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ABSTRACT

3D environment recognition is essential for autonomous

driving systems, as autonomous vehicles require comprehen-

sive understanding of surrounding scenes. Recently, the pre-

dominant approach to define this real-life problem is through

3D occupancy prediction. It attempts to predict the occupancy

states and semantic labels for all voxels in 3D space, which

enhances the perception capability. Bird’s-Eye-View(BEV)-

based perception has achieved the SOTA performance for this

task. Nonetheless, this architecture fails to represent various

scales of BEV features. In this paper, inspired by the suc-

cess of UNet in semantic segmentation tasks, we introduce a

novel UNet-like Multi-scale Occupancy Head module to re-

lieve this issue. Furthermore, we propose the class-balancing

loss to compensate for rare classes in the dataset. The exper-

imental results on nuScenes 3D occupancy challenge dataset

show the superiority of our proposed approach over baseline

and SOTA methods.

Index Terms— Deep learning, 3D Occupancy Prediction,

Autonomous Driving, BEV-based Prediction.

1. INTRODUCTION

Accurately and comprehensively understanding of 3D envi-

ronments is a fundamental part for autonomous driving sys-

tems [1, 2]. Traditional solutions define this task as 3D object

detection [3, 4, 5, 6], which utilizes 3D bounding boxes to il-

lustrate the information of surrounding objects. However, this

kind of definition has many drawbacks. Firstly, it struggles to

accurately capture the intricate shapes of objects, leading to

a loss of detailed information. Furthermore, the perception
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of background is absent, which can be useful for other down-

stream tasks like driving planning [7].

As another definition of the perceiving task, 3D occu-

pancy prediction strives to estimate the intricate occupancy

state within a 3D space accurately. Here, occupancy refers to

the status of individual voxels within a predefined area [8]. It

involves determining whether each voxel is occupied or unoc-

cupied. If occupied, the goal is to classify the specific object

or entity that occupies that particular voxel. This task holds

great importance within the domain of autonomous driving

systems, as it significantly enhances the ability to perceive

structures of various objects and regions. The input modal-

ity of this task is solely based on images from multiple cam-

eras. NuScenes [9] is a comprehensive and widely recognized

dataset in the field of autonomous driving and computer vi-

sion. Within the nuScenes dataset, input images are sourced

from six different cameras. For this specific dataset, the oc-

cupancy prediction is aimed to generate occupancy status re-

sults with dimension of 200 × 200 × 16, which represents

the realistic 3D space within the range of [−40m, 40m] ×
[−40m, 40m] × [−1m, 5.4m]. When applied to autonomous

driving scenarios, this definition serves the crucial purpose of

scene comprehension, contributing significantly to safety en-

hancement. This is achieved by accurately forecasting the oc-

cupancy status of all voxels within the scene based on multi-

view images.

Some existing solutions [10, 11] utilize a 3-stage paradigm

to solve this problem. Firstly, it employs an image backbone

for shallow feature extraction,and is followed by an image

neck to fuse extracted features in different scales. Sub-

sequently, the BEV feature encoder is designed to further

transform the fused features into BEV space. This is par-

ticularly advantageous because BEV features are encoded in

the top-down view of the 3D space, which naturally align

with the data representation of the occupancy state, enabling
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them to encapsulate relevant features for voxels at various

heights within their feature channels. Finally, it generates

ultimate occupancy predictions from BEV features using an

occupancy head.

In this study, we follow this paradigm and conduct ex-

perimental analysis. We utilize BEV-based perception [12]

as the BEV feature encoder, and a simple Feed-Forward Net-

works(FFNs) occupancy head [13] to generate baseline re-

sults. However, due to the fact that substantial imbalances

exist among these categories within the dataset, this base-

line method will significantly suffer from class-imbalanced

issues. To this end, we introduce a class-balancing loss to

tackle this issue. To further enhance feature representations,

we develop a novel UNet-like Multi-scale Occupancy Head

module, which is supervised via various scale ground truths.

2. RELATED WORK

2.1. Voxel-based representation

Attaining a comprehensive representation of a 3D scene con-

stitutes a crucial step in understanding a lifelike environment.

VoxelNet [14] partitions 3D space into equally spaced vox-

els and encoded the features within each voxel into a vector.

In tasks involving occupancy prediction, it is crucial to rep-

resent the scene using voxel-based representations, with each

voxel assigned a semantic label. MonoScene [15] stands out

as the pioneering solution, which employs RGB images to re-

construct 3D scenes through voxel representations. However,

relying on information from a single viewpoint has inherent

limitations. It will often lead to unsatisfactory prediction out-

comes. TPV-Former [10] leverages multi-view images as in-

puts, encoding features within a tri-perspective space. Sub-

sequently, it generates semantic occupancy predictions via a

dedicated prediction head. Although TPV-Former demon-

strates significant improvement over other monocular solu-

tions, its performance is hampered by the sparsity of Light-

Detection-and-Ranging(LiDAR)-based ground truth data.

2.2. BEV-based perception

The substantial number of voxels poses a significant chal-

lenge to the computational efficiency for voxel-based ap-

proaches. To address this issue, BEV encoding methods

leverage the relative scarcity of data in vertical dimension

to integrate height details within each BEV grid. Further-

more, our occupancy prediction task can benefit from these

existing, well-designed solutions for BEV feature encoding

using a occupancy head. As height information is embedded

within feature channels of the BEV gird, we are still able to

capture a comprehensive description of the entire 3D space.

BEVFormer [12] is a powerful transformer-based [16] BEV

encoder. This encoder utilizes spatial-temporal attention

mechanisms to achieve unified BEV feature representations.

However, it does entail a higher computational load due to the

Fig. 1. Overall Architecture of BEV-based Occupancy Pre-

diction Model.

in corporation of its attention layer. BEVDet [17] employs

Lift-Splat-Shoot (LSS) [18] module to perform the transfor-

mation from 2D to 3D space. This approach demands fewer

computational resources owing to the omission of attention

operations. BEVDet4D [19] further enhances the perfor-

mance by introducing temporal clues from BEV features of

the previous frame.

3. METHODOLOGY

In this section, we will describe the methodology employed

in the 3D occupancy prediction experiments. The diagram of

the overall architecture of a BEV-based occupancy prediction

model is depicted in Fig. 1. Firstly, the multi-view images

are fed into an image feature encoder module for image fea-

ture extraction. This component utilizes a ResNet [20] as its

foundational backbone and complements it with an LSS-FPN

[17] to serve as the image neck. Subsequently, BEV feature

encoder module further processes these extracted image fea-

tures into BEV features. Within our methodology, we lever-

age the capabilities of the BEVDet series [19], known for their

heightened efficacy and efficiency as compared to the BEV-

Former [12]. Furthermore, we develop a novel occupancy

head for occupancy prediction results. The naive occupancy

head in [13] entails straightforward feed-forward layers. In-

spired by the achievements of the UNet [21] architecture in

semantic segmentation tasks, we propose a novel UNet-like

Multi-Scale Occupancy Head module to for better feature rep-

resentations. Lastly, to address the class-imbalanced issue in

occupancy prediction, we introduce a novel class-balancing

loss. This approach effectively encourages our networks to

allocate more attention to the rare classes.

To conclude, our main contributions are:

• UNet-like Multi-scale Occupancy Head: Different

from naive FFNs occupancy head, we exploit the UNet

architecture to enhance BEV feature representations.

Furthermore, this allows us to supervise the whole

training process with multi-scale ground truths.

• Class-balancing Loss: We carefully design the novel

loss function, which is able to compensate for minor
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classes within the dataset.

3.1. UNet-like Multi-scale Occupancy Head

The occupancy head serves as a specialized module designed

to utilize the BEV features for the prediction of occupancy

states within a given scene. This module effectively leverages

the BEV features to generate a comprehensive representation

of spatial occupancy. Therefore, it allow us to provide crucial

insights for tasks such as object detection and scene under-

standing.

Assuming the BEV features are in the shape of [channels,

Z, H, W]. The occupancy head used in the baseline model is a

feed-forward network. It will directly flatten the BEV features

into shape [voxel nums, channels], followed by a linear layer

to predict occupancy states.

Considering the data format of BEV features is volumet-

ric, we are inspired from 3D UNet [21]. Since the subsequent

occupancy prediction task bears a solid resemblance to 3D

semantic segmentation, the 3D UNet could naturally adapt to

this task. To this end, we propose our novel UNet-like occu-

pancy head and the architecture is shown in Fig. 2. Within

this figure, the UNet architecture allows us to supervise the

result with a smaller ground truth sampled from original one.

This design enables our model to focus on various scales of

ground truth.

Our proposed UNet-like Multi-scale head has following

advantages:

• Preservation of spatial context: Since it operates on

3D volumes, the 3D UNet can capture and utilize spa-

tial context information in all three dimensions.

• Better feature representations: With 3D convolu-

tions, the network can learn more comprehensive and

informative features from the input data, leading to

improved representations of the underlying structures.

• Consistency in 3D analysis: Some tasks require con-

sistent 3D analysis across the entire volume. The 3D

UNet facilitates such tasks by maintaining the 3D con-

text throughout the network, ensuring consistent and

meaningful results.

Limited by the computational resources and the time, We

only designed a shallow head for quick verification. The pro-

posed occupancy head could be easily extended to 2 or 3 more

layers by adding more convolution and de-convolution oper-

ations.

3.2. Class-balancing Loss

The original loss function in BEV-based prediction model

is a simple cross-entropy loss. The nuScenes dataset dis-

plays a considerable class imbalance, where standard classes

like driveable surface and free occur approximately 104 times

more frequently than rare classes such as bicycle and motor-

cycle. However, cross-entropy loss will not account for class

imbalances, leading the model to be biased toward predicting

the majority class. To tackle this problem, we utilize weighted

cross-entropy and dice loss to supervise the occupancy pre-

diction. The weighted cross-entropy Loss assigns different

weights to each class based on their prevalence in the dataset.

The weights are typically inversely proportional to the class

frequencies. In other words, the rarer the class, the higher

the weight. While dice loss can effectively address class im-

balance issues in image segmentation tasks due to the way it

measures the overlap between predicted and true segmenta-

tion masks.

To tackle computation challenges arising from a large

number of voxel samples, we normalize the sample count

across different classes. The final prediction loss is a combi-

nation of various components, including the weighted cross-

entropy loss (Lwce), dice loss (Ldice), and depth loss for

depth classification (Ldepth) in LSS [18]. The overall loss

function is described in the equation below:

Loss = wwceLwce + wdiceLdice + wdepthLdepth, (1)

where the loss weights wwce, wdice and wdepth are set to 1.0,

0.3 and 0.05 respectively based on experience.

4. EXPERIMENTS4.1. Dataset

The official dataset employed in this study is the multi-view

images from the nuScenes dataset [9]. This dataset encom-

passes 1,000 scenes in reality, each equipped with 360-degree

camera views and 32-beam LiDAR data, spanning a cumula-

tive distance exceeding 1,000 kilometers. Within the multi-

view image dataset, there are 28,130 samples allocated to

the training split, 6,019 samples designated for the validation

split, and 6,006 samples reserved for the test split. Each sam-

ple comprises six images, captured by six distinct cameras

oriented as follows: front, rear, front-left, front-right, rear-

left, and rear-right. Furthermore, the ground truth semantic

labels encompass a total of 18 classes. Class 0 to class 16

correspond to different object categories that appear within

the multi-view images. Class 17, denoted as free, is attributed

to voxels occupied by nothing and will not be counted in the

final mIoU.

Due to variations in object sizes, differences in occurrence

frequencies, and the substantial portion of empty space within

the dataset, the nuScenes dataset exhibits a significant data

imbalance issue in terms of occupancy labels. The distribu-

tion of voxels in each class can be found in Fig. 3.

4.2. Implementation

For the training phase, we adhere to the original BEVDet4D

design, where the multi-level features from the backbone
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Fig. 2. UNet-like Multi-Scale Occupancy Head. The architecture of proposed occupancy head within one layer. The arrows,

distinguished by various colors, symbolize distinct operations, while the numbers enclosed in parentheses denote the dimension

of the data, batch size is omitted here.

Table 1. Experimental results on nuScenes dataset show the superiority of our proposed method. The column labeled mIoU in

the table represents the average IoU (Intersection over Union) of each class, while the columns named by class names represent

the IoU of each class.
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Baseline[13] ResNet101 23.68 5.03 38.79 9.98 34.41 41.09 13.24 16.50 18.15 17.83 18.66 27.7 48.95 27.73 29.08 25.38 15.41 14.46

BEVDet4D [19] ResNet50 35.78 7.84 43.55 15.19 39.03 48.92 21.88 19.42 20.32 21.46 29.64 35.04 79.64 37.26 50.25 52.86 46.0 39.94

with loss ResNet50 36.12 10.76 40.86 24.64 37.61 47.09 26.13 25.51 24.91 25.58 27.52 34.2 77.44 37.74 47.31 51.18 41.13 34.39

with loss&head ResNet50 37.31 11.2 44.07 24.31 39.05 48.68 26.66 25.48 26.43 28.9 25.79 36.91 79.01 38.79 48.23 52.01 42.48 36.26

Improvement \ 13.63 6.17 5.28 14.33 4.64 7.59 13.42 8.98 8.28 11.07 7.13 9.21 30.06 11.06 19.15 26.63 27.07 21.8

Fig. 3. Distribution of nuScenes Occupancy Voxels: The x-

axis represents the class names, and the y-axis displays the

cumulative voxel counts across all samples within the dataset.

were fused using LSS-FPN [18] and the temporal informa-

tion is extracted from 2 previous frames. The multi-view

images are cropped to dimensions of 704 × 256 pixels. Dur-

ing augmentation, vertical flipping and random scaling within

the range of [0.94, 1.11] are applied, following the original

design. We set batch size equal to 4 on 1 GPU and utilize

AdamW [22] optimizer with default parameters. The initial

learning rate and weight decay rate are set to 1e−4 and 1e−2

respectively.

4.3. Experimental results

The baseline model we choose is BEVFormer [13]. The im-

age backbone ResNet101 and the heavy attention operations

in the original BEVFormer bring a huge computation burden.

In our experiments, we utilize BEVDet4D [19] as the

BEV encoder. The experimental occupancy prediction re-

sults using BEVDet4D are presented in Table 1. Initially,

we directly employ BEVDet4D as the BEV feature encoder,

utilize naive FFNs for the occupancy head, and apply cross-

entropy loss. Remarkably, by simply adapting BEVDet4D

with ResNet-50 as the backbone for this task, it exhibits a sub-

stantial performance improvement over the baseline, which

employs ResNet-101 as the image backbone. Subsequently,

we introduce our class-balancing loss function, including
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weighted cross-entropy, dice loss, and the original depth loss

for the depth network in LSS [18]. Notably, these modifi-

cations yield improvements in certain small and infrequent

classes, such as bicycle and motorcycle. Finally, we used

both modified loss and the proposed UNet-like Multi-scale

Occupancy Head, achieving the most favorable results among

all conducted experiments. The last row in the table signifies

the overall improvement observed from the baseline to our

best result.

5. CONCLUSION

In this paper, our work has demonstrated substantial advance-

ments for 3D occupancy prediction task. We fix BEVDet4D

as our BEV feature encoder, which is able to produce high-

quality BEV feature representations. Moreover, we introduce

a novel class-balancing loss to alleviate the class imbalance

issue. Additionally, we propose a UNet-like Multi-Scale Oc-

cupancy Head, enhancing the quality of our feature repre-

sentations and leading to further performance improvements.

The experimental results on nuScenes dataset illustrate the su-

perior efficacy of our proposed method.
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