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Abstract—Industrial textiles have increasingly become a major
part of our day-to-day lives owing to their various desirable prop-
erties. Melt spinning processes are a primary and integral part of
the production of these textiles. Optimizing the spinning process
while maintaining desirable quality is one of the key challenges
for the textile industry. Although numerical models, which are
digital twins of physical processes, are often used in optimization,
they tend to be computationally expensive for complex scenarios.
Hence, in this paper, we utilize machine learning to facilitate
the optimization of melt spinning processes. We present a novel,
reliable, and informed machine-learning model that is both data-
and physics-driven. We further demonstrate the capability of this
model to accelerate the optimization and analysis of melt spinning
processes.

Index Terms—Industrial textiles, melt spinning, informed
machine learning, process optimization, numerical simulation,
digital twin, Boundary Value Problems, Ordinary Differential
Equations

I. INTRODUCTION

Technical textiles are textile materials crafted and engi-

neered to meet specific performance criteria. Their production

aims to instill them with functional attributes like strength,

durability, filtration capabilities, and resistance, along with dis-

tinctive performance features. These characteristics make them

desirable across a multitude of industries, finding application

in diverse fields. They are employed in liquid and gas filtration,

as seen in items like vacuum cleaner bags and water filtration

systems. Furthermore, they play a crucial role in insulation for

roofing, flooring, and wall materials, as well as in automotive

contexts for seat covers, door panels, and headliners. Medical

applications also benefit from their usage, including in surgical

gowns, masks, and drapes. Additionally, these fabrics are

indispensable components in hygiene products such as diapers,

sanitary pads, and wipes. Moreover, they fulfill vital functions

in technologies like batteries, fuel cells, and various other

domains.

The melt spinning process is the primary and crucial step

in the production of technical textiles. In this process, molten

polymer is supplied to nozzles positioned at the top of the

duct called spinnerets. Viscous filaments are then expelled

vertically from the nozzles as shown in Fig. 1. Across a

Fig. 1. Sketch of the production of technical fibers using the melt spinning
process.

predetermined distance, a flow of cold air is introduced from

the side to cool the filaments. The solidified fibers are sub-

sequently gathered by the take-up roller at the bottom. The

optimization of the melt spinning process aims at enhancing

production efficiency and ensuring the desired quality. This

entails various steps, including the optimization of the duct

geometry to achieve uniform fiber cooling, which minimizes

or ideally eliminates fiber ”dancing” caused by turbulence.
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Additionally, optimizing the nozzle positions in the spin pack

is crucial to achieve consistent cooling for all fibers.

Controlling the melt spinning process in an industrial envi-

ronment is often challenging due to its nonlinear nature. The

ongoing nature of manufacturing, operating 24/7, coupled with

limited types of measurement equipment, imposes constraints

on conducting extended experimental series. Consequently,

the physical process is typically modeled numerically as

digital twins to facilitate systematic analysis within an ideal

machine [1]. This analysis entails solving numerical mod-

els with varying process, machine, and material parameters.

Classical numerical solvers are typically used in simulations.

Even though they provide accuracy suitable for engineering

purposes, their computational expense makes them unsuitable

for real-time applications. Furthermore, these solvers depend

on a well-informed initial guess, which is crucial for both

solvability and performance. Hence, in this paper, we propose

a machine-learning-based model to accelerate the optimization

and analysis of the melt spinning process. The main contribu-

tions of our work include presenting a novel machine learning

model that

• provides a good initial guess for the classical numerical

solvers that are used in melt spinning. The goal here

is to reduce the convergence time and domain expertise

required, resulting in the acceleration of the optimization

process.

• provides real-time predictions to accelerate the analysis

of the melt spinning process.

• is reliable with the incorporation of process-specific

physics knowledge into the training process.

II. RELATED WORK

In recent years, machine learning (ML) has demonstrated

remarkable achievements across diverse domains, including

computer vision, natural language processing, robotics, and

more. This success is attributed to its capacity to process,

analyze, and understand complex and varied datasets. The

real-time predictability inherent in machine learning makes

it well-suited for numerous industrial applications, includ-

ing the production of technical textiles. Within the textile

industry, machine learning models are commonly employed

to forecast the quality of textile products based on various

parameters that influence the production process. These trained

models play a crucial role in the subsequent analysis and

optimization of textile manufacturing. Several authors have

explored the application of such models for tasks like defect

detection and quality estimation [2]–[9]. In alignment with

these works, the recent work [10] took a step further by

utilizing machine learning to drive a visualization tool that

is used to optimize the quality of technical textiles. In the

context of melt spinning, the work [11] utilized random forests

and neural networks for quality prediction and for identifying

the process settings the are leading to abnormal quality data.

Additionally, authors in [12] evaluated neural networks with

different architectures to predict the magnetic properties from

the chemical compositions, melt spinning process parameters,

and heat treatment parameters for the production of Sm-Fe-N

magnetic powders. Furthermore, [13] used gradient boosting

regression to understand the most influential parameters for

the coercivity of melt-spun ribbons.

Our approach differs from previous studies in two signif-

icant ways. Unlike the machine learning models previously

applied in melt spinning, which focused on learning the

relationship between process parameters and product quality,

our work employs machine learning to address the underlying

physics problem. In our methodology, the machine learning

model is trained using data generated by a numerical model

that represents the physical melt spinning process through

differential equations. The goal of the ML model in our

approach is to solve these differential equations. The advantage

of this approach is that, in addition to facilitating machine

learning-based analysis and optimization of the melt spinning

process, the predictions generated by the machine learning

model can be utilized to enhance the performance of the

numerical model upon which it is built.

The second notable difference lies in the fact that previous

machine learning models were exclusively driven by data. The

drawback of solely relying on data-driven models becomes

apparent when there is insufficient data. Such limitations hin-

der the effectiveness of data-driven machine learning models,

especially when the available training data fails to adequately

represent variability and capture the system behavior under

examination. In instances where the data is noisy and there

are no means to impose constraints on the model beyond

the data itself, the reliability of the model is compromised.

While previous methods in the computer vision domain have

focused on adapting training data and the architecture of the

ML pipeline to tackle the data scarcity issue [14]–[16], In

our work, we focus specifically on the learning algorithm.

With the availability of physical laws governing the melt-

spinning process formulated as differential equations, we can

seamlessly incorporate them into our approach. Furthermore,

we assert that the trustworthiness of our model does not solely

hinge on the reliability of the training data. By incorporat-

ing governing physics into the learning process, our model

attains an additional layer of reliability. This approach finds

applications across various industrial domains, such as power

systems [17], fluid mechanics [18], material defect detection

[19], and cardiac activation mapping [20]. A comprehensive

review has been conducted that encompasses a wider spectrum

of incorporating physics knowledge into machine learning

systems, particularly in the form of differential equations [21].

To the best of our knowledge, there has been no baseline

work on the application of physics-informed machine learning

models for melt spinning processes, making our approach

novel for the this domain.

III. FOUNDATIONS

In collaborations, we frequently work with domain experts

in the technical textile industry, including mathematicians and

process engineers. Their focus is on modeling and simulat-

ing diverse fiber formation processes, such as polymer melt
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spinning [22] or the manufacturing of glass wool [23]. The

underlying fiber models are typically given by systems of

differential equations, necessitating the application of numer-

ical solvers. Here, we consider an isothermal viscous uniaxial

fiber model (cf. [24]) without aerodynamic forces. In this

scenario, the fiber center line is considered as a straight line

between fiber inlet ra and outlet rb, with a total fiber length

of L. The variables of interest in this process are the fiber

velocity u and the fiber tension N along the spinline. The

system of ordinary differential equations (ODEs) governing

the dimensionless velocity u and dimensionless tension N
along the spinline is expressed as follows:

du

dx
=

Re

3

Nu

μ
, (1)

dN

dx
=

du

dx
− 1

Fr2
τg
u
, (2)

with Reynolds number Re, Froude number Fr and fiber length

L:

Re =
ρ0u0L

μ0
, (3)

Fr =
u0√
gL

, (4)

L = ‖rb − ra‖, (5)

for domain x ∈ [0, 1] with initial condition

u(x = 0) = uin, (6)

and boundary condition

u(x = 1) = uout. (7)

In the given equations, μ is the viscosity of the polymer, g
is gravity, and τg is the fiber direction component parallel to

gravity. ρ0, u0, and μ0 denote the reference density, velocity,

and viscosity of the polymer, respectively. Furthermore, uin

and uout correspond to the dimensionless inlet and outlet

velocities.

Although the velocity at the inlet and outlet is known

due to the process setup, engineers are particularly concerned

with the profiles along the spinline. Excessive fiber tension

or overly steep velocity and tension gradients can result in

damage to the final product and have adverse effects on fiber

properties. In order to optimize the quality of the produced

fibers, the velocity and tension profiles need to be analyzed for

different parameter settings. This process involves solving the

aforementioned system of differential equations for a varied

range of parameters. MATLAB’s bvp4c solver [25] is com-

monly employed in solving such boundary value problems. It

utilizes a finite difference method combined with a collocation

approach, yielding a continuous solution that is fourth-order

accurate within the integration interval. This integration in-

terval is divided into smaller intervals through a point mesh.

The adaptive subdivision scheme allows for the addition and

removal of points as needed. The imposition of boundary

conditions and collocation conditions across all sub-intervals

results in a global system of algebraic equations. The bvp4c

solver is very efficient in solving boundary value problems,

providing higher-order accuracy in acceptable computation

time for engineering purposes. However, these solvers are not

suitable for use in multi-query systems demanding interactive

performance (in ms). Additionally, these solvers require a good

initial guess of the solution to start with, which affects their

solvability and performance. The manual strategy to find an

appropriate guess is to divide the original problem into a series

of problems by introducing so-called continuation parameters.

With the help of these continuation parameters, single terms

of the model are set to zero, such that the simplified boundary

value problem bvp0 := bvp(c1 = 0, c2 = 0, ..., cm = 0) is

solvable where m is the total number of continuation param-

eters. Then, the continuation parameters ci are successively

increased. In each continuation step, the solution of the last

problem, bvpi−1 is used as an initial guess for solving the

next boundary value problem, bvpi, until the original problem,

bvpn := bvp(c1 = 1, c2 = 1, ..., cm = 1) is solvable at

final continuation step n. The main challenge here is to find a

path through the n-dimensional hypercube of the continuation

parameters that leads to a successful simulation of the fiber,

which is currently done by domain experts.

IV. METHODS AND MATERIALS

 Process 

Ordinary
Differential

Equation Solver

Numerical Model Machine Learning
Model

Training Data

Hypothesis Set

Learning Algorithm

Final Hypothesis

Initial Guess

Solution

Visualization

Analysis

Physics
Knowledge

Optimization

Solution

 Product 

Dataset

 Parameters

Quality

Fig. 2. Workflow of the proposed approach for optimizing the melt spinning
process.

In this section, we discuss our proposed approach for

integrating a machine learning model into the optimization

pipeline of the melt spinning process. Fig. 2 shows the general

workflow of the approach. The primary objective of the

machine learning model is twofold. Firstly, it aims to provide

effective initial guesses for the numerical solver (bvp4c) of

the fiber model, thereby minimizing convergence time and
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reducing the need for domain expertise in providing the initial

guess and the continuation parameter strategy explained in the

previous section. Consequently, this approach accelerates the

optimization process. Secondly, the ML model is designed to

provide real-time predictions for varied process parameters,

serving as a backend for the analysis tool. As depicted in

Fig. 2, we incorporate physics knowledge, represented by

differential equations, into the learning algorithm of the ML

model. This model, referred to as the informed (data+physics-

informed) machine learning model [26], is inspired by the

concept of physics-informed neural networks introduced by

Raissi et al. [27]. Our contribution reveals that this integration

significantly enhances the reliability and performance of ML

models. The subsequent subsections elaborate on the construc-

tion process of the proposed ML model.

A. Training Data

The input features of the dataset included the parameters

of the differential equations (1) and (2). These parameters are

the initial and boundary velocities (uin and uout), gravity g,

reference density ρ0, and the x, y, and z components of rb
(with ra held constant). Additionally, the parameters T , μc, B,

and TV F of the viscosity function μ, as defined by the below

Vogel–Fulcher–Tammann material law, are incorporated.

μ = μce
B/(T−TV F ) (8)

The initial temperature, denoted as T remains constant

throughout the process, and the empirical parameters μc, B,

and TV F are to be determined for the specific fiber material

under consideration. Consequently, there are a total of 12 input

features. The ranges of the input features were decided in

consultation with domain experts as shown in Table I. Latin

hypercube sampling [28] was used for generating input data

for the data-driven loss. The bvp4c solver was used to solve the

differential equations, resulting in output data that consisted

of the velocity u and the tension N at grid point x from the

solver. Hammersly sampling [29] is used to generate input data

for the physics-driven losses. These input data do not require

corresponding output data, as the physics-driven losses use

unsupervised learning, which will be explained in the later

sections.

B. Hypothesis Set

We opted for a Deep Neural Network (DNN) as the machine

learning model for our approach due to its seamless inte-

gration with physics knowledge into the learning algorithm.

Additionally, for the physics-driven loss, calculating the first-

order derivative of the ML solution at various grid points in the

solution domain is a necessity. This process is efficiently and

swiftly accomplished through the auto-differentiation function-

ality integrated in common DNN frameworks. The chosen

neural network architecture comprises three hidden layers,

each consisting of 150 neurons. The activation function for

these layers is the hyperbolic tangent tanh. Initially, training

the network involved using the Adam optimizer with a learn-

ing rate of 0.001, followed by the L-BFGS optimizer. The

TABLE I
FEATURE RANGES OF INPUT PARAMETERS

Input Feature Feature Range
uin [0.1, 1.0]

uout [3, 9]

g [5, 15]

ρ0 [800, 2000]

rb: x-component [0.0, 2.5]

rb: y-component [0.0, 2.5]

rb: z-component [0.0, 2.5]

T [500, 600]

μc [0.01, 0.5]

B [1500, 2500]

TV F [223.15, 283.15]

x [0.0, 1.0]

impact of various optimizers and learning rates on network

convergence is detailed interactively in the ’Training and

Convergence’ section of the article 1.

C. Learning Algorithm

In this section, we explain how prior physics knowledge

in the form of differential equations is incorporated into the

learning algorithm. We achieve this by including the physics-

driven losses in the DNN loss function. The loss function

comprises four loss terms, three of which are physics-driven

losses and one is the data-driven loss. The physics-driven

losses distinguish themselves from the data-driven loss by not

relying on a predetermined ground truth. Instead, they apply

penalties to deviations that do not comply with the underlying

differential equations. The total network loss L is given by

L = Ld + Li + Lb + Lr. (9)

The data loss Ld is calculated as the mean squared error

between the ground truth and the predictions for nd number

of data points.

Ld :=
λd

2nd

nd∑

i=1

2∑

j=1

(Yi,j − Ŷi,j)
2. (10)

The initial loss Li is calculated as the mean squared error

between the known initial condition (6) and the predictions

for ni number of initial data points.

Li :=
λi

ni

ni∑

i=1

(ui
in − ûi

in)
2. (11)

The boundary loss Lb is calculated as the mean squared error

between the known boundary condition (7) and the predictions

for nb number of boundary data points.

Lb :=
λb

nb

nb∑

i=1

(ui
out − ûi

out)
2. (12)

1https://observablehq.com/@meltspinning-ws/vis-for-ms
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Finally, the residual loss Lr is calculated as the mean squared

errors of the residuals from the differential equations (1) and

(2) for nr number of residual data points.

Lr :=
1

2nr

nr∑

i=1

λu ∗ fres(Ŷi,1, Ŷi,2, X̂i,grid)
2+

λN ∗ gres(Ŷi,1, Ŷi,2, X̂i,grid)
2,

(13)

with residual functions

fres(u,N, x) =
du

dx
(x)− Re

3

N(x)u(x)

μ
, (14)

gres(u,N, x) =
dN

dx
(x)− du

dx
(x) +

1

Fr2
τg

u(x)
. (15)

In the above equations, Y and Ŷ represent ground truth

and prediction matrices, respectively. The individual elements

Yi,j and Ŷi,j correspond to the actual and predicted values,

respectively, for the input feature i and the output solution

j of the system of differential equations. The matrix X is

the input feature matrix where the individual element Xi,grid

corresponds to the grid points of the ith feature vector. The

vectors uin and ûin are the actual and prediction vectors of

the solution u, respectively, for the initial condition (6). The

vectors uout and ûout are the actual and prediction vectors

of the solution u, respectively, for the boundary condition

(7). The weight coefficients λd, λi, λb, λu, and λN for data,

initial, boundary, residual u, and residual N loss respectively

are the model hyper-parameters that need to be tuned during

the training phase.

D. Final Hypothesis

In the final stage of our workflow, the predictions from

the DNN undergo validation by the classical bvp4c solver in

both the optimization and analysis processes. Firstly, in the

optimization process, the predictions are used as initial guesses

to the bvp4c solver in the final step of the continuation problem

bvpn := bvp(c1 = 1, c2 = 1, ..., cm = 1) discussed in section

III. This aims to enhance convergence rates by reducing

the time and domain expertise necessary for navigating the

continuation parameters. Secondly, in the analysis process,

the trained DNN is utilized as a backend for a multi-query

visual analysis tool. This tool enables interactive exploration

of the parameter space, assisting in navigating and identifying

promising regions. It visually guides the user towards local

minima. The identified regions of interest can subsequently

be subjected to validation using the bvp4c solver.

V. EVALUATIONS

In this section, we analyze the performance of the DNN

using various loss functions, as detailed in subsection IV-C.

Initially, we trained the network with 500 labeled data points

and subsequently with 1000 labeled data points. Table II

presents the error metrics for these scenarios across different

model types on a test set with 14694 data points. The data-

informed network is exclusively trained with the data loss Ld

as described in the equation (10) derived from the labeled data

TABLE II
ERROR METRICS ON THE TESTSET FOR DIFFERENT TYPES OF DEEP

NEURAL NETWORKS

Network
Type

Number
of labeled
data points

MSE MAPE R2-Score

Data
Informed

500 1.0518 0.2966 0.9152

1000 0.4677 0.1159 0.9610

Physics
Informed

- 2.1506 0.2940 0.8204

Data+Physics
Informed

500 0.2538 0.0303 0.9806

1000 0.1160 0.0281 0.9910

points nd = 500 and 1000. On the other hand, the Physics-

informed network is trained solely with the physics losses

Li (using ni = 5000 data points), Lb (using nb = 5000
data points), and Lr with (using nr = 50000 data points) as

described in the equations (11), (12), and (13) excluding the

labeled data points. In both cases, the hybrid network, which is

jointly trained with both data and physics loss, exhibits better

accuracy. This highlights the synergy between data-driven and

physics-driven models, showcasing their complementary na-

ture in learning to solve parametric differential equations. We

trained this network for different values of weight coefficients

λd, λi, λb, λu, and λN from (9). We observed the optimized

convergence behavior for λd = 1, λi = 1, λb = 1, λu = 0.001,

and λN = 0.01. Figure 3 illustrates the different losses

of the hybrid network over 1000 epochs, trained with 1000

labeled data points for the corresponding weight coefficients.

Furthermore, the necessity and efficacy of the trained network

in the optimization and analysis of the melt spinning process

are discussed in the following subsections.

Fig. 3. Convergence of individual losses of a data+physics-informed network
over 1000 epochs

A. Acceleration of Optimization

To evaluate the effect of machine learning in accelerating

the optimization process of melt spinning, we selected 1948

ordinary differential equations as our test set. The predicted

721



TABLE III
CONVERGENCE STATISTICS OVER THE ORDINARY DIFFERENTIAL EQUATION TEST SET WITH DIFFERENT INITIAL GUESS STRATEGIES

Initial Guess Strategy input grid
resolution

max grid
resolution
(NMAX)

Total Differential
Equations

Converged
Differential
Equations

Failed
Differential
Equations

Constant Guess
(constant inlet velocity)

100 1000 1948 1649 299

1000 1000 1948 164 1784

1000 10000 1948 1923 25

Linear Guess (between
the inlet and outlet
velocity)

100 1000 1948 1634 314

1000 1000 1948 696 1252

1000 10000 1948 1918 30

Machine Learning
(Deep Neural Network)

100 1000 1948 1609 339

1000 1000 1948 1927 21

1000 10000 1948 1929 19

solutions generated by the trained DNN served as an initial

guess for the classical bvp4c solver, directly executing the final

step of the continuation problem, as detailed in subsection

IV-D. For comparative analysis, we included two prevalent

classical strategies for initial guess selection: a constant initial

solution and a linear initial solution. The convergence statistics

for all three strategies are presented in Table III.

Fig. 4. Total number of ODE evaluations taken by the three initial guess
strategies to converge to the final solution.

As indicated in the table, setting the maximum grid resolu-

tion in the bvp4c solver (NMAX) to 1000 results in fewer

failed cases for the machine learning (DNN) initial guess

compared to the constant and linear guesses. Upon examining

the reasons for the higher number of failures with the constant

and linear approaches, it was discovered that bvp4c can not

refine the mesh based on the convergence criteria due to the

imposed limitation on NMAX. This limitation also explains

why a grid resolution of 100 performs better than 1000 in this

context. Notably, the ML initial guess requires less refinement

in this case since its values are already closer to the final

solution.

Upon increasing NMAX to 10,000, all three strategies

exhibit a reduced number of failed cases. However, comparing

the total number of ODE evaluations required to converge

to the final solution, the ML strategy stands out, demanding

fewer ODE evaluations, as illustrated in Fig 4. Furthermore, it

becomes apparent that the ML strategy performs consistently

well across both lower and higher NMAX values. This obser-

vation highlights the advantage gained by employing the ML

solution as the initial guess, contributing to faster convergence.

As higher NMAX values afford more computational time and

space, the effect of the ML strategy becomes particularly

evident.

B. Acceleration of Analysis

In this section, we showcase the real-time capabilities of the

machine learning (ML) model, demonstrating its suitability for

analyzing the melt spinning process. We evaluated execution

times on a workstation with a 50-core Intel® Xeon® Gold

6348 (2.60GHz) CPU. As shown in Table IV the trained ML

model demonstrates real-time scalability during the prediction

phase, making it suitable for handling extensive datasets. This

characteristic proves especially advantageous in the multi-

query process, which is essential for the analysis and op-

timization phases. Consequently, leveraging the trained ML

model, we have developed a visualization tool tailored for

simulation experts and mathematicians. This tool facilitates

a better understanding of the influence of diverse process

parameters on crucial attributes related to product quality.

Furthermore, it facilitates the identification of local minima

along the trajectory of the parameter of interest. The gradient

analysis incorporated into the tool proves valuable for iden-

tifying significant velocity and tension gradients, providing

insights crucial for simulation experts. The primary objective

of this tool is to streamline the analysis of the melt spinning

process, reducing both the time required and the level of

domain expertise necessary for a comprehensive evaluation.

The source code, and trained ML model necessary for building

and running the visual analysis tool can be accessed with the

below-provided link 2.

C. Reliability of the Proposed Workflow

In this section, we discuss the three reliability aspects

of the proposed ML model. Firstly, the constructed DNN,

trained to solve the differential equations governing the melt

2https://github.com/VictorVinySaajan/IsothermalMeltSpinningVisualization
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TABLE IV
TIME TAKEN BY THE NUMERICAL MODEL AND THE DNN AT TRAINING

AND PREDICTION STAGE FOR ODES

Model Type Number of data
points

Time in seconds

bvp4c solver
500 166.8548

1000 276.2372

DNN Training
500 2351.6919

1000 5188.21007

DNN Prediction

500 0.1812
1000 0.1970

10000 0.4427

Fig. 5. Comparison of the initial guess made by the deep neural network,
trained on a grid resolution of 100, with a prediction resolution of 1000,
against the ground truth obtained from bvp4c at a resolution of 1000.

spinning process, is grid-free by construction. This means

that a network trained on coarser grids across the solution

domain can be used to predict solutions on finer grids. In

melt spinning optimization, it is important to predict solutions

with finer grid resolutions. This is necessary to capture sudden

changes in the solution domain. This is illustrated in Fig 5,

where the ML model, trained with 100 grid points, is used

to predict solutions on a finer grid of 1000 points. Notably,

the network captures the ground-truth solution profile derived

from numerical simulations with relatively good accuracy.

The figure also explains the reason for the higher failure

rate of ML initial guesses at resolution 100 compared to

resolution 1000, as highlighted in Table III. This discrepancy is

attributed to the inability of the coarser grid to capture abrupt

changes effectively. These observations suggest the possibility

of exploring grid-refinement techniques similar to those based

on the ODE residual employed by the bvp4c solver.

The second aspect of reliability involves integrating physics

laws into machine learning models along with data. As demon-

strated in Table II, this integration significantly enhances

the overall performance of the model. Moreover, we found

that this approach improves the model’s reliability by not

solely depending on the quality of the training data. The

hybrid (data+physics-informed) model achieves an additional

layer of trustworthiness when faced with suboptimal training

data quality. In the ”Reliability Evaluation” section of the

interactive article3, we examined the performance of both the

data-informed DNN and the hybrid DNN in the presence

of noisy data, outliers, and unseen out-of-the-range data.

The results indicate that the hybrid neural network excels in

managing noisy data, demonstrates robustness against outliers,

and performs better on out-of-the-range data when compared

to the exclusively data-driven network.

In the final aspect of reliability, we emphasize that our pro-

posed machine-learning-based workflow undergoes validation

with classical numerical solvers in the final phase. Therefore,

our approach does not seek to replace the traditional, well-

established numerical methods employed in industrial melt

spinning optimization. Instead, we utilize machine learning

as a catalyst to accelerate the process. As demonstrated in the

preceding section, the incorporation of ML reveals substantial

benefits in most scenarios, with no associated drawbacks in

the worst-case scenario.

VI. CONCLUSION

Our paper introduces a novel machine learning-based work-

flow designed to accelerate the optimization and analysis of

the industrial melt spinning process. Within this framework,

we propose a deep neural network driven by both data and

the physics laws governing the isothermal melt spinning

process. We further elaborated on the construction of this

network and its integration into the optimization workflow. We

conclusively demonstrated the effectiveness of these networks

in accelerating the optimization and analysis processes, em-

phasizing their reliability aspects. While we demonstrate our

workflow primarily with the BVP solver within the framework

of isothermal melt spinning processes, this approach has the

potential for generalization to other numerical solvers that use

an iterative approach starting with an initial guess to solve

differential equations.
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