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Abstract—Effective resource planning presents a broad prob-
lem across industries due to inner operational constraints. Ex-
isting methods are hard for generalization because they entail
either unique models or customized specific solutions. To address
this challenge, we pose the Operationally-Constrained Resource
Planning Problem (OCRPP), which abstract assets and resources
using job concepts to decouple the entangled constraints to
describe the resource planning problem in a standard way.
Meanwhile, we propose the Hierarchical Allocation Optimizer
(HAO), a meta-heuristic solving framework containing 3 phases,
to speed up feasible solution search with lower bound estimation.
Experiments show HAO’s superiority in terms of time and
objectives compare to the alternatives, which adopts rule-based
heuristic or general meta-heuristic. HAO’s rapid response and
flexibility are demonstrated to show its capability to adapt to
various business scenarios and applications such as airlines,
logistics companies, and so on.

I. INTRODUCTION

A. Background and motivation

Resource planning optimization is a widely adopted cost

saving strategy in various business scenarios and applications.

For instance, in the pursuit of gaining a competitive edge,

companies are focused optimizing human resource acquisition

to foster growth and excellence [1]. In terminal operations,

berth and crane allocation underscore the significance of

resource management [2]. Similarly, industries like aviation

and railway transportation necessitate meticulous coordination

of aircraft, engines, crews, and train units for the sake of safety

and efficient operations [3]–[6].

During the process of resource planning, it is necessary to

consider additional operational constraints from asset man-

agement to ensure safety, flexibility and adaptability [7],

[8]. These constraints, often multi-dimensional and inter-

dependent, present great challenges in achieving optimal re-

source allocation. The existing studies on resource planning

This work is supported by the Agency for Science, Technology and
Research (A*STAR) under the following Industry Alignment Fund - Industry
Collaboration Projects (IAF-ICP): AI for Airline Operations (I2001E0076)
and Automatic Workflow Tracing and Optimization for Prescriptive MRO
(I2001E0073).

with particular side constraints tend to focus on a limited

range of specific resource categories and designed for short-

term planning scenarios [9]–[11], thus they may fail to fulfill

real-world demands.

To address these challenges, we generalize the modelling

for Operationally-Constrained Resource Planning Problem

(OCRPP) that can be adapted to customized contexts. The

proposed OCRPP framework decouples operational constraints

associated with resources by introducing auxiliary “active”

resource variables with the help of Constraint Programming

(CP) techniques [1], [12].

The scale of the real-world long term horizon OCRPP

can become very large due to the combination of resources,

assets and time horizon. To tackle the optimization problems

with large searching space, innovative strategies have sur-

faced, including multi-step solution grouping [13], machine

learning-based prediction [14], fixed-point models employing

efficient search techniques [15], and so forth. Although these

approaches hold intuitive promise, they often cater to specific

problems and cannot be adapted to different contexts.

To fill the research gap, we propose an meta-heuristic

solving framework called Hierarchical Allocation Optimizer

(HAO) as depicted in Fig. 1. The HAO employs a multi-phase

solving strategy, enabling efficient exploration of feasible

solutions for OCRPP.

B. Contributions

• We use CP techniques to formulate the OCRPP model,

which decouples the inter-dependencies among differ-
ent dimension of operational constraints to well ab-

stracted key components for common resource planning

problems.

• We propose a novel meta-heuristic HAO framework
that contains 2 warm up phases and 1 fine-tuning
phase as depicted in Fig. 1. The warm up phases ac-

celerate the searching of high quality feasible solutions,

then they will be fed in the fine-tuning phase to obtain

the near optimal solutions.
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Phase 1 - Active Resource Selection

Phase 2 - Active Resource Allocation

Phase 3 - Fine Tuning
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Fig. 1. Optimization Architecture for Resource Planning

Overall, these contributions provide a general framework for

optimizing resource planning with operational constraints, and

a practical approach for managing assets and resources in

various business scenarios.

II. MODELLING

A. Problem definition

The key components of the generalised Operationally-

Constrained Resource Planning Problem (OCRPP) are de-

scribed as follows:

• Asset (j ∈ J ): The infrastructure equipment like ma-

chinery or production line, which needs allocate certain

amount (Cj) of resources to operate with.

• Task: Pre-planned periodically operational schedule for

assets to perform, mainly includes:

– Functional: For any asset j in operation, it consumes

resources’ capacity volume by V
(f)
j .

– Termination: For any asset j that is for re-

organization or transfer. A minimal capacity volume

V
(t)
j is required for resources allocated to assets for

termination at Rj .

• Resource (i ∈ I): The identical purpose material, com-

modity or labor that needs to be allocated to asset. Its

maximum capacity volume (V
(max)
i ) can be restored

later.

• Job: Virtual variable to help decouple entangled opera-

tional constraints for task processing of asset. The various

jobs of resource are as follows:

– Function: Meet asset’s functional task schedule.

– Standby: Handle any demand surge.

– Restoration: It costs Di length of time to restore

capacity volume.

– Terminate: Meet asset’s termination task schedule.

– Unavailable: Like annual leave for labor or regular

check for machines.

B. Illustrated Example

We consider a case of dual-resource asset and illustrate

the problem in Fig. 2. The operational task schedule of asset

is given in Fig. 2(a). The asset is scheduled to be utilised

according to demand (F) and will be terminated when no

longer required (T). A feasible allocation plan that fulfills

the task schedule is provided in Fig. 2(b). In the initial state

(t = 0), all resources are allocated to the assets to meet the

operational schedule. At t = 2, Resource-7 starts to undergo

restoration and would only be available when t = 9.
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Fig. 2. The generalised OCRPP

Utilizing CP techniques, we formulate the OCRPP and

illustrate how to use job concepts to manage the constraints

on resource capacity over the planning horizon in Fig. 3.
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Fig. 3. Illustration of constraints on capacity and time occupation for resource

From the chart depicting the remaining volume of re-

sources(below in Fig. 3), it becomes clear that the Stan and

Rest jobs behave differently comparing to Func and Term jobs.

The Func job consumes V
(f)
j of resource capacity and the

Term job will take V (t) instead. While the Stan job depletes

renewable volume denoted as V (s), and the Rest job has the

capacity to completely replenish the resource.

The CP functions are designed to enforce the restriction that

each resource can only handle one task concurrently. This is
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achieved by considering the time occupation shown in Fig. 3,

which guarantees sufficient resource capacity for the specified

jobs.

C. Decision variables

We define the following variables for the OCRPP, where i
represents the resource in a set of resources I and j represents

the asset in a set of assets J . Here t denotes the time period

of the whole planning horizon T , where t = 0 refers to the

initial condition.

As there are various states of the resource i, the following

decision variables are defined, allowing us to determine the

assignment of the resource i:

• xi,j,t: resource i is allocated to asset j (or not) at time t,
• ri,m: restore resource i (or not) for m-th time,

• bi,m: start time of m-th restoration period for resource i,
• si,t: resource i standby at time period t or not.

D. Objective

Among types of goals from asset management, we use

total resource shift cost as objective value (1) for OCRPP to

minimize:

minZ =
∑

i∈I,j∈J ,0≤t≤T

wi,j,t (1)

wi,j,t � xi,j,t−1 ⊕ xi,j,t, 0 < t ≤ T, ∀i, j (2)

where wi,j,t is the resource shifting indicator defined in (2)

to tell whether the allocation plan for resource i on asset j at

time t is different from the allocation plan at t− 1.

Some operational constraints can be exceedingly difficult to

satisfy, hence, it is usually acceptable for manager to tolerate

minor deviations from these constraints [16]. Hence, we in-

troduce these “soft” constraints as penalties and incorporate

them into the objective function as (3),

minZ + crZr + csZs + · · · (3)

where Zr, Zs are the penalties for restoration (16) and lack of

standby resources (17) respectively, and co, cs are the unit cost

for these objectives. It can be extended with more penalties if

needed.

E. Constraints

The constraints in the model encompass the following three

aspects: 1) resource occupation, 2) operational constraints, and

3) “soft” constraints as penalties.

1) Resource occupation: To ensure that the volume oc-

cupation of each resource capacity for different jobs does

not exceed its maximum capacity V
(max)
i , we employ the

cumulative function as shown in (4).

cumulative(bi,dvi,pi,gi, V
(max)
i ), ∀i ∈ I (4)

This function effectively limits the cumulative volume occu-

pations of any resource i at any time, where V
(max)
i refers to

the maximum capacity volume and the meanings and values of

the first 4 positional vector parameters are listed in table I . The

begin, duration and demand describe the basic 2-dimensional

resource occupation of different jobs, while enabler decides

the assignment. In addition, dti also represents the duration,

and it is required by (9).

TABLE I
PARAMETERS FOR OCCUPATION CONSTRAINTS OF RESOURCE i

Job Begin Duration Demand Enabler

Name� bi dvi
� dti

� gi pi

Func t di,j,t,m 1 V
(f)
j pi,j,t,m

Stan t 1 1 V (s) si,t
Rest bi,m Di Di V (max) ri,m
Term Rj T −Rj T −Rj V (t) xi,j,Rj

� Unav jobs are predetermined in the schedule as parameters.
� For cumulative only
� For no_overlap only

The additional undefined elements di,j,t,m, pi,j,t,m are in-

troduced to handle Func jobs that appear between (m− 1)-th
and m-th restoration of resource i.

The Func job consumes resource volume without recovery,

and this occupation effect will end at the subsequent Rest job,

which can refill the resource with volume V
(max)
i . Therefore,

the duration of Func job can be described as (5).

di,j,t,m =

{
bi,m − t if enabled

max{T,Rj · xi,j,t} otherwise.
(5)

The enabler pi,j,t,m is to indicate Func job’s presence. It

has strong relation to decision variables xi,j,t and ri,m−1:

pi,j,t,m = xi,j,t · ri,m−1, (6)

which can be linearized as (7).

⎧⎪⎨
⎪⎩

pi,j,t,m ≤ ri,m−1, m > 0
T/Di∑
m=0

pi,j,t,m = xi,j,t
∀i ∈ I, j ∈ J (7)

Meantime, restoration enabler should adhere to (8) to reduce

systematic symmetry, and set ri,0 = 1.

ri,m ≤ ri,m−1, 1 ≤ m ≤ T/Di, ∀i ∈ I (8)

On the other hand, to guarantee that only one job can

be assigned to each resource i at any time, we utilize the

no_overlap function as illustrated in (9).

no_overlap(bi,dti,pi), ∀i ∈ I (9)

This function ensures that there are no overlapping of time

occupations for different jobs assigned to the same resource.

It is important to note that the duration dt used in the

no_overlap function differs slightly from dv that in the

cumulative function as listed in table I.
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2) Operational constraints: Operational constraints are im-

posed to manage the relationship between resource and asset,

which are listed in eqs. (10)–(15).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈J

xi,j,t ≤ 1 ∀i ∈ I (10)

∑
i∈I

xi,j,t ≤ Cj ∀j ∈ J (11)

∑
i∈I

xi,j,t ≥ Cj · yj,t ∀j, t (12)

∑
i∈I

xi,j,t = Cj t ≥ Rj , ∀j (13)

wi,j,t = 0 t > Rj , ∀i, j (14)

xi,j,t = 0 t ∈ Xi ∪Ri, ∀i, j (15)

Eq. (10) indicates each resource can be allocated to at most

1 asset at any time, while (11) means the number of assigned

resources for a certain asset should not exceed its configura-

tion capacity. Assets are required to be fully allocated with

resources if performing any functional tasks as (12), where

yj,t indicates if asset j has functional task. Eq. (13) is for

similar Termination tasks. Eq. (14) prohibits any further al-

location change after asset termination, while (15) constraints

no resource allocation during the unavailable period, including

restoration and unavailable, where Xi and Ri represent when

resource i is unavailable and in-restoration respectively.

3) “Soft” constraints as penalties: “Soft” constraints refer

to those that are challenging to satisfy but can be treated as

penalties in objective (3).

1. Penalty for exceeding the maximum number Mi of

restoration for each resource as (16).

Zr =
∑
i∈I

max

⎧⎨
⎩0,

T/Di∑
m=1

ri,m −Mi

⎫⎬
⎭ (16)

2. Penalty for insufficient number St of standby resource in

each time period as (17).

Zs =

T∑
t=1

max

{
0, St −

∑
i∈I

si,t

}
(17)

III. METHODOLOGY

Directly solving the OCRPP model can be time-consuming

and yield low-quality solutions due to the significant number

of systematic symmetries with regard to the inter-changeable

matching for resources and assets. We propose a meta-heuristic

solving framework Hierarchical Allocation Optimizer (HAO)

as shown in fig. 1 to address this challenge.

A. Phase 1: Active resource selection

The current model exhibits numerous systematic symmetries

caused by the specific resource allocation plan, where many

resources are interchangeable for functional tasks of assets

without affecting the objective value. To address this, we

introduce the concept of “active” resource, as defined in (18).

These resources are selected to be candidates for certain

operation jobs. However, their allocation to each specific asset

is not explicitly determined. By selecting only the necessary

number of “active” resources, the number of decision variables

can be dramatically reduced because j is not considered in this

phase.

x̂i,t �
∑
j∈J

xi,j,t, ∀i, t, (18)

Given the asset task schedule illustrated in Fig. 2 (a) for

example, the required number of “active” resources per time

period is determined in advance. This enables us to calculate

the required number of resources to support the asset tasks at

every time period.

However, the new challenge is that the shift count cannot

be determined directly. Hence, we estimate the shift count for

any asset j at a given time t using:

ŵj,t = qj,t−1 + qj,t − 2 · aj,t, t > 0, ∀j, (19)

where ŵj,t �
∑

i∈I wi,j,t and qj,t represent the required total

number of resources for asset j to be allocated at time t, as

determined by (20), while aj,t denotes the number of resources

attached to asset j in both time t and t− 1.

qj,t =

⎧⎨
⎩

Cj yj,t = 1 or t ≥ Rj∑
i∈I

xi,j,t otherwise ∀j ∈ J . (20)

Then, we can determine the upper bound of estimation

indicator aj,t as in eqs. (21)–(23):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
∀j∈J

yj,t−1=0∧yj,t=1

aj,t ≤
∑
j∈J

max

{
Cj ,

∑
i∈I

xi,j,t−1

}
, (21)

∑
∀j∈J

yj,t−1=1∧yj,t=0

aj,t ≤
∑
j∈J

max

{
Cj ,

∑
i∈I

xi,j,t

}
, (22)

∑
∀j∈J

yj,t−1=1∧yj,t=1

aj,t ≤
∑
j∈J

Cj . (23)

By utilizing eqs. (19) and (21), we can calculate the lower

bound of the shift count, as expressed in (24).

Z =
∑
∀j,t

ŵj,t (24)

This lower bound can then be used as a substitution for the

variable Z in the objective function (3) to facilitate the active

resource selection process.

B. Phase 2: Active resource allocation

After the active resource selection phase, we can proceed

to specify the resource allocation while keeping the values of

other decision variables fixed. This can be done using (25),⎧⎨
⎩

xi,j,t = x∗
i,j,t if t /∈ Fj , ∀j, t

bi,m = b∗i,m
si,t = s∗i,t ∀t

, ∀i (25)
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where x∗
i,j,t, b∗i,m and s∗i,t represent the solution values ob-

tained from active resource selection phase.

Next, the resource allocation phase involves solving a

smaller Mixed-Integer Programming (MIP) problem that in-

cludes the new constraint in eq. (26). It ensures that active

resources are allocated to specific asset for operational tasks,∑
j∈J

xi,j,t = 1, i ∈ Ît (26)

where Ît is the active resource set at t.
The objective of the resource allocation phase remains the

same as stated in (3), with the constraints of eqs. (10), (25)

and (26).

C. Phase 3: Fine tuning

After warming up with the above two phases, we can obtain

feasible solution(s), taking one of them as s∗ without loss of

generalization. This solution may not be globally optimized

since the shift count estimation serves only as a guideline,

and most of the decision variable values are fixed during the

active resource allocation phase.

To further refine the solution, we will use s∗ as the starting

point, where lower bound is hinted, to start for a new global

search for the original OCRPP.

IV. EXPERIMENTS AND APPLICATIONS

A. Experimental setup

The proposed HAO follows a hierarchical framework, al-

lowing us to utilize different solvers for each solving phase.

In our experiments, we have adopted Google OR-Tools as the

solver wrapper, which can employ different backend solvers.

The experiments were conducted on a workstation with a 16-

core CPU (11th Gen Intel i9-11900) using Python 3.9 and

OR-Tools 9.0.

B. Results and analysis

For the given simple scenario depicted in Fig. 2, its problem

scale is |J |× |I|×T = 5× 10× 28, and the task schedule is

depicted in Fig. 2 (a). The manual solution for this 10-resource

scenario is presented in Fig. 2 (b), while the solution obtained

from the HAO is illustrated in Fig. 4, which is one of the

optimal solutions.
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Fig. 4. Resource allocation plan for 10-Resource scenario using HAO

In addition to the manual solution, we compared HAO

with a rule-based heuristic, and customized Genetic Algorithm

(GA). The rule-based method based on the experience from

experts’ manual work. The customized GA uses specific

encoding and decoding procedures, along with customized

crossover and mutation operations. The individual consists of

resource and asset parts, encoded with values representing

resource states and asset. The decoding process calculates

fitness values by assigning resources and assets based on the

encodes. Customized operations include crossover between

parents and shuffling asset indices for mutation.

Using the same data, the best results from multiple rounds

for the rule-based, GA, and HAO methods are listed in table II,

where the objectives selected for evaluation, namely Z, Zr,

and Zs, refer to resource shift counts, exceeding restorations

and lack of standby resource respectively from (3).

TABLE II
EXPERIMENT RESULTS COMPARISON

Method Z Zr Zs std(obj)� Running time

Manual 56 4 18 - 2 days

Heuristic� 222 3 9 152193.58 0.06 s
Meta-heuristic� 116 5 4 167183.61 850.41 s

HAO 25 2 8 0 59.42 s

� standard deviation of objective (3)
� rule-based strategy + random sample
� customized GA with 10000 of population for 1000 iterations

It is evident that the rule-based method yields immediate

results but with a high number of resource shift counts. The

manual solution considerably reduces this count, yet it requires

significant human effort to accommodate all constraints. Un-

fortunately, the resulting solution leads to high penalty values

for Stan and Rest jobs, potentially due to human errors. On

the other hand, the GA produces a lower count of shifts

compared to the rule-based. However, its performance is less

stable compared to the rule-based, and not comparable with

the manual solution or HAO.

In contrast, the proposed HAO method outperforms all

other approaches, particularly in minimizing shift counts while

maintaining an acceptable runtime. Additionally, it always

produces optimal solutions thus the performance is highly

stable in this example.

To validate the effectiveness of the proposed HAO, we

conduct a bunch of ablation studies with the following variants

in table III.

TABLE III
HAO VARIANTS FOR ABLATION STUDY

Name Phase 1 Phase 2 Phase 3

HAO-001 � � �a

HAO-110 � � �
HAO-111 � � �

a no warm up

Through the generated instances at different problem scales,

experiments were carried out for multiple rounds under each

setting group. The average results in terms of Z̄, Z̄r, and Z̄s
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are listed in table IV. Each experiment runs within 1 hour for

the entire solving process.

TABLE IV
RESULT FOR ABLATION STUDY

Exp.
Scale

(|J |× |I|×T )
Method Z̄ Z̄r Z̄s

1 16× 48× 24
HAO-001 96.00 0.00 0.00
HAO-110 249.33 0.33 0.00
HAO-111 101.33 0.33 0.00

2 16× 96× 24
HAO-001 628.33 5.00 0.33
HAO-110 614.67 5.00 0.00
HAO-111 635.33 4.33 0.00

3 16× 48× 48
HAO-001 164.00 0.00 0.00
HAO-110 268.67 0.00 0.00
HAO-111 160.33 0.00 0.00

4 16× 96× 48
HAO-001 589.00 6.00 0.00
HAO-110 610.00 3.67 0.00
HAO-111 534.33 3.33 0.00

The results reveal that the full-featured HAO-111 outper-

forms the ablated variants, particularly under relatively larger

problem scales. This underscores the value of investing time

in a warm-up procedure before engaging in global searching.

However, warm-up phases only leads to inconsistent perfor-

mance due to the theoretical nature of the estimation in phase 1

and the discrete distribution of the search space. This indicates

that lower bound regions do not always guarantee better solu-

tions. Consequently, the fine-tuning phase should be adopted in

conjunction with the warm-up phase. Furthermore, for smaller

cases (Exp. 1), HAO-001 exhibits better performance as it

starts the global searching at the beginning, but HAO-111 has

relative less time for global searching.

In practical real-world applications, when the problem scale

remains relatively small, direct employment of global search-

ing (HAO-001) is recommended. The comprehensive HAO-

111 also demonstrates strong performance. As real-world

problems tend to be large, opting for the full-featured HAO-

111 is a judicious decision.

V. CONCLUSION

This paper addresses resource planning problem prevailing

in diverse industries, such as engine optimization in airlines,

vehicle fleet management in logistic companies, labor roster-

ing, and so forth. We abstract common operational constraints

and introduce the job concept to structure resource and asset

coordination, proposed the OCRPP model. To solve this, we

present the HAO meta-heuristic framework, encompassing 3

distinct phases. Through comparative experiments involving

manual, heuristic and general meta-heuristic. HAO demon-

strates remarkable performance with acceptable runtime. The

ablation studies highlight the role of warm-up and fine-tuning

steps within HAO.

In the future, we aim to enhance the HAO by integrating

Deep Reinforcement Learning to enhance the decision making

for active resource selection. Furthermore, we plan to explore

real-time dynamic approaches to generate robust plan that can

adapt to changing requirements.
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