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Abstract—The integration of multiobjective optimizers with
inverse models—that map points on the Pareto front to corre-
sponding nondominated solutions—has drawn attention. These
inverse models serve a dual purpose, not only facilitating the
generation of candidate solutions during the optimization process,
but also offering insights for multiobjective decision-making upon
completion of optimization. However, today’s inverse models
mainly serve to capture one-to-one mapping relations, restricting
them to learn only from nondominated solution samples. As a re-
sult, the information embedded in dominated samples is not fully
utilized. In this paper, we introduce a novel approach of building
conditional inverse generative models (invGMs) from optimization
data, making the most of both nondominated and dominated
solution samples during training. Different from standard inverse
models, decision-makers can query such invGMs with prompts
expressed in the form of any desired objective function values,
leading them to produce a corresponding solution. Through
iterative prompting, invGMs are shown to accelerate the creation
of diverse sets of high-quality solutions even during the course
of multiobjective optimization runs. Empirical studies on three
industrial optimization problems highlight the proposed method’s
faster convergence rate and improved inverse modeling accuracy.

Index Terms—Multiobjective optimization optimization, con-
ditional generative models, inverse models.

I. INTRODUCTION

Multiobjective optimization problems (MOPs) refer to op-

timization problems with multiple conflicting objectives to be

optimized simultaneously [1]. Such problems are pervasive

in various industrial fields, including engineering design [2]

and manufacturing operations [3]. Unlike standard single-

objective optimization problems, a distinctive characteristic

of MOPs is that they yield a Pareto set (PS) of trade-off

optimal solutions, known as the Pareto optimal solutions or

nondominated solutions, instead of a single optimum [4].

The central goal in solving MOPs is to identify a well-

distributed set of optimized solutions that map to the Pareto

front (PF), representing the optimal performance trade-offs

in the objective space. Subsequently, decision-makers (DMs)

can scrutinize the performance trade-offs and select the most

preferable solution(s) from the obtained results.

Recently, there has been a growing interest in the inte-

gration of inverse models—models that map points on the

PF back to the corresponding nondominated solutions in

the decision space—into the multiobjective optimization pro-

cess [5]–[9]. These inverse models serve a dual purpose, not

only facilitating the generation of candidate solutions during

the online optimization process to enhance convergence [7],

[10] but also offering insights for on-demand multiobjective

decision-making upon completion of the optimization [11].

Commonly, inverse models are assumed to capture one-to-one

mappings from the PF to PS. This assumption is based on

the Karush–Kuhn–Tucker conditions, implying that both the

PS and the PF are (m − 1)-dimensional piecewise manifolds

for continuous decision spaces [7]. However, this assumption

confines inverse models to be trained solely based on nondomi-

nated samples, limiting the complete utilization of information

embedded in dominated samples.

In response, this paper introduces an innovative ap-

proach that leverages conditional inverse generative models
(invGM)—utilizing generative models conditioned by the ob-

jective function values as the inverse models—to enhance

multiobjective optimization, denoted as invGM-MO. The note-

worthy advantage of this strategy lies in that invGM can make

the most use of both nondominated and dominated solution

samples during training, thus resulting in more accurate inverse

models. Moreover, different from standard inverse models,

decision-makers can query such invGMs with prompts ex-

pressed in the form of any desired objective function values,

leading them to produce corresponding solutions. This makes

it possible to accelerate the creation of diverse sets of high-

quality solutions even during the course of multiobjective

optimization runs through iterative prompting the invGM. It is

noteworthy that, while some studies have introduced the use

of conditional generative models to assist in multiobjective

optimization [12]–[14], invGM-MO stands out by utilizing

invGM to achieve both improved convergence and on-demand

multiobjective decision-making.

The remainder of the paper is organized as follows. Section

II introduces the basic concepts of MOPs. The proposed

method is elucidated in Section III. Section IV presents the

experimental studies, and Section V concludes the paper.

II. MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Commonly, a MOP can be formulated as:

min : f(x) = {f1(x), . . . , fm(x)}
s.t. x ∈ X (1)
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Algorithm 1 invGM-MO

Input: Target MOP objective functions f(x); decision space

X ; evaluation budget;
Output: The invGM and the obtained nondominated solu-

tions;

1: Sample Ninit solutions x(1), . . . , x(Ninit) in X ;

2: D ← {(x(l), y(l))}N=Ninit

l=1 , where y(l) = f(x(l));
3: while N < evaluation budget do
4: Build the invGM p(x|y) based on D, where the objec-

tive function values are considered as the prompts;

5: Select the best Nq samples from D according to the

nondominated sorting, and record their objective func-

tion vectors as Ynd = {y(1)
nd , . . . , y(N

q)
nd };

6: Generate the prompts {y(1)prompt, . . . , y(N
(q))

prompt} accord-

ing to equation (2);

7: Sample Nq candidate solutions {x(1)cand, . . . , x(N
q)

cand}
from p(x|y) prompted by {y(1)prompt, . . . , y(N

(q))
prompt};

8: Evaluate all of the candidate solutions and update D;

9: N ← N + 1;

10: end while

where fi(x), (i ∈ {1, . . . ,m}) is the ith objective function,

m is the number of objectives, x is the decision vector,

X = {x = (x1, . . . , xd)|Lj ≤ xj ≤ Uj , j = 1, . . . , d} is

the decision space, d is the dimensions of the decision vector,

and Lj and Uj are the lower and upper bounds of the jth

decision variable xj . Some key concepts associated with the

MOP are introduced as follows [15]:

• Pareto Dominance: For decision vectors xa and xb, if ∀i ∈
{1, 2, . . . ,m}, fi(xa) ≤ fi(xb) and ∃i′ ∈ {1, 2, . . . ,m},

fi′(xa) < fi′(xb), xa is said to Pareto dominate xb.

• Pareto Optimal Solution: If no decision vector in X
Pareto dominates xa, then xa is a Pareto optimal solution.

• Pareto Set (PS): The set of all Pareto-optimal solutions

forms the PS in decision space.

• Pareto Front (PF): The image of the PS in the objective

space forms the PF.

III. PROPOSED METHOD

The steps of invGM-MO are shown in Algorithm 1 and

explained in what follows.

• Data initialization (steps 1-3): We randomly generate

Ninit candidate solutions within the decision space.

These generated solutions are then evaluated using the

objectives of the solving MOP, forming an initial dataset

denoted as D = {(x(l), y(l))}Ninit

l=1 .

• Building the conditional generative model (steps 5): An

invGM, denoted as p(x|y), is built based on the dataset

D, where the objective function values are considered as

the prompts.

• Solutions generation (steps 6-10): During this process,

a set of candidate solutions is generated based on p(x|y):

1) Do nondominated sorting [16] for all of the samples

in D and record the objective function values of the

best Nq samples as Ynd = {y(1)nd , . . . , y(Nq)
nd }

2) Generate a set of desired objective function values

using the following equation for prompting the

invGM:

y(l)prompt = y(l)
nd − |σ(l)

nd · s(l)|,
l ∈ {1, . . . , Nq}, (2)

where s(l) is a random value generated according

to the standard Gaussian distribution and σ
(l)
nd is

the standard deviation corresponding to y(l)nd. In this

paper, σ
(l)
nd is adaptively set to the standard deviation

of the five vectors closest to y(l)
nd in Ynd.

3) Sample Nq candidate solutions {x(1)cand, . . . , x(N
q)

cand}
from p(x|y) by employing {y(1)prompt, . . . , y(N

(q))
prompt}

to prompt the invGM.

Subsequently, the generated candidate solutions undergo

evaluation using the objective functions of the solving

MOP and are appended to the dataset D.

Steps 5-10 are repeated until a prescribed evaluation budget

is exhausted. Once the termination condition is met, the

nondominated solutions in the acquired dataset D and the

invGM are returned to the user for assessment.

IV. EXPERIMENTAL STUDIES

A. Implementation Details

In our implementation, we utilize the conditional variational

autoencoder (CVAE) [17] as the generative model due to its

simplicity, which helps reduce training time and computational

resource consumption. The generative process of CVAE begins

with generating a set of latent variables, z, from a prior

distribution, p(z|y). Subsequently, data x in the decision space

is generated, conditioned on both z and y using the decoder

p(x|z, y). During training, we employ the stochastic gradient

variational Bayes framework [18], using the variational lower

bound of the log-likelihood as the loss function:

log p(x|y) ≥ −KL (q(z|x, y)||p(z|y)) + Eq(z|x,y) [log p(x|z, y)] .
(3)

In (3), KL(·||·) represents the Kullback-Leibler divergence,

and q(z|x, y) denotes the encoder introduced to approximate

the true posterior. The parameters of both the encoder and

the decoder are estimated by optimizing the variational lower

bound. The value of the variational lower bound is estimated

using Monte Carlo based on the dataset D.

In our experiments, both Ninit and Nq are set to 50, and

the evolution budget is set to 500. This evaluation budget

is notably lower than that of typical multiobjective optimiza-

tion algorithms, highlighting the efficient convergence of the

proposed invGM-MO approach. This demonstrates invGM-

MO’s potential for managing even computationally expensive

objectives. In terms of the CVAE, we assume the predictions

of both the encoder and the decoder are Gaussian distributions,

set the dimension of the latent vector z to 10, and design the
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Fig. 1. Comparison of HV convergence trends averaged over 20 independent runs of NSGA-II, invGP-MO, invGP-MO-All, and invGM-MO. Shaded areas
represent one standard deviation on either side of the mean. (a) Four bar truss design. (b) Welded beam design. (c) Vehicle crashworthiness design.

TABLE I
INVERSE MODEL RMSE RESULTS OF INVGP-MO AND INVGM-MO.

Optimization Tasks
invGP-MO-ND invGP-MO-All invGM-MO

Average RMSE±Std Average RMSE±Std Average RMSE±Std
Four Bar Truss Design 0.0845±0.0285 0.1160±0.0581 0.0834±0.0193
Welded Beam Design 0.3142±0.0776 0.1195±0.0353 0.2045±0.0434

Vehicle Crashworthiness Design 0.0725±0.0564 0.7377±0.2055 0.0388±0.0296

structures of the encoder and the decoder follows: “(x, y) -

30 - 30 - (μz,σz)” and “(z, y) - 30 - 30 - (μx,σx)”. Here,

μz and σz are the mean and the standard deviation of the

predicted Gaussian distribution of the encoder, and μx and

σx are the mean and the standard deviation of the prediction

of the decoder.

To evaluate the performance of invGM-MO, three industrial

design problems summarized in [19] are employed to assess

the performance of the algorithms, i.e., the four-bar truss de-

sign, the welded beam design, and the vehicle crashworthiness

design. In terms of the evaluation metric, we assess the quality

of the nondominated solutions provided by the algorithms

using the hypervolume (HV) [20]. Note that before calculating

the HV, we normalize the objective function values of all

samples in D into the region [0, 1]. Then, each component of

the reference point is set to 1. Moreover, to measure the quality

of the inverse modeling, we employ a set of nondominated

solutions as the test set Dtest = {(x(r)test, y(r)test)}N
test

r=1 to

calculate the root mean square error (RMSE), i.e.,

RMSE =

√∑Ntest

r=1 ||x(r)test − x(r)
pred||22

N test
, (4)

where xrpred is the prediction of the generative model when

y(r)
test is given. Note that, the predicted mean of the decoder

is taken as the prediction of xrpred. Here, Dtest is obtained

by using NSGA-II [16] with the population size of 200 and

the evaluation budget is set to 100000. Such a number of

population size and evaluation budget is enough for NSGA-II

to provide high quality near-optimal solutions, thus supporting

the calculation of the RMSE.

B. Experimental Results

We conduct an empirical evaluation of the invGM-MO al-

gorithm against three other algorithms: NSGA-II, invGP-MO-

ND, and invGP-MO-All. NSGA-II is a widely recognized evo-

lutionary multiobjective optimization algorithm and serves as

a baseline for our comparison. The invGP-MO-ND is a variant

of invGM-MO that utilizes the Gaussian process model [21]

for inverse modeling, inspired by [7]. The model is imple-

mented using only the discovered nondominated solutions in

each iteration, capturing a one-to-one mapping. The invGP-

MO-All is another variant that verifies the effectiveness of

invGM-MO. It uses a Gaussian process for inverse modeling,

but builds the model using both dominated and nondominated

solutions. This approach tests whether directly approximating

the non-one-to-one mapping using all data yields good results.

We present the convergence trends of the hypervolume (HV)

in Fig.1 and summarize the RMSE results in TableI. The trends

shown in Fig. 1 highlight a substantially faster convergence

for invGM-MO compared to NSGA-II, invGP-MO-ND, and

invGP-MO-All. This convergence trend underscores the effi-

cacy of the proposed approach in accelerating the convergence

rate. Moreover, considering the RMSE results, invGM-MO

surpasses invGP-MO-ND and invGP-MO-All, indicating its

superior ability to harness the information within the dataset

D. These findings collectively underscore the effectiveness of

invGM-MO.

V. CONCLUSION

The incorporation of inverse models into the multiobjective

optimization process not only shows promise in improv-

ing algorithmic convergence but also streamlines on-demand

multiobjective decision-making with straightforward queries.

However, traditional inverse models are assumed to capture

one-to-one mappings, relying solely on nondominated samples

for training. This study introduces invGM, which harnesses

information from both nondominated and dominated samples,

seamlessly integrating it into the multiobjective optimization

framework. Our findings reveal that decision-makers can ef-

fectively query invGM with prompts specifying any desired

objective function values, leading to the generation of cor-

responding solutions. Moreover, through iterative prompting,

invGMs accelerate the generation of diverse sets of high-

quality solutions even during ongoing multiobjective optimiza-

tion runs. Empirical studies on three industrial optimization
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problems highlight the proposed method’s superior conver-

gence speed and improved inverse modeling accuracy.
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