
Integrating Local Learning to Improve
Deep-Reinforcement-Learning-based Pairs Trading

Strategies

Wei-Che Chang
Inst. of Computer Science and Engineering

National Yang Ming
Chiao Tung University
Hsinchu City, Taiwan

wcchang.cs09@nycu.edu.tw

Tian-Shyr Dai
Dept. of Information Management and Finance

National Yang Ming
Chiao Tung University
Hsinchu City, Taiwan

cameldai@mail.nctu.edu.tw

Ying-Ping Chen
Dept. of Computer Science

National Yang Ming
Chiao Tung University
Hsinchu City, Taiwan

ypchen@cs.nycu.edu.tw

Chin-Yi Hsieh
Inst. of Computer Science and Engineering

National Yang Ming
Chiao Tung University
Hsinchu City, Taiwan

eason311551164.cs11@nycu.edu.tw

Yu-Wei Chang
Dept. of Computer Science

National Yang Ming
Chiao Tung University
Hsinchu City, Taiwan

alen610227.cs09@nycu.edu.tw

Yu-Han Huang
Dept. of Computer Science

National Yang Ming
Chiao Tung University
Hsinchu City, Taiwan

john01217.cs09@nycu.edu.tw

Abstract—Instead of trying to predict unpredictable market
trends, influenced by various complex factors that are challenged
to be fully captured in a machine learning model, financial
experts often adopt pairs trading. This strategy involves simul-
taneously trading two stocks to eliminate market trends. The
portfolio value of a carefully selected stock pair oscillates around
a mean level, with investors longing the underpriced and shorting
the overpriced portfolios to profit or stop loss when the portfolio’s
value reverts or diverges significantly.

The timing of trading actions highly depends on the charac-
teristics of constituent stocks and significantly influences trading
performance. Past literature either trains a single machine
learning model with all stock pairs’ trading data or multiple
models, each for a specific stock pair. While the former approach
avoids overfitting due to sufficient data, it struggles to capture
the unique characteristics of different stock pairs. Conversely,
the latter approach focuses on specific pairs but faces limited
training data.

To address this dilemma, our paper leverages local learning to
recommend the best trading actions. We group trading data by
similarity and train each model with data from a specific group.
The trained model then predicts optimal actions for stock pairs
in that group. Using Gaussian mixture models for data grouping
in local learning outperforms other methods in scenarios with
limited data for most stock pairs.

Keywords—Deep Reinforcement Learning, Local Learning,
Pairs Trading, Unsupervised Learning

I. INTRODUCTION

While global learning trains a single machine learning

model with the entire dataset to capture general rules or

patterns, it often fails to capture specific local patterns unique

to subsets of the data. For instance, growth stocks and blue-

chip stocks are distinct stock types. The former typically

exhibits higher growth rates with significant price volatility,

while the latter represents well-established companies with

stable earnings but limited rapid growth. It is therefore intuitive

to apply local learning to train separate models for these stock

types, assuming sufficient data is available. Considering the

diversity of stock types necessitates different models to learn

distinct patterns, we identify a challenge: excessively catego-

rizing transaction data can lead to overfitting due to the limited

training data available for each category. To demonstrate this

issue and our approach, we focus on pairs trading (PTS),

a popular investment strategy. Past literature has typically

trained a machine learning model with trading data for each

stock pair individually (referred to as “individual learning”)

or used all stock pairs (global learning) to predict trading

actions. Our paper modifies this learning setup, employing

local learning to enhance trading performance by addressing

the challenges of insufficient training data and effectively

capturing the distinct patterns of various stock types.

To effectively utilize local learning under the constraints

of limited training data resulting from partitioning data into

groups for training different models, it is crucial to ad-

dress dataset shift problems. These are often intensified by

economic changes and black swan events such as COVID-

19. Consequently, financial experts increasingly adopt stable,

market-neutral strategies like the pairs trading strategy (PTS).

Recently, PTS has gained significant attention in machine

learning literature, as seen in works like [1]–[7], among others.

PTS mitigates market trend risks by longing one stock and

shorting another, thus maintaining a stationary portfolio value

(also known as the spread process) with a consistent mean

level over time. Investors long (buy) the portfolio when it’s

underpriced and short (sell) when overpriced, closing the

725

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00139

Fig. 1. Trading Period Scenarios

position once the spread process reverts to the mean, thereby

profiting from the spread process irrespective of market trend

changes.

While the selection of feasible stock pairs and appropriate

investment weights for constructing PTS can be derived using

various statistical approaches, as reviewed in [8], the timing

for executing trading actions, which significantly influences

investment performance, is widely studied in related machine

learning literature. Unlike the works of [3], [6], which deter-

mined actions by directly predicting spread movements, this

paper follows the approach of most PTS works. It establishes

that open position and stop loss actions are triggered when

the spread process meets the respective opening or stop loss

thresholds. As illustrated in Fig. 1, which is modified from

Fig. 2 of [5], we open positions when the spread process

diverges enough to meet the open threshold (denoted by purple

lines) and close them when it converges back to the mean

level (denoted by the red line). Additionally, positions may be

closed for a stop loss when the spread process diverges further,

reaching the stop loss threshold (denoted by black lines).

Notably, increasing the price difference between the open

threshold and the mean level can enhance potential profit per

trade, but at the expense of reduced opportunities to open po-

sitions. Moving the stop-loss threshold farther from the mean

price level decreases the likelihood of prematurely cutting

profitable trades, but it increases the potential losses from non-

profitable ones. Therefore, selecting appropriate thresholds

according to the properties of the constituent stocks in the

portfolio, to maximize PTS profits, presents an interesting yet

challenging problem.

To perform PTS trading with suitable open and stop-loss

thresholds, this paper, following the settings in [4], [5], divides

each trading day’s hours into the formation period (the first

150 minutes after market opening) and the trading period

(the remaining time). We assess the eligibility of stock pairs

for PTS by applying the Johansen cointegration test to stock

price processes during the formation period, then trading

eligible pairs in the trading period. It’s evident that not all

stock pairs are consistently feasible for PTS trading each

day. For instance, pairs like Coca Cola and Pepsi, in the soft

drink category, often show high correlation and are frequently

suitable for PTS. However, many stock combinations are only

occasionally eligible. For example, in the Taiwan stock market

data set, over 90% of stock pairs are feasible for trading

only about once per year. This sporadic eligibility makes

predicting feasible thresholds for these pairs challenging due

to the limited training data available for PTS trading.

Previous PTS literature adopts either individual or global

learning approaches to predict PTS thresholds. To capture

specific stock price patterns of constituent stocks in a pair,

[1], [2], [3], and [7] trained eligible trading data of each stock

pair with one unique machine learning model. From now on,

we refer to this method as “individual learning.” Although this

approach allows the model to fully learn the features specific

to that stock pair, it also fails to train models for stock pairs

with limited eligible trading data. On the other hand, [4]–[6]

adopted the global learning concept (see [10]) by training a

single machine learning model with all eligible trading data

of all stock pairs during the training period. Although the

resulting model captures the general properties for PTS, it fails

to capture the specific properties of individual pairs.

To capture the advantages of the aforementioned individual

and global learning while alleviating their drawbacks, this

article utilizes local learning [11] to capture specific properties

of various constituent stocks without the constraints of limited

training data. Specifically, all stock pairs are divided into

clusters based on their spread patterns using unsupervised

learning. Then, each machine learning model is trained with

the trading data of stock pairs belonging to the same cluster.

Consequently, each model can learn the specific patterns

of its cluster, generating open and stop-loss thresholds that

maximize profits according to the cluster’s properties. Note

that our approach avoids losing trading opportunities by

grouping seldom traded stock pairs into clusters with similar

characteristics. We set the number of clusters to ensure that

each contains enough training data, thus avoiding overfitting.

Since the spread processes in this paper are constructed

based on the Johansen cointegration test [12], which can be

treated as complex linear combinations of Gaussian white

noises, we cluster these processes using the Gaussian Mixture

Model (GMM). Empirical results indicate that this distribution

clustering approach (i.e., GMM) performs better than other

common unsupervised learning clustering methods.

This paper is organized as follows: In Section II, we review

previous machine-learning-based PTS studies and the concepts

of global and local learning. Section III details our proposed

model. Section IV compares the PTS performance by training

with different data clustering and illustrates the superiority of

local learning with GMM clustering. Section V concludes this

paper.

II. LITERATURE REVIEW

Two similar concepts of local learning were presented by

[11] and [13]. The former approach predicted for each testing

data point by training a machine learning model with predeter-

mined amounts of nearby training data. However, this method

726

is inefficient as it requires searching for nearby training data to

train the model for each prediction. The latter approach, known

as the “mixture of experts”, divided all training data into

different clusters and trains each machine learning model with

data from the corresponding cluster. For instance, [13] used

the expectation-maximization algorithm to divide training data

into clusters for training local neural network models. This

concept is commonly used to train support vector machines

(SVM)s in recent studies. [14] proposed a DTSVM that uses

a decision tree to divide the training data and trained each

local SVM with a group of data. [15] introduced a CSVM

that divides training data with the K-means method and adds

global regularization to prevent overfitting in each local SVM.

Similarly, KSVM ([16]) and BCSVM ([17]) also used the

K-means method to divide training data for local SVMs.

[1], [2], and [4] used reinforcement learning (RL) to select

open and stop-loss thresholds from a heuristically determined

set, a practice that limits profits as shown in [5]. They

demonstrated significant profit improvement by proposing

a representative threshold mechanism utilizing the training

dataset. Our paper integrates RL, the representative-threshold

concept, and local learning to enhance PTS performance.

Individual learning was adopted by [1], [2], [3], and [7] to

train each RL model with specific stock pair trading data. [1]

transformed the threshold selection problem into a multi-arm

bandit problem using an RL with one state. [2] utilized spread

processes of the same stock pair as states to train a deep Q

network (DQN) with six heuristic actions, reflecting a combi-

nation of open and stop-loss thresholds, as proposed by [18].

[3] designed features as the state of a double deep Q-Network

(DDQN) to capture the mean-reverting property of the spread

process. [7] proposed a hybrid deep reinforcement learning

(DRL) method consisting of two independent DRL networks:

one for predicting spread movements and another for selecting

stop-loss thresholds to minimize significant losses. While in-

dividual learning is adept at capturing each stock pair’s unique

characteristics, it is often limited by insufficient training data.

For instance, some stock pairs may lack sufficient eligible

trading days within the training period, or eligibility may only

become apparent during testing. This issue can impair RL

models from recommending accurate thresholds, leading to

loss trading opportunities. Unlike prior studies which manually

selected up to 38 highly correlated stock pairs for PTS, our

local-learning-based approach enables our DRL to suggest

thresholds for a wider array of infrequently traded pairs. Our

experiments show that trading up to 4211 stock pairs in the

Taiwan stock markets significantly increases overall profits.

Omitting these pairs would markedly degrade performance.

In contrast, [4], [5], and [6] adopted global learning to

train a single machine learning model with all trading data.

[5] proposed a representation labeling mechanism, replacing

the manually selected thresholds used in past literature. [4]

improved [2]’s framework by integrating a deep learning

model to predict the probability of a spread process losing

its stationary properties. [6] utilized dueling DQN to predict

spread process movements and introduced reward shaping to

expedite learning. Although global learning uses all PTS-

eligible stock pairs, preventing the loss of infrequent trading

opportunities, experiments show it struggles to capture spe-

cific characteristics of certain stock pairs, leading to subpar

trading performance. Conversely, our proposed local learning

approach groups stock pairs with similar statistical properties,

enabling machine learning models to better grasp the charac-

teristics of spread processes within these groups.

III. PROPOSED METHOD

The structure of our DDQN, which is designed for predict-

ing PTS open and stop-loss thresholds using representation

labeling and local learning, is depicted in Fig. 2. We categorize

all trading days (denoted as D1, . . .) into training and testing

periods. For each trading day Dn in the training period, we

divide the trading hours into two parts: the formation period

(first 150 minutes) and the trading period (remaining hours).

Following [4] and [5], we use stock price data from the

formation period to select eligible stock pairs for PTS, which

are then traded during the trading period. Specifically, we

apply the Johansen cointegration test to the price processes of

all stock pairs in the formation periods to determine eligibility

for Dn. Finally, we compile eligible stock pairs from all

trading days D1, . . . , DN within the training period. This

compilation helps us identify a set of representative open and

stop-loss thresholds, as suggested by [5], to form the action

set A for our DDQN.

While some price processes are highly correlated, making

their stock pairs frequently eligible for PTS, the eligibility

of pairs composed of less correlated stocks can be rare. To

properly execute PTS by capturing various spread patterns

contributed by different constituent stocks, we consider three

learning methods. The global learning adopted by [4]–[6],

individual learning by [1]–[3], [7], and our proposed local

learning illustrated in the central block of Fig. 2. The details

are further in Fig. 3.

Training period Testing period

Formation period Trading period

Use cointegration
test to find eligible

stock pairs

All stock data
in formation period

 eligible stock
pairs

eligible stock pairs

150 minutes 100 minutes

Cluster stock pairs into
different training dataset

Agent

DQN Algorithm

Neural Network

Network update

Environment

Select the representative
thresholds by [5] to form
our DDQN's action set

Representation Labeling Mechanism

Global / Local/
Individual learning

Fig. 2. Flow chart of DDQN in PTS

727

The global learning approach trains a DDQN using all

PTS-eligible trading data from the training period, effectively

capturing general PTS properties. However, it overlooks the

unique characteristics of different stock pairs. In contrast,

individual learning segments PTS-eligible transaction data by

stock pairs, training a specialized DDQN for each pair. While

this method excels in capturing pair-specific properties, it falls

short for less correlated stocks due to inadequate eligible data.

Consequently, this leads to missing opportunities for profit

from these infrequently traded pairs.

To leverage the strengths of both global and individual

learning while minimizing their weaknesses, we adopt the

local learning concept. This involves first dividing the stock

pairs into several clusters based on their statistical properties.

Then, for each cluster, we compile a corresponding training

dataset from all PTS-eligible trading data of the pairs in that

cluster. The DDQN, trained with this dataset, predicts trading

actions for pairs within the same cluster. Notably, some stock

pairs may only become eligible for PTS during the testing

period and are not grouped into any cluster during training.

In such instances, we assign these pairs to clusters which are

based on the classification determined in the training stage. We

then input each spread process st during the formation period

into the trained DDQN of the assigned cluster, and recommend

an action at from the action set A.

To cluster stock pairs, we consider unsupervised learning

methods, categorized into hierarchical-based, density-based,

centroid-based, and distribution-based approaches [25]. Given

the unknown nature of PTS-eligible pairs and spread processes

in the testing dataset during training, hierarchical and density-

based methods are less feasible. Consequently, we opt for

the most representative centroid-based and distribution-based

methods, namely k-means [26] and Gaussian Mixture Model

(GMM) [27], in our experiments. The spread process, resem-

bling a linear combination of normal random white noise1,

makes GMM a suitable choice for clustering.

We use the dataset determined in Fig. 3 to train a DDQN

(proposed in [18], [19]) with specific inputs, actions, and

reward functions defined as follows.

• Inputs: For each trading day, the first 150-minute price

processes of constituent stocks and the spread process st
are input to the DDQN.

• Action: Each action at is a combination of an opening

and a stop-loss threshold selected from the action set

A constructed by the representation labeling mechanism

proposed by [5]. The action recommended by the DDQN

is used to trade the stock pair during the trading period.

• Reward functions: We adopted the reward function from

[2]. Denote the PTS profit and loss by rt. We open the

position when the spread meets the open threshold, as

illustrated by B and E in Fig. 1. The profit or loss of the

trade can be categorized into the following scenarios:

– Normal close: The spread sucessfully reverts back to

the mean level (like D and F in Fig. 1) and we close

1 [5] modeled this as a vector error correction model in Equation (1)

Fig. 3. Global, Individual, and Local Learning for PTS

the position to make profit with the reward function:

rt = 1000× rt (1)

– Stop-loss close: We close the position to stop the

loss when the spread reaches the stop-loss threshold

(like C and H) with the reward function:

rt = −1000× |rt| (2)

– Forced exit: To avoid the risk for keeping the PTS

portfolio overnight, the portfolio is forced to close at

the end of the trading day (like G) if neither normal

nor stop-loss close events are triggered. The reward

function is defined as

rt = −500× |rt| (3)

To avoid the overfitting problem, we use the validation set

to check the win rate of PTS in each (training) epoch and

select the model with the highest win rate for executing PTS

during the testing period. For the subsequent experiments, we

used the package provided by [30] and the hyper-parameter

settings are shown in Table I.

TABLE I
DETAILED HYPER-PARAMETER SETTINGS USED IN PACKAGE BY [30].

class name hyper-parameter

DQNAgent
gamma=0.95, batch size=64,

nb steps warmup=1000, train interval=1000
target model update=0.001, delta clip=1

SequentialMemory limit=100000, window length=1

LinearAnnealedPolicy
inner policy=EpsGreedyQPolicy(),

attr=’eps’, value max=1.0,
value min=0, value test=0

Adam lr=0.001, decay=0

IV. EMPIRICAL RESULTS

We assess PTS performance using stocks from the Taiwan

Top 50 ETF (0050) and the Taiwan Mid-Cap 100 ETF (0051),

comparing global, individual, and local learning methods as

728

TABLE II
COMPARISON OF CLUSTERING METHODS FROM TOP 29 TO TOP 425.

Training Method individual
learning

global
learning local learning

Clustering Method x x k-means GMM

Top 29 (count≥110)
Profit (thousands) 157.03 145.29 154.42 151.29
Total open number 1153 1082 1130 1105
Win rate (%) 92.11 91.4 91.95 91.95
Normal close rate (%) 89.68 88.91 89.38 89.5
Sharpe ratio (daily-based) 12.6667 11.9756 12.663 12.6585
Sharpe ratio (trade-based) 0.8184 0.7655 0.8068 0.8028
Profit per open (thousands) 0.1362 0.1343 0.1367 0.1369
MDD -2.04 -2.19 -2.04 -2.19
Top 63 (count≥100)
Profit (thousands) 351.38 348.23 332.46 336.04
Total open number 2449 2492 2355 2333
Win rate (%) 90.24 89.57 89.43 90.18
Normal close rate (%) 88.81 88.12 88.2 89.07
Sharpe ratio (daily-based) 15.0411 14.3802 15.159 14.2769
Sharpe ratio (trade-based) 0.7759 0.6973 0.7708 0.7691
Profit per open (thousands) 0.1435 0.1397 0.1412 0.144
MDD -1.95 -3.41 -1.95 -2.2
Top 127 (count≥90)
Profit (thousands) 653.09 683.51 665.01 692.24
Total open number 4740 4736 4854 4959
Win rate (%) 88.59 89.53 88.79 89.53
Normal close rate (%) 86.52 88.37 87.62 88.34
Sharpe ratio (daily-based) 12.7439 13.0446 11.3814 12.4109
Sharpe ratio (trade-based) 0.6167 0.6202 0.6178 0.6256
Profit per open (thousands) 0.1378 0.1443 0.137 0.1396
MDD -10.36 -6.59 -17.51 -9.98
Top 237 (count≥80)
Profit (thousands) 1212.68 1278.89 1295.94 1356.47
Total open number 8369 8404 8728 8891
Win rate (%) 86.84 88.16 87.92 88.47
Normal close rate (%) 84.47 87.14 86.88 87.45
Sharpe ratio (daily-based) 11.3445 11.3686 11.012 12.1073
Sharpe ratio (trade-based) 0.5427 0.5802 0.5522 0.5843
Profit per open (thousands) 0.1449 0.1522 0.1485 0.1526
MDD -17.29 -25.98 -16.25 -17.43
Top 425 (count≥70)
Profit (thousands) 2213.36 2463.95 2476.94 2546.43
Total open number 13486 13736 14423 14339
Win rate (%) 85.66 86.9 86.98 87.52
Normal close rate (%) 83.61 86.19 86.14 87.17
Sharpe ratio (daily-based) 9.3011 9.6444 9.5473 10.1049
Sharpe ratio (trade-based) 0.4891 0.5274 0.5235 0.5495
Profit per open (thousands) 0.1641 0.1794 0.1717 0.1776
MDD -21.67 -7.73 -47.63 -19.26

defined in Fig. 3. The results are presented in Tables II and III.

Our training period spans from January 2015 to October 2016,

with November to December 2016 as the validation period,

and January 2017 to December 2018 as the testing period. We

rank stock pairs by the count of PTS-eligible trading days in

the training period and trade the top N most frequent pairs

using the DDQN outlined in Fig. 2. For instance, the top 29

pairs each have over 110 eligible trading days, while the top

63 pairs have at least 100. In our local learning experiments,

we employ k-means and GMM to cluster stock pairs into

three groups. We employ various financial indicators to assess

profitability and risk, including total profit, total open numbers,

win rate, normal close rate, daily-based and trade-based Sharpe

ratios, average profit per open, and max drawdown (MDD).

Total profit is the sum of profits and losses across all trading

days in the testing period. Total open numbers represent the

count of executed PTS trades. The Win rate is the proportion of

TABLE III
COMPARISON OF CLUSTERING METHODS FROM TOP 732 TO TOP 4211.

Training Method individual
learning

global
learning local learning

Clustering Method x x k-means GMM

Top 732 (count≥60)
Profit (thousands) 3316.73 3877.7 3879.0 3876.75
Total open number 20188 21803 21815 21219
Win rate (%) 83.82 85.74 85.63 86.45
Normal close rate (%) 82.22 85.68 85.83 86.99
Sharpe ratio (daily-based) 7.7419 7.9828 7.8604 7.7394
Sharpe ratio (trade-based) 0.4145 0.4641 0.4573 0.472
Profit per open (thousands) 0.1643 0.1779 0.1778 0.1827
MDD -21.49 -42.72 -33.84 -40.0
Top 1227 (count≥50)
Profit (thousands) 5125.19 6252.54 6122.04 6123.08
Total open number 29287 32548 31402 30918
Win rate (%) 82.03 84.29 84.15 84.64
Normal close rate (%) 80.81 84.91 84.54 85.36
Sharpe ratio (daily-based) 5.0752 5.5276 5.289 5.2811
Sharpe ratio (trade-based) 0.3492 0.3965 0.3922 0.4006
Profit per open (thousands) 0.175 0.1921 0.195 0.198
MDD -54.71 -55.82 -54.73 -60.75
Top 1909 (count≥40)
Profit (thousands) 7596.62 9633.21 9491.22 9921.89
Total open number 39962 41999 42592 42742
Win rate (%) 80.28 83.31 83.02 84.29
Normal close rate (%) 79.22 84.68 84.41 85.99
Sharpe ratio (daily-based) 3.5588 3.9784 3.9427 4.0362
Sharpe ratio (trade-based) 0.2947 0.3456 0.3404 0.3543
Profit per open (thousands) 0.1901 0.2294 0.2228 0.2321
MDD -87.91 -75.95 -72.23 -78.58
Top 2869 (count≥30)
Profit (thousands) 10924.98 13423.6 14002.16 14957.67
Total open number 51320 48417 53436 57904
Win rate (%) 78.96 82.64 82.48 82.97
Normal close rate (%) 77.74 83.23 83.94 84.15
Sharpe ratio (daily-based) 2.5454 2.798 2.7967 2.9943
Sharpe ratio (trade-based) 0.2659 0.3169 0.3088 0.3136
Profit per open (thousands) 0.2129 0.2772 0.262 0.2583
MDD -233.15 -83.28 -282.75 -103.68
Top 4211 (count≥20)
Profit (thousands) 15214.26 19618.35 19505.69 20727.17
Total open number 64062 67767 65520 65777
Win rate (%) 78.09 81.63 82.2 82.99
Normal close rate (%) 76.84 82.47 83.33 84.5
Sharpe ratio (daily-based) 2.0067 2.2313 2.2388 2.3606
Sharpe ratio (trade-based) 0.2455 0.282 0.2896 0.301
Profit per open (thousands) 0.2375 0.2895 0.2977 0.3151
MDD -320.66 -368.01 -382.37 -345.7

profitable trades. The normal close rate indicates the frequency

of trades where the spread process reverts to the mean level,

as shown in Fig. 1. Sharpe ratios are calculated either daily

or per trade, measuring risk-adjusted returns. The profit per

open is the mean profit in thousand Taiwan dollars per trade.

Lastly, MDD measures the maximum cumulative daily loss

during the testing period. Together, these indicators provide a

holistic view of our trading strategy’s effectiveness and risk

profile. The best-performing indicators are highlighted in red

for easy comparison.

Individual learning, popular in past literature, shows supe-

rior results with frequently traded stock pairs (as evident in

the Top 29 and Top 63 scenarios). However, as we expand

our scope to include less frequent pairs, global and local

learning methods start to outshine individual learning. This

shift is attributed to the limited training data available for

each pair, which often leads to overfitting problems in in-

729

dividual learning. Moreover, trading a wider range of stock

pairs, including less frequent ones, contributes to increased

profits, underscoring the potential profitability of these pairs.

Notably, studies like [1]–[3], [7] overlooked this opportunity

by ignoring less frequent pairs, potentially missing out on

both trading opportunities and additional profits. To effectively

trade these less frequent pairs without the constraints of

insufficient training data, adopting global or local learning

strategies presents a more viable solution.
We next compare the global learning approach, also preva-

lent in past studies like [4], [5], with k-means-based and

GMM-based local learning methods proposed in this paper.

The comparative results are presented in the last three columns

of Tables II and III. Generally, GMM-based local learning

surpasses the global learning approach, as it better captures

the diverse characteristics of different stock pair clusters. No-

tably, GMM’s superiority over k-means in clustering trading

data is evident; it more accurately captures spread process

characteristics. Since spread processes, based on the Johansen

cointegration test [12], resemble complex linear combinations

of Gaussian white noises (as noted in [28] and [29]), GMM’s

ability to classify stock pairs into statistically similar clusters

enhances the DDQN’s effectiveness. Furthermore, k-means,

essentially a simplified version of GMM without covariance

consideration, falls short in comparison, explaining GMM’s

significant performance edge.

V. CONCLUSION

Past PTS research predominantly relies on global or individ-

ual learning approaches, which either fail to capture the diverse

characteristics of stock pairs or miss trading opportunities with

infrequent pairs. In contrast, this paper introduces a method

that clusters trading data based on the statistical properties

of stock pair spreads. We then train individual DQNs with

data from each specific cluster, effectively capturing the unique

attributes of different stock pairs without overfitting. Our ex-

perimental results demonstrate that this approach, particularly

the use of GMM for data division, effectively captures the

statistical nuances of spread processes, viewed as complex

Gaussian white noise combinations. This method surpasses

existing learning approaches in PTS performance.

REFERENCES

[1] Fallahpour, S., Hakimian, H., Taheri, K., & Ramezanifar, E. (2016). Pairs
trading strategy optimization using the reinforcement learning method:
a cointegration approach. Soft Computing, 20, 5051-5066.

[2] Kim, T., & Kim, H. Y. (2019). Optimizing the pairs-trading strategy
using deep reinforcement learning with trading and stop-loss boundaries.
Complexity, 2019, 1-20.

[3] Brim, A. (2020, January). Deep reinforcement learning pairs trading
with a double deep Q-network. In 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC) (pp. 0222-0227).
IEEE.

[4] Lu, J. Y., Lai, H. C., Shih, W. Y., Chen, Y. F., Huang, S. H., Chang, H.
H., ... & Dai, T. S. (2022). Structural break-aware pairs trading strategy
using deep reinforcement learning. The Journal of Supercomputing,
78(3), 3843-3882.

[5] Kuo, W. L., Chang, W. C., Dai, T. S., Chen, Y. P., & Chang, H.
H. (2022). Improving Pairs Trading Strategies Using Two-Stage Deep
Learning Methods and Analyses of Time (In) variant Inputs for Trading
Performance. IEEE Access, 10, 97030-97046.

[6] Wang, C., Sandås, P., & Beling, P. (2021, May). Improving pairs trading
strategies via reinforcement learning. In 2021 International Conference
on Applied Artificial Intelligence (ICAPAI) (pp. 1-7). IEEE.

[7] Kim, S. H., Park, D. Y., & Lee, K. H. (2022). Hybrid deep reinforcement
learning for pairs trading. Applied Sciences, 12(3), 944.

[8] Krauss, C. (2017). Statistical arbitrage pairs trading strategies: Review
and outlook. Journal of Economic Surveys, 31(2), 513-545.

[9] Liu, R., Wang, F., Yang, B., & Qin, S. J. (2019). Multiscale kernel based
residual convolutional neural network for motor fault diagnosis under
nonstationary conditions. IEEE Transactions on Industrial Informatics,
16(6), 3797-3806.

[10] Yen, J., Wang, L., & Gillespie, C. W. (1998). Improving the inter-
pretability of TSK fuzzy models by combining global learning and local
learning. IEEE Transactions on fuzzy Systems, 6(4), 530-537.

[11] L. Bottou and V. Vapnik, ”Local Learning Algorithms,” in Neu-
ral Computation, vol. 4, no. 6, pp. 888-900, Nov. 1992, doi:
10.1162/neco.1992.4.6.888.

[12] Johansen, S. (1995). Likelihood-based inference in cointegrated vector
autoregressive models. OUP Oxford.

[13] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991).
Adaptive mixtures of local experts. Neural computation, 3(1), 79-87.

[14] Chang, F., Guo, C. Y., Lin, X. R., & Lu, C. J. (2010). Tree decompo-
sition for large-scale SVM problems. The Journal of Machine Learning
Research, 11, 2935-2972.

[15] Gu, Q., & Han, J. (2013, April). Clustered support vector machines. In
Artificial intelligence and statistics (pp. 307-315). PMLR.

[16] Do, T. N., & Poulet, F. (2017). Parallel learning of local SVM algorithms
for classifying large datasets. In Transactions on Large-Scale Data-and
Knowledge-Centered Systems XXXI: Special Issue on Data and Security
Engineering (pp. 67-93). Springer Berlin Heidelberg.

[17] Hatem, A. F., & Amir, F. A. (2021). Decision boundary clustering for
efficient local SVM [J]. Applied Soft Computing Journal, 110(5).

[18] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., ... & Hassabis, D. (2015). Human-level control through
deep reinforcement learning. nature, 518(7540), 529-533.

[19] Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep rein-
forcement learning with double q-learning. In Proceedings of the AAAI
conference on artificial intelligence (Vol. 30, No. 1).

[20] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018).
A survey on deep transfer learning. In Artificial Neural Networks
and Machine Learning–ICANN 2018: 27th International Conference
on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part III 27 (pp. 270-279). Springer International Publishing.

[21] Jeong, G., & Kim, H. Y. (2019). Improving financial trading decisions
using deep Q-learning: Predicting the number of shares, action strategies,
and transfer learning. Expert Systems with Applications, 117, 125-138.

[22] Chen, J., Luo, C., Pan, L., & Jia, Y. (2021). Trading strategy of structured
mutual fund based on deep learning network. Expert Systems with
Applications, 183, 115390.

[23] Chen, C. T., Chen, A. P., & Huang, S. H. (2018, July). Cloning
strategies from trading records using agent-based reinforcement learning
algorithm. In 2018 IEEE international conference on agents (ICA) (pp.
34-37). IEEE.

[24] Williams, R. J. (1992). Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine learning, 8, 229-256.

[25] Kameshwaran, K., & Malarvizhi, K. (2014). Survey on clustering
techniques in data mining. International Journal of Computer Science
and Information Technologies, 5(2), 2272-2276.

[26] MacQueen, J. (1967, June). Some methods for classification and anal-
ysis of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability (Vol. 1, No. 14,
pp. 281-297).

[27] Gupta, M. R., & Chen, Y. (2011). Theory and use of the EM algorithm.
Foundations and Trends® in Signal Processing, 4(3), 223-296.

[28] Huck, N., & Afawubo, K. (2015). Pairs trading and selection methods:
is cointegration superior?. Applied Economics, 47(6), 599-613.

[29] Rad, H., Low, R. K. Y., & Faff, R. (2016). The profitability of
pairs trading strategies: distance, cointegration and copula methods.
Quantitative Finance, 16(10), 1541-1558.

[30] Plappert, M. (2016). keras-rl. https://github.com/keras-rl/keras-rl.

730

