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Abstract—In recent advancements in novel view synthesis,
generalizable Neural Radiance Fields (NeRF) based methods
applied to human subjects have shown remarkable results in
generating novel views from few images. However, this general-
ization ability cannot capture the underlying structural features
of the skeleton shared across all instances. Building upon this,
we introduce HFNeRF: a novel human feature NeRF aimed
at generating human biomechanic features using a pre-trained
image encoder. While previous human NeRF methods have shown
promising results in the generation of photorealistic virtual
avatars, such methods lack underlying human structure or
biomechanic features such as skeleton or joint information that
are crucial for downstream applications including Augmented
Reality (AR)/Virtual Reality (VR). HFNeRF leverages 2D pre-
trained foundation models toward learning human features in
3D using neural rendering, and then volume rendering towards
generating 2D feature maps. We evaluate HFNeRF in the
skeleton estimation task by predicting heatmaps as features. The
proposed method is fully differentiable, allowing to successfully
learn color, geometry, and human skeleton in a simultaneous
manner. This paper presents preliminary results of HFNeRF,
illustrating its potential in generating realistic virtual avatars
with biomechanic features using NeRF.

Index Terms—Computer Vision, Augmented Reality, Virtual
Reality, Neural Radiance Fields

I. INTRODUCTION

The development of custom virtual avatars capable of

achieving photorealism is essential for realistic AR/VR en-

vironments. Moreover, it is a significant challenge to create

a photorealistic virtual human avatar from a sparse set of

images captured by a smartphone or a single camera. Previ-

ously, creating personalized virtual avatars with an underlying

structure, such as a skeleton, required the use of costly camera

setups that were only within the reach of a limited group

of people. Furthermore, the labor-intensive process of body

marker capture, extraction, and fitting of parametric models,

such as SMPL [5], is not scalable for widespread use.

The recent progress in Neural Radiance Fields has demon-

strated significant potential in creating highly realistic virtual

avatars using few images [4], [6]. However, previous NeRF-

based methods do not provide any underlying structure, which

is crucial for AR/VR applications and animation. We intro-

duce a novel approach named HFNeRF: Learning Human

Biomechanic Features with Neural Radiance Fields, a unified

framework to learn human biomechanic features such as the

human skeleton with NeRF. Inspired by previous NeRF-based

methods [7], [8] that utilize 2D encoders to generalize NeRF
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Fig. 1. Proposed pipeline of HFNeRF. During training, we generate
ground truth heatmaps using OpenPose and compare these with the
heatmaps predicted by our network to compute the heatmap loss.

by conditioning input images or learning scene features. Our

method uses a 2D pre-trained encoder to learn human fea-

tures using NeRF architecture. Specifically, HFNeRF predicts

heatmap features of human joints, aiding in skeleton detection.

Our method adopts two different types of encoder to generate

features from images. HFNeRF estimate separate heatmaps

corresponding to each joint along with color and volume

density. Our NeRF model takes as input the image feature of

the 3D query point x, along with its frequency encoding and

view direction. The final heatmaps are generated using volume

rendering inspired by the pixel color generation process of

NeRF.

In this paper, we present the initial results of HFNeRF

obtained with the RenderPeople dataset by distilling a state-

of-the-art pose estimation algorithm based on heatmaps. To

the best of our knowledge, our method is the first to estimate

human biomechanic features with NeRF. Our contributions are

as follows:

• We present a new method for estimating human biome-

chanic features using NeRF.

• We show that our model successfully learns to predict

skeleton information from 2D images.

II. METHOD

This section introduces HFNeRF, a unified framework uti-

lizing the NeRF architecture for learning human features.

It begins with a brief overview of NeRF, followed by the

methodology for feature extraction using a 2D encoder, and

concludes with a detailed description of skeleton estimation.

Neural Radiance Fields: The NeRF algorithm utilizes a

multilayer perceptron (MLP) to map the 3D coordinate x =
(x, y, z) and view direction d = (θ, φ) to the corresponding

color c and volume density σ. This mapping can be expressed
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as F (x, d) → (c, σ). Subsequently, volume rendering is

employed to generate the pixel color by performing alpha

composition of the volume density σ and color c using samples

taken along the ray.

Feature Extraction: We propose a novel architecture to

estimate human features using the NeRF framework. NeRF

models estimate the color c and density σ using an MLP,

where the input is the positional encoding γ(x) of the query

point x = (x, y, z). The human feature f(x), generated by the

encoder corresponding to the input point x, is concatenated

with the positional encoding γ(x) before being fed into the

MLP. In this work, we experimented with 2 different kinds of

encoders, namely: ResNet [3] and DINO [2].

Learning Human Biomechanics features Previous methods

[8] used encoded features to generalize NeRF, producing

color and density as output. In this work, we extend the

NeRF architecture to estimate human features by generating

heatmaps of skeleton joints, as shown in Figure 1. We used

an MLP with a skip connection, where the view direction is

incorporated into the final layer before producing the color

output. To generate heatmaps, we extract NeRF features from

an intermediate layer and process them through a smaller

secondary MLP. We employ volume rendering to produce the

final pixel color and heatmap values. This method is fully

differentiable and optimized using a combined loss function:

L = lc + λhlh, where λh is the weighting factor and lh
represents mean squared error between predicted and ground

truth heatmap.

Skeleton prediction: We estimate the human skeleton by

predicting joint locations from heatmaps. For each heatmap

channel, which corresponds to a specific joint, a binary mask

is generated through Gaussian filtering and thresholding. The

joint locations are then identified as the pixels with the peak

heatmap values within these mask regions.

III. EXPERIMENTS AND DISCUSSIONS

In this section, we present our preliminary results, focusing

on skeleton detection and novel view synthesis.

Dataset. We trained our model on the RenderPeople [4]

dataset, consists of multi-view image sequences of animated

characters performing various actions. We use 34 cameras for

training and 2 cameras for testing.

Experimental setup. All experiments were conducted using

a PyTorch implementation on an RTX 3090 GPU. For our

experiments, the value of λh was set to 0.5. We used the

Adam optimizer for 100,000 iterations. We learn the heatmap

features by distilling OpenPose [1].

Results. This section details the initial results obtained using

our HFNeRF method. Quantitative results from the Render-

People dataset are summarized in Table I. The predicted and

ground truth heatmaps are compared with the Mean Squared

Dataset PSNR↑ SSIM↑ LPIPS↓ MSE↓
RenderPeople+ResNet 46.421 0.9996 0.0024 0.0003
RenderPeople+DINO 35.928 0.9914 0.0345 0.0001

TABLE I
QUANTITATIVE RESULTS ON RENDERPEOPLE DATASET.

Fig. 2. Qualitative comparison on RenderPeople dataset.

Error (MSE). The results indicate that ResNet features improve

visual quality, while Vision Transformer-based DINO features

lead to better heatmap predictions. Figure 2 visually demon-

strates these findings. In the future, we intend to expand our

experimentation to encompass various datasets and perform

additional comparisons with other methods.

IV. CONCLUSION

This paper presents a novel framework called HFNeRF,

which uses NeRF to learn human biomechanic features. Our

initial findings demonstrate the effectiveness of HFNeRF in

predicting human features, a significant improvement over

previous NeRF methods for humans. Although our focus was

on human skeleton detection, we believe that this architecture

can be extended to other generalizable human features, such

as body part detection.

V. ACKNOWLEDGEMENTS

This project has received funding from the H2020 COFUND

program BoostUrCareer under MSCA no.847581.

REFERENCES

[1] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. Openpose:
Realtime multi-person 2d pose estimation using part affinity fields. IEEE
TPAMI, pages 172–186, 2021.

[2] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin. Emerging properties in self-supervised vision transformers. In
ICCV, 2021.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[4] S. Hu, F. Hong, L. Pan, H. Mei, L. Yang, and Z. Liu. Sherf: Generalizable
human nerf from a single image. arXiv:2303.12791, 2023.

[5] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black.
Smpl: A skinned multi-person linear model. In Seminal Graphics Papers:
Pushing the Boundaries, Volume 2, pages 851–866. 2023.
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