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Abstract—Ability to extract user’s joystick input style from a
few demonstrations and applying it to various navigation tasks
can be useful for automated testing of shared control algorithms
in simulation. This can reduce the need for user studies, leading
to time and cost benefits, especially when human subjects suffer
from disabilities. State-of-the-art imitation learning methods
require demonstration for every task making them unsuitable for
this use case. Methods like adversarial motion prior (AMP) and
learning from play (Play-LMP) provide an alternative. However,
data used to train AMP’s discriminator is generated by task-
specific policies which can limit its ability to apply a style to
other tasks. Also, it tries to optimize both style and task reward
simultaneously which can lead to style not being imitated in
favor of task completion. Instead of learning style through a
discriminator, Play-LMP tries to extract style by learning latent
representations. However, this is done in an unsupervised manner
making it hard to enforce the correlation between the learned
latent representation and the user’s input style. In this work,
we investigate how the supervised latent optimization based
disentanglement approach (used to disentangle images to its style
and content latent), can be used to extract style from a few human
demonstrations and applied to different tasks with simulator in
the loop. Our initial results on synthetic data show that this can
be a promising approach.

Index Terms—style transfer, learning from demonstration,
joystick digital twin

I. INTRODUCTION

Shared control [1], where the final control command is

computed based on the user’s input and the robot’s perception

of the environment, can help people with a lack of fine motor

control, drive a robotic wheelchair independently using a

simple joystick [2]. For testing shared control methods, human

joystick input is needed at every time step. Thus testing is

often done through user studies which are time-consuming,

costly, and hard to do on a large scale, especially for human

subjects with disability. The need for such user studies can be

minimized by creating a model of the human joystick input

policy from a few human demonstrations, which can then

be used to generate the human joystick input for testing in

different scenarios. Since the human joystick input will vary

depending on a user’s ability (See Fig. 1), the model should

be able to generate joystick inputs conditioned on the ability

of the person.

One way to create such a model is to use imitation learning

approaches [3] that aim to learn a policy for performing a given

task from human demonstrations. However, these approaches

require human demonstrations for every new task, which is not

(a) (b)

Fig. 1. Human subjects were asked to trace a square between orange dots on
the screen using a joystick. Trace shown as a blue dotted line of (a) a normal
person, (b) a Cerebral Palsy (CP) subject. CP subjects are not able to trace a
square properly due to a lack of fine motor control.

feasible for our use case. We aim to extract the joystick input

style of the user from a few demonstrations of some tasks and

then use the extracted style to generate the joystick inputs for

different tasks.

Peng et al. [4] proposed a method to extract the style from a

few demonstrations and apply it to different tasks. They use a

framework similar to generative adversarial imitation learning

(GAIL [5]), where a generator and a discriminator are trained

together, such that the generator learns to generate a policy

that cannot be distinguished from demonstrated trajectories

by the discriminator. To capture the style in demonstration

and utilize it for different tasks, Peng et al. [4] modify the

discriminator to learn whether the two consecutive states come

from the demonstration, while the generator learns a policy

that maximizes a task reward along with minimizing the

discriminator’s reward. This approach has been demonstrated

to work on different skeletons to capture different gaits. While

the discriminator does not use task information, the data

used to train it is generated by task-specific policies. This

may introduce some task dependencies into it and hinder its

ability to apply style to other tasks. Also, having a separate

task objective can lead to a policy that puts more emphasis

on completing the task successfully instead of imitating the

style. In general, approaches based on Generative Adversarial

Network (GAN) are known to be difficult to train and require

careful tuning of network parameters.

Instead of enforcing style through a discriminator, Lynch et

al. [6] learn a latent representation for doing a task in different

styles in an unsupervised manner with conditional variational

autoencoders (CVAEs), and use this latent representation for

performing different goal-conditioned tasks. Learning latent
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representations in an unsupervised manner is not suited for our

case as we need to extract the style of a person and condition

the task on it. With unsupervised learning, it is hard to make

sure that the learned latent space correlates with the style of

different humans.

Thus there is still a need for an approach that can extract

human input style from a few human demonstrations and

apply it to generate valid trajectories of completing different

wheelchair operation tasks. Many works in image process-

ing [7]–[9] show how latent embeddings, which disentangle

style and content, can be extracted in a supervised manner

from images. We are in particular interested in the latent

optimization method [7] as it can learn the embeddings in

a supervised manner without the need to train a generative

adversarial network.

In this work, we demonstrate how disentanglement using

latent optimization can be applied for learning embeddings

for user’s style from user demonstrations which can then be

used to generate the control inputs conditioned on different

user styles with a simulator in the loop.

Through our preliminary experiments on synthetic data for

robotic wheelchair simulated in Gazebo and controlled by

Robot Operating System (ROS), we show that our approach

can successfully disentangle the user input style from a few

demonstrations and use it to generate trajectories for different

tasks.

II. OUR APPROACH

We first define our problem in the context of a robotic

wheelchair that can be operated via a joystick.

A. Problem Statement

Given a set of n demonstrations, consisting of wheelchair

trajectories ξ1..n in a few simulation scenes, generated by N
people having different fine motor control abilities using a

joystick for wheelchair control, we aim to extract the style

of joystick input and apply it to different tasks i.e. traversing

a path in a different scene with simulator in the loop, such

that the generated trajectory is similar to the trajectory that

would have been generated by the person with that style. Each

trajectory is labeled with the person who created it. We assume

that the variance in the demonstration for a person with a given

style is far less than the difference in the trajectories of persons

with different styles.

B. LORD

We aim to solve this problem by disentangling the style and

task from the few demonstrations given by the person using the

LORD (latent optimization representation disentanglement)

approach [7] that is used for disentangling style and content

of images. We give a brief overview of the LORD next.

Given a set of n images, with each image labeled with a

style that can have upto N values, LORD learns to disentangle

this set into N style embeddings and n task embeddings using

a two-stage process.

In Stage 1 (see Figure 2(a)), each image wi such that

i ∈ 1, .., n is assigned a style embedding eyi
. This embedding

(a) (b)

Fig. 2. (a) Stage 1: Latent optimization. Parameters of the generator and
all the style and content embeddings are optimized using SGD optimizer.
All inputs of the same style share a single style embedding. The network is
trained using Equation 1. Once the network is trained, the latent spaces of
the training set are disentangled. (b) Stage 2: Both the encoders are trained to
generate the optimized embeddings of stage 1 for a given input. The model
is trained using Equation 3.

is selected from a pool of N randomly initialized embeddings

based on the style label yi , which is recorded in the dataset

and ranges from 1 to N . Additionally, each image receives a

distinct randomly initialized content embedding. A generator

G, with parameters θG, transforms these embeddings into the

output image ŵi. The latent embedddings e = (e1, . . . , eN )
and ci = (c1, . . . , cn) and generator parameters θG are then

learned in an end-to-end manner using stochastic gradient

descent such that the images’ reconstruction loss L1 is mini-

mized i.e.

e∗, c∗, θ∗G = argmin
e,c,θG

L1

L1 =

n∑

i=1

‖GθG(eyi
, ci)− wi‖2 (1)

Since images with the same style are assigned the same

style embedding, style embedding captures all the common

style features resulting in style and content disentanglement.
In Stage 2 (see Figure 2(b)) style and content encoders,

Ee and Ec are trained to estimate the optimized embeddings

obtained from Stage 1 for new input images. The loss function

aims to minimize the error between the embeddings estimated

by the encoders and the original embeddings learned in Stage

1. A reconstruction loss term is added to the loss function to

ensure that the learned embeddings can reconstruct the original

input sequence. Thus, the overall loss function for Stage 2

becomes: L2 =

n∑

i=1

‖GθG(Ee(wi), Ec(wi)− wi‖2

+ α1.‖(Ee(wi)− eyi)‖2
+ α2.‖(Ec(wi)− ci)‖2 (2)

The parameters of both the encoders θe, and θc, and generator

network θG (initialized with weights from Stage 1),are learned

end-to-end using stochastic gradient descent:

θ∗e , θ
∗
c , θ

∗
G = argmin

θe,θc,θG

L2 (3)

At the inference time, the style embedding of the input

image can be computed using the style encoder, combined with

the content embedding computed from some other image, and

then used to generate an image with a given style but different

content.
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C. LORD for human demonstrations

In this section, we will describe how we can use the LORD

framework to capture style from human demonstrations. First,

we describe how we represent the set of n demonstrations.

1) Input representation: A demonstration takes the form of

the wheelchair trajectory ξi when controlled by a human. It is

represented as a sequence of tuples (xt
i, y

t
i , θ

t
i), where xt

i, y
t
i

is the 2D position and θti is the rotation around z-axis of the

wheelchair at timestep t for trajectory ξi.

We assume that when given the same task, the difference in

style comes from the different physical abilities of the people.

Therefore we capture the style relative to a baseline policy for

doing the task. This baseline policy can be represented by the

global path plan which also implicitly defines the task. This

baseline policy is dependent on the current position of the

wheelchair. Thus, we record the global path plan generated

by A∗ planner at each time step for all the trajectories. In

a Robot Operating System (ROS), global planner output is

recorded as a sequence of waypoints spaced 2cm apart from

each other, which is different from the frame or timestep used

in the rest of the data. As a result, to provide valid information

for the model, we represent global plan Pi corresponding to

ξi as a sequence of 10 waypoints (pti,1, ..., p
t
i,10) where pti,k

represents kth waypoint of the global plan Pi at time step

t. Each waypoint is a 2D position. In our experiments, 10

waypoints (20cm) are sufficient to cover the distance of at

least 1 timestep, even under the maximum speed.

2) LORD: Each of our recorded data ri is a sequence

of ((xt
i, y

t
i , θ

t
i), (p

t
i,1, p

t
i,2...p

t
i,10)) i.e. wheelchair pose and

10 way points at every time step t. The length of each

sequence varies depending on the time taken to reach the goal

which determines the number of time steps in the sequence.

Each sequence is labeled with the human/style who gave the

demonstration that can have up to N values.

One naive way of using LORD is to use each recorded data

ri as equivalent to an image input and try to reconstruct it

in Stages 1 and 2. However, by doing this, we will only be

able to reconstruct the whole trajectory at the inference time.

This trajectory will not have a simulator in the loop. For our

use case, we need to compute the position of the wheelchair

((xt
i, y

t
i , θ

t
i) at next timestep t, given the past trajectory till

time t− 1 and global plan at time t. This computed position

is then sent to the simulator which will provide the actual

position and the new global plan from that position. Then we

need to take this output from the simulator to again compute

the wheelchair position at the next timestep. See Figure 3.

In order to do this, we define our LORD input wi using a

sliding window approach. With a window of size X and stride

1, we can generate |ri| −X input sequences of size X from

recorded data of size |ri|.
In stage 1, each input sequence generated from recorded

data ri is assigned a same style embedding based on the

demonstrator of ri but a different content embedding. The

content embedding represents the task which varies for every

input sequence even from the same recorded data because

Input Sequence
(x, y, θ)t−X+1−>t−1

(p
(t−X+2)−>t
i,1 , ..., p

(t−X+2)−>t
i,10 )

Content Encoder

Style Encoder

Generator

Prediction
(x, y, θ)t

ROS/Gazebo
(pt+1

i,1 , ..., pt+1
i,10)

Simulator output
(x, y, θ)t

(pt+1
i,1 , ..., pt+1

i,10)

Predict Next output

Generate Next Input

Increase t by 1

Fig. 3. Auto-regressive prediction using LORD with simulator in the loop.
The new input sequence is generated by combining the past sequence and the
latest output prediction.

it is dependent on the last position of the wheelchair in the

input sequence. Stage 1 learns optimized style and content/task

embeddings along with generator parameters by trying to

minimize the reconstruction loss of the input sequence.

Since at inference time, we do not have all X frames of

wheelchair trajectory, as the wheelchair position in the last

frame has to be computed, we slightly modify the input and

output in Stage 2. We provide only X−1 frames of wheelchair

trajectory and X frames of the global plan as input during

stage 2 training. The generator, however, reconstructs all X
frames of trajectory and the global plan. Using this stage 2

model, we can compute the pose of the wheelchair at the next

timestep during inference.

III. EXPERIMENTS

Since data collected from patients can be noisy and is hard

to use, we use synthetic data first to test and prove the concept.

A. Synthetic data generation

We generate wheelchair trajectories using 2 different styles

in simulation. One is simply using the local planner to traverse

a path from a start position to a goal position. We call it

no-style trajectory. For the second style, we add the periodic

sinusoidal noise in the angular velocity ω using the following

equation :

ωz = ωz + 0.5 ∗ sin (tnow − tstart) (4)

(a) (b)

Fig. 4. (a) Trajectory generated by Global Planner when the goal is set. (b)
Real trajectory with/without sinusoid style simulated by ROS.

Figure 4(b) shows the trajectory generated by 2 different

styles. We generate 35 trajectories for each style and 70

trajectories in total. By implementing a sliding window of size

64 and stride length 1, 6994 inputs are generated in total. Out

of these, we keep 6792 inputs for training and 202 for testing.
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B. Experiment Results

1) Pre-recorded dataset: To predict the future trajectory

with style, our framework needs both current position and

global planner predictions. However, the global planner pre-

dictions recorded in our test data will be valid only if the

wheelchair’s states match exactly with those in the recorded

trajectory, which is not true in most of the cases. To cope

with this issue, in our test with the pre-recorded dataset,

only the first 64 frames are given as inputs and the model

will try to predict both the next positions and next global

planner predictions. Since our model is not trained to be a

global planner by itself, the robot will never be able to reach

the same goal as in the test trajectory, but the desired style

should be visible. Figure 5 shows the prediction of both styles

on train/test dataset. Predictions based on unseen trajectories

from test dataset may become unreliable due to the error

accumulation as shown in Figure 5(b), but the sinusoidal style

is well maintained throughout the prediction.

(a) (b)

(c) (d)

Fig. 5. (a)(b) No-style trajectory prediction based on 64 frames input from
train/test dataset. (c)(d) Sinusoidal trajectory prediction based on 64 frames
input from train/test dataset.

2) Simulator in the loop: To see if this approach can be

deployed online, we test with a simulator in the loop where

the positions of the wheelchair generated using our trained

model are fed to a simulator to generate the positions for

the next timesteps. since the trajectories generated will always

differ slightly from each other due to planner and simulator

noise, we do not have the ground truth for these experiments.

Therefore, we evaluate the resulting trajectories by comparing

the difference between the trajectory generated by our model

and the synthetic data generator using the 2 styles. As shown in

Figure 6, our results show that the trajectories generated by our

model are closer to the style for which they were generated.

IV. CONCLUSION

We have investigated how style and content disentangle-

ment, generally used for disentangling images, can be used

to disentangle style from demonstrations for applying it to

different wheelchair navigation tasks. Our preliminary results

(a) (b)

(c) (d)

Fig. 6. (a) No-style trajectory predicted by LORD+ROS planner given the first
64 inputs. (b) Ground Truth No-style trajectory generated by data generator.
(c) Sinusoidal trajectory predicted by LORD+ROS planner given the first 64
inputs. (d) Ground Truth Sinusoidal trajectory generated by data generator.

on synthetic data show that the learned model can be used to

generate the trajectories with a given style online. However,

more thorough quantitative testing is still needed. In the future,

we will test this model further with more challenging scenarios

containing different obstacles and also with real human data

from subjects having cerebral palsy, Parkinson’s disease etc.
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