
HyMark: Application of Hybrid AI for Markdown
Syntax Generation

Khushnood Adil Rafique, Nabeel Khaliq, Christoph Grimm
University of Kaiserslautern-Landau (RPTU), Chair of Cyber-Physical Systems, Kaiserslautern, Germany

[khushnood.rafique|grimm]@cs.uni-kl.de, khaliq@rhrk.uni-kl.de

Abstract—Markdown, a markup language, faces accessibility
barriers due to its moderate syntax complexity for users not
so technically inclined. This paper presents a novel approach,
merging rule-based and artificial intelligence (AI)-based strate-
gies, leveraging natural language processing (NLP). By employing
regular expressions, classifiers, and advanced language models,
we automate the transformation of unstructured text into struc-
tured Markdown. This inclusive method enhances accessibility,
making Markdown tools more user-friendly, and can rival the
performance of large language models (LLMs) such as ChatGPT.
Its novelty lies in the use of AI techniques combined with rule-
based methods in a hybrid setting, to understand document
semantics, and intelligently apply formatting, especially in op-
timal placements for headings and subheadings, extraction of
code snippets, bullet points, and table generation. This technique
minimizes the learning curve and manual effort in Markdown
usage, aiding further adoption across various content creation
domains, and thereby contributing to the documentation format-
ting practices. This manuscript will introduce and objectively
compare the performance of our approach, HyMark, to that of
ChatGPT.

Index Terms—Markdown, Regular Expressions, ChatGPT,
Natural Language Processing, Hybrid AI, Code Recognition,
Natural language to Markdown, Information Extraction, Infor-
mation Representation

I. INTRODUCTION

In the contemporary landscape of digital technology, the

generation of content has become a ubiquitous phenomenon.

Daily, a large volume of articles, reports, blogs, and diverse

content types is created to disseminate information globally.

Markdown, distinguished by its plain-text-formatting gram-

mar, has emerged as a preeminent choice among content cre-

ators and scientific experts. It serves as a lightweight markup

language, enabling the creation of rich text through plain text

editors, thereby enhancing the efficiency and effectiveness of

content generation and presentation. Despite, its advantages,

crafting formatted Markdown documents demands a functional

understanding of the Markdown syntax. Untrained users often

grapple with the challenge of investing time and effort in

careful formatting, a task susceptible to errors. This involves

paragraph organization, appropriate heading allocation, and the

identification and formatting of links, code snippets, bullet

points, and other elements crucial for achieving an optimal

structure, and better readability.

Presently available solutions predominantly rely on manual

processes, necessitating users to possess a good understanding

of Markdown syntax or constant manual lookup. This poses

a barrier for numerous potential users, especially those less

versed in programming or scripting languages. Hence, the

imperative lies in developing an intelligent system capable

of automatically converting unstructured text into a well-

formatted Markdown document, ensuring the preservation of

logical flow and adherence to standard Markdown syntax.

This approach would automate the arduous task of manual

formatting, rendering Markdown more accessible to a broader

audience. Our endeavors focus on the creation of a tool that

transforms plain text into well-organized Markdown docu-

ments. While we now have access to tools like ChatGPT

[1] that can perform similar tasks, we want to emphasize

that HyMark performs the same task with better precision

with consistently high accuracy. It achieves this by combining

rule-based techniques and natural language processing (NLP)

methods in a hybrid setting, and it often outperforms ChatGPT

at Markdown-specific information extraction.

A. What is Markdown

Markdown, a lightweight markup language originating in

2004 and credited to John Gruber in collaboration with Aaron

Swartz [2], was conceived to enhance the accessibility of writ-

ing and content sharing on the web, focusing particularly on

plain text format. This fundamental markup language employs

basic symbols to modulate the appearance and structure of

the text, exemplified by utilizing a # sign before a heading

(e.g., # Heading One) or employing numbers followed by

a dot and a space for bullet points (e.g., 1. First item).

Under its apparent simplicity lies a remarkable degree of

adaptability. Markdown facilitates the seamless addition of

links, images, list creation, and text organization. Ordered lists,

employing numbers and periods (e.g., 1.), or unordered lists

with dashes (-) or asterisks (*), are easily crafted. Furthermore,

Markdown supports nested lists, block quotations, and code

blocks, offering diverse expressive and structural choices to

writers.

B. Markdown with SysMD

SysMD, outlined by Dalecke et al. (2022) [3], is a

modeling tool rooted in SysML v2, aiming to democratize

systems modeling for domain experts. This language uses

near-natural-language statements, seamlessly integrating with

Markdown files, unifying code, and documentation. SysMD

documents enhance model accessibility with formatted text,

tables, and external resource links. HyMark API integration

698

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00134

Figure 1. SysMD Notebook using HyMark API.

within SysMD via REST API enables Markdown text gen-

eration from unstructured text. Figure 1 shows the use of

HyMark API within the SysMD system. Markdown makes

SysMD accessible to users with limited modeling experience,

streamlining well-documented and interconnected model con-

struction by integrating code and documentation.

II. RELATED WORK

This section reviews existing research in the domains of

markup languages, information extraction, and syntax gen-

eration. The challenge of Markdown generation is perva-

sive across various tools such as GitHub, Bitbucket, Reddit,

and SysMD Notebook. Users are often compelled to master

Markdown syntax for their daily activities with these tools.

Although some efforts like GitHub [5] and R Markdown [6]

have attempted to address this with customizable editors, it

remains a partial solution. Qian Xi and David Walker’s work

[7] introduces a context-free markup language tailored for

semi-structured text. Their work explores design, features, and

applications, making a significant contribution to information

representation in semi-structured contexts. Topaz et al. [8]

leverage regular expressions to extract fall-related data from

clinical notes. NimbleMiner, a rule-based system, showcases

the efficacy of regular expressions in discerning diverse lexical

variations. In their work, Yin and Neubig [9] propose a syn-

tactic neural model for general-purpose code generation. This

model, trained on large datasets, captures syntactic structures,

enhancing the quality of machine-generated code.

A. Role of HyMark

• Innovative Markdown Syntax Generation: Our work

introduces an approach to automatically generate Mark-

down syntax from unstructured text, addressing a gap in

existing literature, and compares its performance against

state-of-the-art large language model (LLM), ChatGPT.

• Hybrid Methodology: Distinguishing itself, HyMark

uses a hybrid methodology that seamlessly integrates

rule-based and artificial intelligence (AI) techniques.

• Semantic Understanding: The core contribution lies in

our system’s ability to semantically understand unstruc-

tured text and present it in a structured fashion that can

match the performance of ChatGPT.

• Accuracy and Precision: Leveraging rule-based tech-

niques guarantees accuracy and precision in Markdown

syntax, crucial for reliable information representation that

on most occasions outperforms ChatGPT at identification

tasks.

• Filling a Crucial Gap: The contribution of our work

fills a critical gap in the scholarly landscape, specifically

addressing the need for automatic markup language gen-

eration.

• Enhancing Information Extraction: Our approach en-

hances information extraction and representation in un-

structured text, contributing to advancements in the field.

• Versatility of HyMark Across Platforms: HyMark

demonstrates versatility across various scenarios and plat-

forms. Its easy-to-use API seamlessly integrates with

different systems, such as SysMD Notebook, facilitating

diverse applications without significant implementation

complexities.

III. METHODOLOGY

In this section, we delve into the developmental framework

of HyMark. The process of transmuting raw unstructured text

into refined markdown syntax is executed through a series

of steps. The flow of HyMark’s approach with a system like

SysMD is outlined in figure 2, providing an overview of the

process.

Figure 2. Markdown syntax generation pipeline.

A. Text Preprocessing

Before transforming raw text into organized Markdown doc-

uments, it undergoes text preprocessing. This section outlines

our approach to achieving this task.

1) Structured Paragraph Transformation: Organizing large

blocks of raw text requires a nuanced understanding of se-

mantic structure beyond punctuation cues. We used sentence

embeddings generated by employing the all-mpnet-base-v2
model [10] to convert sentences into meaningful vectors. Co-

sine similarity measurements between these vectors in a multi-

dimensional space help group semantically related sentences,

forming the basis for constructing coherent paragraphs. We

then use the sentence embeddings to create a cosine similarity

699

matrix showing how similar each sentence is to the other ones.

We create a new matrix by stacking each diagonal right to

the main diagonal and then applying activation weights to

each row to determine the closest sentences having the biggest

activation weight. With this, we can create a similarity graph

depicting maxima and minima between sentences with minima

being used as splitting points for new paragraphs.

Text Block A
“Breadth First Search (BFS) is an algorithm used for

traversing graphs or trees. Traversing means visiting each

node of the graph. Breadth First Search is a recursive

algorithm to search all the vertices of a graph or a tree.

BFS in Python can be implemented by using data structures

like a dictionary and lists. An integrated circuit (IC), also

called a microelectronic circuit, microchip, or chip, is an

assembly of electronic components, fabricated as a single

unit.”

2) Enhancing Paragraph Structure with Text Tiling: We

further improve precision by defining a similarity threshold, a

numerical line that sentences must cross to be categorized into

a single topic category. Figure 3 shows the similar sentence

similarity threshold for text block A, in which the first few

sentences of the text are about breadth-first search (BFS) and

later, from the fourth sentence the topic is shifted to the subject

of circuits.

This procedure guarantees that the paragraph has a single

context or a group of ideas that are tightly related to one

another. After the initial division of raw text into paragraphs,

we employ the NLTK [11] technique of text tiling to further

enhance coherence. Text tiling identifies topic shifts and

divides the text into tiles, each focusing on a different topic.

B. Tile Processing

This section provides an exploration of the Tile Processing
component within HyMark. Following the segmentation of

text into smaller tiles, the focus is then on the refinement of

each tile. Parsing of textual components, including headings,

subheadings, bullet points, hyperlinks, and code snippets, is

conducted, and their formatting is adjusted.

Text Block B
“Breadth First Search (BFS) is an algorithm used for

traversing graphs or trees. Traversing means visiting each

node of the graph. Breadth First Search is a recursive

algorithm to search all the vertices of a graph or a

tree. BFS in Python can be implemented by using data

structures like a dictionary and lists.”

1) Automated Heading Generation: The automation of

heading generation from context is particularly crucial in

unstructured text to Markdown conversion, ensuring that every

segment, from small tiles to entire pages, is accompanied

by appropriate headings and subheadings. For the task of

generating contextually relevant headings, we leveraged the

T5 (Text-to-Text Transfer Transformer) model [12]. Developed

Figure 3. Sentence similarity threshold curve.

by Google, T5 is a flexible machine-learning model proficient

in tasks such as summarization and translation. The model

integration was tested to generate meaningful headings within

their context, for example, it generated the heading, “Breadth-

First Search in Python” for text block B.

The ROUGE scores [14] provide a quantitative measure

of the similarity between the heading generated by HyMark

using T5 and a reference heading, generated by ChatGPT

for text block B: “Understanding Breadth First Search (BFS)

Algorithm in Graphs and Trees with Python Implementation”.

The rouge-1 and rouge-L metrics indicate a moderate overlap

in unigrams and longest common subsequences, with recall,

precision, and F1-scores (see figure 4). However, the lack of

overlap in bigrams (rouge-2) suggests that consecutive word

pairs in the two headings do not match well. Text block

A posed a challenge for HyMark due to a thematic shift

after sentence 4. ChatGPT generated the heading, “Exploring

Breadth First Search (BFS) Algorithm and Introduction to

Integrated Circuits” which we used as a reference heading to

compute the ROUGE scores again for text block A. HyMark

did not take into account the thematic change in the text and

opted to follow the theme that is more prevalent (in terms

of the sentence count) and generated the same heading as it

did for text block B, “Breadth-First Search in Python”. The

ROUGE scores are represented in figure 4.

2) Rule-Based Identification of Textual Elements: HyMark

uses a rule-based methodology utilizing Regular Expressions

(Regex) [15] to achieve the extraction of textual elements like

bullet points, hyperlinks, and image URLs. Regular expres-

sions, or Regex Patterns, represent specific character sequences

designed for string matching to create search patterns. Within

HyMark, Regex plays a crucial role in systematically filtering

through each text tile, searching for patterns that match differ-

ent text elements. This precision is important for preserving

the original context and meaning of the extracted information.

An overview of its application is as follows:

• Bullet Points: HyMark identifies lists in the text by de-

700

Figure 4. Comparison of ROUGE Scores for HyMark’s performance across
Key Metrics (Rouge-2, Rouge-1, and Rouge-L) – showcasing the recall,
precision, and F1 scores, demonstrating HyMark’s promising potential at
heading generation.

tecting patterns indicative of bullet points. It subsequently

reformats them into markdown bullet points.

• Hyperlinks: Recognizable patterns reflecting common

URL formats are used to extract hyperlinks. These are

then converted into clickable Markdown links.

• Image URLs: Similar to hyperlinks, image URLs adhere

to recognizable patterns with a path to an image resource.

Our tool identifies these URLs and converts them to

display the actual images in the markdown.

While AI models demand extensive datasets and substantial

computing power, Regex provides simplicity, efficiency, and

control. In scenarios requiring high accuracy and rule adher-

ence, the rule-based approach with Regex ensures robust reli-

ability. Additionally, the rule-based approach proves practical

for obtaining quick results without extensive computational

requirements.

We validated our point by comparing the performance of

ChatGPT against that of HyMark. We used 30 unseen pieces

of text when evaluating the performance metrics. The text

segments contained about 100-150 words each and included

bullet point hints (running numbered text elements, etc.),

hyperlinks, and image URLs. Some text segments also did not

contain one or more of these elements to conduct a varied test.

We compared the information extraction performances across

the 3 categories. Figure 5 shows how HyMark fared against

ChatGPT. It performed fairly well but occasionally fell short

on bullet point extraction since that is much more difficult for

a rule-based implementation to achieve.

Assuming, TPi, FPi, and FNi represent the true positives,

false positives, and false negatives for the i-th piece of text,

respectively. The precision (Pi), recall (Ri), and F1-score

(F1i) for each textual element were calculated as follows:

Pi =
TPi

TPi + FPi
, Ri =

TPi

TPi + FNi
, F1i =

2 · Pi ·Ri

Pi +Ri

Figure 5. Performance Metrics (F1-Score and Accuracy) comparison between
HyMark and ChatGPT at bullet point, hyperlink, and image URL extraction.

Since the F1-score does not paint the full picture, we decided
to also compare the accuracies of the two systems. The
accuracy of the extraction is computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Finally, the performance is gauged with the macro average of
the F1-scores and the average accuracy:

F1scoreavg. =
1

n

n∑
i=1

F1i, Accuracyavg. =
1

n

n∑
i=1

Accuracyi

C. Code Snippet Extraction

The delineation between regular text and code is essential

for the proper formatting of code snippets in the final Mark-

down document, enhancing the overall clarity. To achieve the

accurate extraction of code snippets while preserving their

syntax and functional utility in the document, HyMark utilizes

a Random Forest Classifier (RFC) [16].

1) Dataset Curation: The first segment of the dataset com-

prised 131,455 samples of everyday language, mimicking the

linguistic patterns humans use in their daily communication

and the second segment, comprised 131,455 code snippets,

with 34 of the most popular high-level programming lan-

guages. Figure 6, visually represents the combination of text

and code snippets constituting the dataset.

2) Implementation: The methodology starts with tokeniza-

tion, involving the division of text, specifically code snip-

pets, into smaller units or tokens. The challenge with code

tokenization lies in using specific patterns that consider the

distinctive syntax of programming languages, a departure from

the simplistic approach of splitting by spaces in ordinary

text. The subsequent phase in the process is Vectorization,

which involves the conversion of the cleaned tokens into

a numerical format or vector interpretable by the model.

HyMark also employs the TF-IDF (Term Frequency-Inverse

Document Frequency) [17] statistical measure to evaluate the

701

Figure 6. Data frame showing text and code snippet.

significance of a term within a corpus of texts. By transforming

the text into a numerical representation, the model gains the

ability to comprehend and learn from the data, recognizing

patterns and distinctions that distinguish regular text from

code. The higher the TF-IDF value, the more important the

term is to that specific document in the collection.

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D)

where TF(t, d) =
Number of times term t appears in document d

Total number of terms in document d

IDF(t,D) = log

(
Total number of documents in the corpus |D|
1 + Number of documents containing term t

)

3) Model Selection: The process of selecting a suitable

model was crucial. After careful consideration and experimen-

tation, RFC emerged as the right choice. This model, by design

and operational logic, constructs multiple decision trees during

the training phase and derives a classification from each tree

for prediction. The inherent simplicity of this approach, cou-

pled with the collaborative decision-making process inherent

in a random forest, substantially mitigates the risk of errors

associated with a single, potentially overfitted decision tree.

This strategic choice ensures a robust and reliable classification

framework.

4) Findings: RFC demonstrated exceptional efficacy,

achieving remarkable accuracy in distinguishing between stan-

dard text and code. The evaluation encompassed a diverse

array of programming languages, ranging from the more con-

ventional to the less common, such as SysMD, and languages

closer to natural languages, like SQL. The model consistently

displayed accurate detection of code snippets across varied

linguistic contexts, demonstrating its adaptability and high

utility for real-world applications. When compared to Chat-

GPT across 30 unseen text segments containing popular high-

level languages like Python, Java, SQL, SysML, etc, HyMark

performed exceptionally well with equal precision, recall, and

F1-scores. When it came to a language such as SysMD (also

see section I-B) that both systems had not seen during training,

we observed a slight advantage for the HyMark over ChatGPT

as demonstrated in figure 7.

D. Text to Table

The integration of tables within markdown documents

serves as an organizational element and enhances readers’ abil-

ity to compare data effectively. Recognizing the significance

Figure 7. The comparison graph illustrates the performance metrics (Preci-
sion, Recall, and F1 Score) for SysMD Code Recognition between ChatGPT
and HyMark.

of tables in Markdown, HyMark incorporates a text-to-table

conversion feature. However, it is imperative to acknowledge

that the current capability of HyMark may not meet the highest

expectations. The inherent challenges of the extensive text-to-

table conversion problem, coupled with the constraints posed

by a relatively modest one-dimensional dataset, warrant the

need for refinement and future work in this aspect.

1) Dataset Selection: The WikiTableText dataset [18],

sourced from Wikipedia, provides text samples paired with

single-row tables, simplifying complexity. However, its lim-

itation lies in the absence of multi-row, multi-column tables

commonly encountered in real-world scenarios, which reduces

its applicability for tasks requiring more intricate table struc-

tures.

2) Model Selection & Training: Our tool uses a sequence-

to-sequence (seq2seq) model, fine-tuned from the BART-based

model [19]. Inspired by the methodologies discussed in the

work of Wu et al. [20], we selected the BART model for

its adeptness in text generation. Enhancing the fundamental

seq2seq architecture, our model generated tokens sequentially,

with each token dependent on the preceding ones. Training

data consisted of input text and corresponding output table

pairs, denoted as (x1, y1), (x2, y2), . . . , (xn, yn). To refine

model accuracy, we used two techniques: Table Constraint

(TC) and Table Relation Embeddings (TRE). TRE incorpo-

rated table relations, while TC imposed constraints on table

structure. Evaluation across datasets showcased significant

performance improvements with the combined use of TC and

TRE.

3) Findings: The evaluation of the text-to-table information

extraction model on the WikiTableText dataset yielded good

results. In direct comparison, the proposed approach demon-

strated superior performance when benchmarked against both

the vanilla seq2seq model and a baseline employing named

702

entity recognition (NER). Figure 8 shows the comparison

between the proposed technique and the NER & vanilla

seq2seq models. Although table generation is possible with

HyMark, it still needs a context cue to determine what part of

the text needs conversion.

Text Block C
“Breadth First Search (BFS) is an algorithm used for

traversing graphs or trees. Traversing means visiting

each node of the graph. Breadth First Search is a

recursive algorithm to search all the vertices of a graph

or a tree. BFS in Python can be implemented by using

data structures like a dictionary and lists. (Potential

table) C. Y. Lee implemented Breadth First Search

(BFS) as a wire routing algorithm in 1961. Breadth

First Search (BFS) is an algorithm used to traverse

graphs, and its application can be understood through

the analogy of solving a Rubik’s Cube. In this analogy,

the cube’s different states represent nodes in a graph,

and the possible cube actions correspond to the graph

edges. The BFS algorithm aims to visit all vertices of

the graph while avoiding cycles. It operates by starting

from a node, checking nodes at increasing distances in

layers, and it employs a queue to keep track of nodes to

be visited. The steps of the algorithm work as follows:

1. Start by putting any one of the graph’s vertices at

the back of the queue. 2. Now take the front item of

the queue and add it to the visited list. 3. Create a list

of that vertex’s adjacent nodes. Add those that are not

within the visited list to the rear of the queue. 4. Keep

continuing steps two and three till the queue is empty.

Now, we will see how the source code of the program for

implementing breadth-first search in Python. Consider

the following graph which is implemented in the code

below: https://favtutor.com/resources/images/uploads/

mceu 10156064211607848109563.jpg def bfs(visited,

graph, node): visited.append(node) queue.append(node)

while queue: m = queue.pop(0) print (m, end = ” ”)

for neighbour in graph[m]: if neighbor not in visited:

visited.append(neighbour) queue.append(neighbour)”

IV. RESULTS

In this section, we explore HyMark’s real-world application

and performance. Text block C introduces Breadth First Search

(BFS), illustrating its implementation in Python. A code

snippet showcases the Python BFS implementation, alongside

a graph image. The HyMark output corresponding to the text

block C is organized in Listing 1.
1 # Breadth First Search in Python
2

3 ## Breadth-First Search
4 Breadth First Search (BFS) is an algorithm used for

traversing graphs or trees. Traversing involves
visiting each node of the graph. It is a recursive
algorithm designed to search all the vertices of a
graph or a tree. BFS in Python can be implemented using
data structures like a dictionary and lists.

5

Figure 8. Comparison between the proposed approach and NER & vanilla
seq2seq.

6 | title | subtitle | year | algorithm |
7 | ----- | -------- | ---- | --------- |
8 | C. Y. Lee | wire routing algorithm | 1961 | Breadth-first

-search (BFS) |
9

10 ## Breadth-First Search - How to search Graphs
11 Breadth First Search (BFS) is an algorithm used to traverse

graphs, and its application can be understood through
the analogy of solving a Rubik’s Cube. In this analogy
, the cube’s different states represent nodes in a
graph, and the possible cube actions correspond to the
graph edges. The BFS algorithm aims to visit all
vertices of the graph while avoiding cycles. It
operates by starting from a node, checking nodes at
increasing distances in layers, and it employs a queue
to keep track of nodes to be visited.

12

13 The steps of the algorithm work as follows:
14 1. Start by putting any one of the g r a p h s vertices at

the back of the queue.
15 2. Now take the front item of the queue and add it to the

visited list.
16 3. Create a list of that vertex’s adjacent nodes. Add those

which are not within the visited list to the rear of
the queue.

17 4. Keep continuing steps two and three until the queue is
empty.

18

19 ## Breadth First Search Algorithm
20 Now, we will see how the source code of the program for

implementing breadth-first search in Python.
21

22 Consider the following graph implemented in the code below:
23 ![image](https://favtutor.com/resources/images/uploads/

mceu_10156064211607848109563.jpg)
24 ‘‘‘
25 def bfs(visited, graph, node):
26 visited.append(node)
27 queue.append(node)
28 while queue:
29 m = queue.pop(0)
30 print(m, end=" ")
31 for neighbour in graph[m]:
32 if neighbour not in visited:
33 visited.append(neighbour)
34 queue.append(neighbour)
35

36 ‘‘‘

Listing 1. HyMark’s output for text block C.

703

In the output, Python code is encapsulated within a mark-

down code block. Moreover, HyMark effectively extracts the

historical context of BFS by transforming it into a structured

table, using the cue provided in the text.

A. HyMark compared to ChatGPT
When ChatGPT was presented with text block C along

with the prompt shown in figure 9, it produced the output

demonstrated in listing 2.

Figure 9. ChatGPT prompt for Markdown syntax generation for text block
C.

1 # Breadth First Search (BFS) Algorithm
2

3 ## Introduction
4 Breadth First Search (BFS) is an algorithm used for

traversing graphs or trees. It involves visiting each
node of the graph, making it useful for various
applications.

5

6 ### BFS Overview
7 BFS is a recursive algorithm designed to search all the

vertices of a graph or tree. The algorithm can be
implemented in Python using data structures such as
dictionaries and lists.

8

9 ### Historical Context
10 C. Y. Lee pioneered the implementation of Breadth First

Search (BFS) as a wire routing algorithm in 1961.
11

12 ## Algorithm Explanation
13 BFS is applied to traverse graphs, with an analogy to

solving a Rubik’s Cube. The algorithm’s goal is to
visit all vertices of the graph while avoiding cycles.
It operates by starting from a node, checking nodes in
layers, and using a queue to manage nodes.

14

15 #### Algorithm Steps
16 1. Start by placing any graph vertex at the back of the

queue.
17 2. Extract the front item from the queue and add it to the

visited list.
18 3. Create a list of adjacent nodes for the current vertex.

Add unvisited nodes to the rear of the queue.
19 4. Repeat steps two and three until the queue is empty.
20

21 ## Implementation in Python
22 Here is a sample Python code for implementing BFS:
23

24 ‘‘‘python
25 def bfs(visited, graph, node):
26 visited.append(node)
27 queue.append(node)
28 while queue:
29 m = queue.pop(0)
30 print(m, end=" ")
31 for neighbour in graph[m]:
32 if neighbour not in visited:
33 visited.append(neighbour)
34 queue.append(neighbour)

Listing 2. ChatGPT’s output for text block C.

B. Evaluation & Comparison

Text block C was chosen as the text to evaluate the per-

formance of both systems for this final real-world application.

A short survey was conducted with a group of 20 computer

science students (all currently pursuing MSc degrees) to decide

what would qualify as headings and subheadings, bullet points,

and table creation opportunities. The chosen metrics were

precision and recall for each category. The categories were

“headings”, “bullet points”, “hyperlinks,” “code snippets”,

“image URLs”, and “table generation”

Figure 10. ChatGPT compared to HyMark at identifying different elements
of the unstructured text block C.

Each metric was applied separately to the output generated

by ChatGPT and HyMark. This evaluation process provided

a glimpse of the technical reliability of HyMark in handling

specific markdown elements. Figure 10 showcases the perfor-

mance of HyMark and ChatGPT. It can be seen that HyMark

performed at par with ChatGPT and also managed to create

a table where ChatGPT could not identify the opportunity to

generate a table relative to the context even though a hint in

the text was provided. ChatGPT also missed the image URL

extraction, although it generated slightly better headings and

subheadings that summarized the text well.

C. Case Study

The 20 computer science students also evaluated HyMark

by testing it on 20 segments of previously unseen text with

approximately 200-300 words each. The evaluation process

involved converting structured text into unstructured format,

with a copy of the original structured text provided for com-

parison purposes. Each segment of unstructured text was then

individually inputted into HyMark for analysis. The evaluation

results were generally satisfactory, with HyMark consistently

accurately identifying bullet points, hyperlinks, code snippets,

and image URLs. However, there were precisely 4 instances

where HyMark missed opportunities to generate tables and

704

overlooked hints while generating satisfactory headings and

subheadings in all cases.

V. CONCLUSION & INFERENCES

The driving force behind our work was to assist individuals

unfamiliar with Markdown syntax, like the many users of the

SysMD notebook. HyMark was created to alleviate the manual

efforts associated with document organization and styling.

The goal was to develop a system capable of contextually

understanding text, emulating human-like comprehension, and

autonomously selecting optimal structures and formats. This

automation significantly streamlined the time-intensive manual

formatting process. Furthermore, this solution can support

other tools like GitHub and R Markdown, where Markdown

is an integral part of the projects.

Our approach integrated rule-based and AI-based method-

ologies such as NLP. Rule-based aspects, employing regular

expressions, efficiently handled straightforward pattern de-

tection tasks, while NLP methods were used for semantic

understanding and information extraction. We systematically

compared each feature of HyMark with ChatGPT to demon-

strate that a hybrid approach to tasks like Markdown syntax

generation can be performed at a consistently high level similar

to and even better than state-of-the-art LLM like ChatGPT.

Yet the question remains, “Why use HyMark when ChatGPT
exists?”. The answer is simple - precision and reliability.

While testing, ChatGPT struggled to consistently deliver high-

quality extraction results. It often required multiple attempts

with the same prompts to achieve the desired outcomes, and

prompt engineering posed challenges, consuming additional

time in crafting them accurately. In the results section (see

section IV) of this manuscript, ChatGPT exhibited limitations

by missing a labeled table generation opportunity and image

URL extraction, consistent with trends observed in earlier

iterations of testing. In contrast, HyMark uses specialized AI

tools tailored for specific tasks and a rule-based approach

to simpler tasks for consistent precision. Whether applied in

academic writing or content creation, HyMark streamlines and

accelerates the writing process, offering a reliable solution that

saves valuable time.

ACKNOWLEDGMENT

This work was funded by the BMBF Projects, KI4Boardnet

and GENIAL. The authors would also like to acknowledge

that ChatGPT was used to enhance the linguistic clarity of

this manuscript, specifically to correct grammar and sentence

structure.

REFERENCES

[1] OpenAI. (2023). ChatGPT (Mar 14 version) [Large language model].
https://openai.com.

[2] J. Gruber, Markdown Syntax. [Online]. Available: http://daringfireball.
net/projects/markdown/syntax. [Accessed: June 2012].

[3] Š. Dalecke, K. A. Rafique, A. Ratzke, C. Grimm, and J. Koch,
SysMD: Towards “Inclusive” Systems Engineering, in 2022 IEEE
5th International Conference on Industrial Cyber-Physical Sys-
tems (ICPS), Coventry, United Kingdom, 2022, pp. 1-6, doi:
10.1109/ICPS51978.2022.9816856.

[4] OMG SysML v2 Revision Task Force, Systems Modeling Language
(SysML) - Version 2, Object Management Group, 202X. [Online].
Available: https://www.omg.org/spec/SysML/2.0/. [Accessed: Date Ac-
cessed].

[5] N. Bleiel, “Collaborating in GitHub,” 2016 IEEE International Profes-
sional Communication Conference (IPCC), Austin, TX, USA, 2016, pp.
1-3, doi: 10.1109/IPCC.2016.7740497.

[6] D. Udwin and B. S. Baumer, “R Markdown,” WIREs
Computational Statistics, vol. 7, no. 3, pp. 167-177, 2015.
https://doi.org/10.1002/wics.1348

[7] Q. Xi and D. Walker, A context-free markup language for semi-
structured text, SIGPLAN Not., vol. 45, no. 6, pp. 221-232, Jun. 2010.

[8] M. Topaz, L. Murga, K. M. Gaddis, M. V. McDonald, O. Bar-Bachar,
Y. Goldberg, and K. H. Bowles, Mining fall-related information in
clinical notes: Comparison of rule-based and novel word embedding-
based machine learning approaches, Journal of Biomedical Informatics,
vol. 90, pp. 103103, 2019.

[9] P. Yin and G. Neubig, A syntactic neural model for general-purpose
code generation, arXiv preprint arXiv:1704.01696, 2017.

[10] Hugging Face, all-mpnet-base-v2, 2023. Online. Available:
https://huggingface.co/sentence-transformers/all-mpnet-base-v2/blame/
86eb780758622d085bac2d7f6aea99c157a5ee28/README.md.

[11] S. Bird, E. Klein, and E. Loper, NLTK: The Natural Language Toolkit,
2009. [Online]. Available: http://www.nltk.org/. [Accessed: August 12,
2023].

[12] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, Exploring the Limits of Trans-
fer Learning with a Unified Text-to-Text Transformer, arXiv preprint
arXiv:1910.10683, 2019.

[13] Medium, [Online]. Available: https://medium.com/ . [Accessed: August
13, 2023].

[14] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Sum-
maries,” in Proceedings of the Workshop on Text Summarization
Branches Out (WAS 2004), Barcelona, Spain, 2004.

[15] M. Spencer, “Regular Expressions: A Comprehensive Guide,” Regex101,
2023. [Online]. Available: https://regex101.com/. [Accessed: August 3,
2023].

[16] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

[17] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[18] “WikiTableText Dataset.” GitHub, https://github.com/sean0042/Open
WikiTable, Accessed: August 20, 2023.

[19] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O.
Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” arXiv preprint arXiv:1910.13461, 2019.

[20] X. Wu, J. Zhang, and H. Li, “Text-to-table: A new way of information
extraction,” arXiv preprint arXiv:2109.02707, 2021.

[21] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[22] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
2. Oxford: Clarendon, 1892, pp.68–73.

[23] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[24] K. Elissa, “Title of paper if known,” unpublished.
[25] R. Nicole, “Title of paper with only first word capitalized,” J. Name

Stand. Abbrev., in press.
[26] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

[27] M. Young, The Technical Writer’s Handbook. Mill Valley, CA: Univer-
sity Science, 1989.

705

