMA’s buyout program, presumably

following a significant environmental incident. The land cover

classes include natural features such as trees, grass, and water

bodies, as well as anthropogenic elements like buildings,

pavement, and vehicles.

From the image classification and machine learning point

of view, this chart can be interpreted as a visual represen-

tation of the current state of land utilization within these

buyout areas. Also, please note that this is a multi-class

classification problem, as shown in Figure 5, as there are

multiple classes detected in some of the images. A significant

proportion of the land is occupied by impervious surfaces

such as buildings (14.3%) and pavement (21.0%), and vehicles

(cars at 12.5%). The chart serves as an empirical basis for

discussing the need to reassess and redirect land use strategies

in disaster-affected buyout lands towards more sustainable and

community-focused purposes. Hence, we provide an additional

explanation of these findings from the domain experts in the

next subsection.

Similarly, in figure 7, we show the bar graph of the

distribution of identified land cover classes in areas acquired

through buyout programs after a major incident. The horizontal

axis represents the percentage of images in which each land

use class was detected, while the vertical axis lists the different

land use classes.

From the image classification perspective, the graph high-

lights that the majority of the land cover is dominated by

natural vegetation, with trees (85.84%), grass (81.63%), and

bare soil (27.50%) being most prevalent. This is consistent

with the recommended use of these lands as green spaces.

However, there is a significant presence of impermeable sur-

faces such as pavement (83.84%) and buildings (51.11%), as
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Fig. 7. Distribution of land use classes on satellite images

well as a notable quantity of cars (59.13%). This suggests that

a substantial portion of the land is covered by non-permeable,

artificial structures, rather than being converted into green

spaces or recreational areas as would be ideal for regions at

risk of environmental hazards.

A. Interpreting the Results

The deep learning models trained using the UC Merced

Land Use Dataset accurately identified post-buyout land uses

from Google Earth satellite imagery. Most of the images

classified contain trees (21.7%), pavement (21.0%), grass

(20.6%), cars (14.3%), and buildings (12.5%), with a total of

90.1% as depicted in figure 6. This is consistent with previous

work on post-buyout land use which found that most lots

remain mowed yet vacant a decade after acquisition [26] [3].

However, to identify these uses previously, extensive fieldwork

was required. With the deep learning models, post-buyout

land uses can be identified without resource-intensive site

visits and offer accurate results. The high frequency of grass

in the classified satellite images likely reflects the continued

occurrence of mowed, vacant lots as the dominant post-buyout

land use. Most communities conducting buyouts seek to retain

existing trees, or institute tree plantings on buyout lots thus

contributing to the high frequency of trees observed in the

satellite image classification. The high frequency of pavement

reported in the image classification is due in part to the satellite

image containing roads adjacent to buyout properties. Com-

munities also commonly leave driveway cuts and foundations

on vacant buyout lots which are likely contributing to some

of the pavement detected in the satellite images. Research has

also identified cars commonly parked on post-buyout vacant

lots, especially by adjacent neighbors [27]. The presence of

buildings in the classified images are likely due to buyout

lots occurring in neighborhoods with homes remaining, a land

use pattern referred to as checkerboarding [28]. While there

is a preference for acquiring contiguous lots, as the U.S.

buyout programs represented in the FEMA HMGP dataset

were voluntary, homeowners could decline to participate in

the program, leaving housing interspaced with buyout lots.

However, one constraint of the Google Earth satellite images is

that the image is not restricted to the buyout parcel boundaries

and, therefore, contains elements from adjacent properties or

streets. Importantly, the model was able to distinguish between

vacant lot land cover types, including grass, trees, and bare

soil, as depicted in 7, which illustrates a small sample of the

model’s land use class predictions of collected satellite images.

These various land covers, all common to vacant lots, offer

differing degrees of hazard risk reduction. For example, while

trees can reduce the effects of flash flooding and abate poor

air quality and extreme heat [29], these ecosystem services are

reduced at locations dominated by grass or bare soil. It can

be difficult to identify all land cover types during fieldwork

as many communities utilize physical barriers like cement

roadblocks used to reduce access to buyout lots. Thus, the

aerial view from the satellite images and model identification

can offer a more nuanced and detailed account of land cover.

IV. CONCLUSION

In this paper, we introduce a novel methodology that sig-

nificantly enhances the analysis of land use in post-buyout

properties, integrating machine learning research and the

development of task-specific deep learning vision models.

Traditional approaches to this challenge have relied on labor-

intensive and costly in-person site assessments. In contrast, our

study leverages state-of-the-art deep learning algorithms, fine-

tuned on the UC Merced Land Use Dataset, and employs high-

resolution Google Earth satellite imagery to accurately classify

the land uses of properties acquired through buyout programs.

This technological approach is particularly pertinent as climate

change intensifies and buyouts become more critical in our

environmental disaster mitigation strategies. Comprehending

how these lands are utilized post-buyout is essential for

evaluating the impact of such interventions on community

resilience.

Looking ahead, future research should aim to refine this

approach through several advancements. Firstly, the scope of

land use classifications within our machine learning model

should be broadened. The current training dataset, while

precise, does not encompass all possible post-buyout land uses,

such as agricultural areas, wetlands, playgrounds, detention

basins, and athletic fields. These categories have been identi-

fied as common post-buyout uses in prior research and thus

represent a crucial expansion for the model’s training data to

improve its accuracy and applicability.

Secondly, there is a need for enhanced techniques to

isolate the satellite imagery analysis to the specific plots

acquired through buyouts, thereby ensuring that the data is

not confounded by adjacent non-buyout areas like roads or

neighboring properties. This could involve the development
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of more sophisticated image segmentation models that can

discern and focus exclusively on the boundaries of buyout

properties.

Additionally, the integration of temporal data analysis could

also be valuable. By tracking changes in land use over time

with sequential satellite images, we can gain insights into the

evolution of post-buyout land use and its long-term implica-

tions for community resilience.

Finally, the integration of these advancements necessitates

not only technical improvements in model architecture and

training data but also a multidisciplinary approach that in-

corporates insights from urban planning, environmental sci-

ence, and policy analysis to inform model development. This

comprehensive perspective is crucial to ensure that the deep

learning models we develop are not only technically proficient

but also contextually aware and aligned with the overarching

goals of sustainable land use and disaster resilience.
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