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Abstract—When intelligent agents operate in a stochastic
environment, they adhere to the principle of maximizing ex-
pected rewards to optimize their policies. The maximization
of rewards becomes the sole objective when agents’ decision
problems are resolved in most cases. However, there are instances
where this principle leads to the agent’s behaviors (the optimal
policy for solving the decision problems) lacking legibility. In
other words, comprehending the agents’ intentions while they
execute optimal policies poses a challenge for users, including
other agents and even humans. Therefore, it becomes essential
to evaluate the legibility of agents’ decision-making processes.
Traditionally, domain experts’ insights have been relied upon to
define legibility values, but this manual approach often introduces
subjectivity and inconsistency, particularly in complex problem
domains. Consequently, there is a pressing need for a systematic
approach to derive legibility functions. The present study employs
inverse reinforcement learning techniques to automate a legibility
function in agents’ decision problems. We demonstrate the
effectiveness of the inverse reinforcement learning method when
considering legibility in a decision problem. We vary problem
domains in the performance study and provide empirical evidence
to support our findings.

Index Terms—Legibility, Inverse Reinforcement Learning, De-
cision Making, Intelligent Agents

I. INTRODUCTION

Intelligent agent makes decisions to determine their ac-
tions to interact with the environment based on the rational
principle in many Al applications. The rational principle
usually means that the agents expect to maximize their total
rewards. However, this decision-making process sometimes
looks like lacking legibility. From a human perspective, it is
challenging to figure out what their collaborators are doing [1].
For example, in a game where humans and multiple agents
collaborate, such as Dota. The agent may not be able to
communicate its intentions to a human when deciding to act,
which may lead to the failure of the game. If the agents in the
game can make their actions more legible, it will help human
players understand their intentions. Thus, helping them better
complete tasks that require collaboration.

Legibility has been a high concern in Al research in recent
years. Dragan et al. [2] introduced the notion of legibility, that
the observer can calculate the legibility value when observing
the robot’s path and infer the robot’s goal. Capelli et al. [3]
studied the legibility of a group of mobile robots. They found
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Fig. 1. Legible paths in a 9 X 9 Grid-World environment.

that trajectories are relevant to convey the robot’s intention.
Miura et al. [4] developed a method that maximizes the legibil-
ity in a stochastic environment to improve the interpretability
of agent behavior. Liu er al. [5] proposed a reward-shaping
method to improve the legibility of reinforcement learning.
Their method can be further improved by interacting with the
users. Most of the current research shows that from the human
perspective, legibility can essentially help them understand the
agent’s intention. The research also shows that humans play
the main role in calculating legibility. This implies that there
is a legibility function that exists in reinforcement learning.

However, it is challenging to know the value of the legibility
function. The existing research usually calculates the legibility
function under some specific rules. A natural way to set the
legibility value is to ask the domain experts to input them
in the reinforcement learning environment. This is easy to
assign in a simple domain. But when the domain becomes
more complex, it seems impossible to assign specific values
for the legibility function. Rather than assign specific values,
it is more feasible for the domain experts to provide legible
behaviors in a problem domain. For example, a set of legible
paths is provided in Figure 1. If the agent starts from the
middle at the bottom row and follows either the green or blue
trajectory, the human observer can not predict which goal the
agent expects to reach until it turns right or left in the top row.
However, if the agent follows the yellow trajectory, it is clear
that it is going to the goal G;.
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Fig. 2. We automate the development of the legibility function using the
inverse reinforcement learning algorithm given the agent’s legible trajectories
from domain experts.

We will apply an inverse reinforcement learning [6] ap-
proach to learn the legibility function that the agent can use
to learn the optimal legible policy in this paper. The legible
trajectories shown in Figure 2 (a) are generated based on a set
of navigation rules. Once we obtain the legible trajectories, we
can adapt the inverse reinforcement learning to learn the legi-
bility function (as shown in Figure 2 (b)). After the legibility
function is learned, we perform the common reinforcement
learning approach, such as Q-learning [7], to optimize the
legible policy for the agent (as shown in Figure 2 (c)).
We illustrate the learning process in the scalable Grid-World
environment and show the empirical results of comparing the
optimal policies.

The structure of this paper is as follows: Section II gives
the background knowledge of reinforcement learning and
inverse reinforcement learning. Section III shows how to learn
legibility through the inverse reinforcement learning algorithm.
Section IV reports the experiment results. We review the recent
research about legibility in Section V. Section VI gives the
conclusion on this work and some discussion for future study.

II. BACKGROUND KNOWLEDGE

We briefly introduce the background knowledge of rein-
forcement learning and inverse reinforcement learning.

A. Reinforcement Learning

Intelligent agents determine their actions by maximizing
the total discounted reward over a sequential of steps in
reinforcement learning (RL) [8]. The decision-making process
is usually modelled as a Markov decision process (MDP) and
formulated as a tuple with five elements M = (S, A, T, R,~),
where S is a set of states, A is a set of actions, T
S xAxS — P(siy1 | si,ae) is the transition function
denoting the probability of getting to the new state s, when
the agent takes the action a, at the state s;, R is a function of
reward values that the agent receives when it takes the action
ay at the state s;, and « is the discount factor to dilute the
future rewards. The learning process in reinforcement learning
typically involves the agent’s exploration of the environment,
acquisition of knowledge from the consequences of its actions,
and adaptation of its strategy to maximize the expected cumu-
lative reward. The agent can acquire a policy that maps states
to actions, and this policy is progressively refined through
iterative learning. The Q-learning algorithm [7] is a technique
that aims to learn a policy, represented by the Q-function,
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which estimates the expected cumulative reward associated
with taking a specific action in a given state.

B. Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) is a problem of find-
ing/recovering a reward function R that best satisfies the
given optimal policy 7 in a finite MDP [6]. One simple and
natural optimization approach is to choose the function R that
maximizes the sum of the deviation between the best action
aopt and the next-best action a € {A \ ayp:} over all states,
as shown in (1). The general process of IRL is first to model
the given trajectories (or policies) as solutions to MDP. Then,
we use any given features to initialize the reward function R,
and learn optimal behaviors (or policy) by solving the MDP
using R. We repeatedly update R to minimize the deviation
between the given trajectories and the learned behaviors until
the deviation converges to an acceptable level. The elaborated
detailed survey of inverse reinforcement learning can be seen
in [9].

ZQW(&%M) — MaTae{A\a,,} Q" (5, a) (D

sES

where @ is the Q-function value and a,,; is the optimal action.

III. LEARNING THE LEGIBILITY FUNCTION

In this section, we use the IRL method to learn
the legibility function. When a set of legible trajecto-
ries D; = {< (so,a0),(s1,a1), " ,(st,at) >1,,<
(s0,a0),(s1,a1), -+, (st,a;) >n} is given, where s, € S,
a; € A, t is the decision time-step and n is the number of
trajectories. We aim to learn the legibility function L that
best satisfies D; (if the trajectories are complete and optimal
according to the corresponding MDP model, they are equal to
the optimal legible policy 7;). We can ask the domain experts
to provide the trajectory set or extract them from the displayed
trajectories in the problem domain. We elaborate on the IRL
process to learn a legibility function through the Grid-World
domain.

A 9 x 9 Grid-World is shown in Figure 3 that has two
goals (G; and G4 for the agent who needs to avoid the three
obstacles (black grids) when it is moving. In the MDP setting,
the agent can take three actions (F'orward, Left and Right). It
has the 80% chance of moving towards its expected direction
while the remaining 20% is averaged to enter into both left
and right directions. The agent will stay in the current grid
when it moves towards a wall or obstacle. Based on a set of
rules below, a set of legible trajectories are provided (towards
G and G4 respectively). Some clearly legible samples are
shown and start from the initial positions in the orange grids.

o We know the setting of the MDP except the legibility
function. The legibility value is general for any of the
goals and regardless of the start position of the agent.

« In the vertical direction, the agent’s action is not legible
whether the agent moves away from or to the goal.
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Fig. 3. The legible policy in the 9 X 9 Grid-World that provided from
the domain experts. The arrows in the grid represent the best action the
agent should take when it is at that state. The yellow and blue curves are
representative of trajectories.

« In the horizontal direction, the agent’s action is legible
when it is clearly moving towards a goal; otherwise, it is
not.

o The action moving towards a wall or obstacle is not
legible.

We model the legible trajectories shown in Figure 3 as the
optimal policy 7, as a solution to the MDP. Following the
IRL process [6], we formulate the legibility function learning
as the optimization problem in (2) subject to the constraints
in (3) and (4). We use the Bellman optimality [10], [11]
to derive (3). Obviously, we can use a linear programming
method to find the solution to satisfy the constraints in
(3). However, the majority of solutions, such as L=0 or
any constant vector, are considered degenerate. Additionally,
there remains a significant number of solutions beyond the
degenerate ones, complicating the selection of the optimal
solution. To address these challenges, we introduce the concept
of a legibility function, denoted as L, which penalizes any
deviation between the optimal policy 7y, and the second-best
policy. The goal is to design L in a way that maximizes the
cumulative deviation between 7y, and the second-best policy
at each step, while still satisfying (4). Moreover, in the IRL
framework, simplicity is favored in selecting the legibility
function, provided it adheres to 7. Hence, the IRL approach
adds a weight decay-like penalty term —A|L||;, where A
is an adjustable penalty coefficient to formulate the IRL
optimization as (2). By applying well-established optimization
techniques, we derive the optimal legibility function through
solving this problem.

N

maximize Z MiNae A\ aope} L (Taop: (1)
i=1

- Ta(z))

(I =Tapp) LY = AL,
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where a,p; is the optimal action in the policy 7z, {A \ aopt}
are the other actions in the action set A except aops, o (i)
is the ith row of the transition probability matrix 7', I is the
identity matrix, « is the discount factor in the MDP, L is the
legibility function, L,,,, is the maximum legibility value and
N is the number of the states.

IV. EXPERIMENTAL RESULTS

We executed experiments in the scaled Grid-World problem
domains to illustrate the performance of the method that
uses IRL to learn the legibility function. We conducted the
experiments in both the 9 x 9 and 13 x 13 settings of the
Grid-World. We compare the performance of four types of the
agent’s policies learned in these two domain settings: (a) IP:
the policy that is given from the domain experts; (b) LP: the
policy learned from the legibility function that is extracted
from the full-size input trajectories through the IRL method;
(¢) LP(|D|=1000) and (d) LP(|D|=500): the policy learned
from the legibility function through IRL given a subset of
D where the number of the trajectories is equal to 1000 and
500. All the implementations were conducted in Windows 10
with the setting of CPU (11*” Gen Intel Core i7-11800H @
2.30GHz 8-core) and 32 GB RAM.

A. The 9 x 9 Grid-World Environment

Given the set of trajectories that are shown in Figure 3, Dy,
we model them as an optimal policy 77, for the 9 x 9 Grid-
World domain. Then we solve the optimization problem in (2)
subject to the constraints in (3) and (4). The result is shown in
Figure 4. The colour of the grids represents the value between
0 to 1. The darker the colour, the smaller the legibility value.
Figure 4 shows that the legibility value of the states is clearly
higher around the two goals than any other states.

1.0

Fig. 4. The legibility function learned from the legible trajectories in Figure 3.
The colour represents the value distribution between 0 to 1.
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Fig. 5. The legible optimal policy learned using the learned legibility function
in Figure 4.
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Fig. 6. The average reward values are reported for different policy inputs
when the agent navigates in the 9 X 9 Grid-World environment. The sample
number of the trajectories is 50000, 100000, 150000 and 200000.

Hence, we use Q-learning to learn the legible optimal policy
using the legibility function in Figure 4 and the optimal policy
is shown in Figure 5. The learned policy is not completely
the same as the given trajectories in Figure 3. However,
the column 5 of Figure 5 shows more clear and intensive
navigation paths that the agent will go to G;. The policy also
shows that the agent tends to determine where it wants to go
first.

To evaluate the performance of the learned policy, let the
agent walk in the Grid-World environment based on the
different optimal policies. The agent starts from a random
start position and stops at any of the goals. The agent will
receive a reward when it takes one action until it reaches any
of the goals. The sum of the rewards is called the reward of
a trajectory (path). We calculate the average of the trajectory
reward when the number of the trajectories is 50000 to 200000
for each optimal policy. The experiment result of the average
reward is shown in Figure 6.

The agent receives a higher reward value when it performs
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Fig. 7. The legible policy in the 13 x 13 Grid-World that provided from
the domain experts. The arrows in the grid represent the best action the
agent should take when it is at that state. The yellow and blue curves are
representative of trajectories.

based on the learned policies LP than the input policies I P.
It illustrates that the IRL method performs well in learning
the legibility function. Especially we examine the performance
of the learned policies when a subset of the trajectories D,
are given into the algorithm. The results show that the IRL
algorithm does not perform as well as the situation in which
the full trajectories are given. This is expected as a subset
of trajectories can not provide sufficient information to find
optimal policies in the learning process. Hence, the inverse
reinforcement learning algorithm could learn the legibility
function from the agent’s legible behaviors. And it expresses
better policies in some cases.

B. The 13 x 13 Grid-World Environment

In this section, we test the inverse reinforcement learning
algorithm in learning the legibility function in a more complex
problem domain. The 13 x 13 Grid-World environment has
more than twice the states than the 9 x 9 one. More black
obstacles are added to the environment. The same experimental
setting in Section I'V-A is adopted in this experiment.

The given legible trajectories from the domain experts are
shown in Figure 7. We execute the inverse reinforcement
learning algorithm using the legible trajectories and the learned
legibility function is shown in Figure 8. The legibility function
also shows that the states around the two goals have a
higher legibility value as exhibited in the 9 x 9 domain.
Hence the IRL still performs well in learning the legibility
function in the complex domain. Q-learning is used to learn
the legible optimal policy for the agent using the learned
legibility function and show the policy in Figure 9. Some
typical legibility trajectories are provided in Figure 9. It is
expected that the optimal policy is not completely the same
as the input trajectories in Figure 7 but shows the agent’s
intention that it wants to first determine its purpose.



Fig. 8. The legibility function learned from the legible trajectories in Figure 7.
The colour represents the value distribution between O to 1.
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Fig. 9. The legible optimal policy learned using the learned legibility function
in Figure 8.

The mean legibility value obtained by the agent while
operating in the Grid-World environment is shown in Fig-
ure 10, based on distinct optimal policies derived from 4 sets
of trajectories. The experiment results show that the average
legibility value is higher when given the full legible behaviors
than in any other cases. The results are similar to the 9 x 9
Grid-World. The computational times for the IRL algorithm
in learning the legibility function within the 9 x 9 and 13 x 13
Grid-World domains are presented in Table I. The running
times exhibit minimal variation when the state space remains
constant, as the majority of computational effort is devoted
to executing the IRL algorithm. The slight discrepancy in
computational time for the same state space may be attributed
to the relatively limited duration allocated for processing
distinct sets of input trajectories. The expansion of the state
space will result in an exponential growth in the computational
demands imposed by the IRL algorithm.
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Fig. 10. The average reward values are reported for different policy inputs
when the agent navigates in the 13 x 13 Grid-World environment. The sample
number of the trajectories is 50000, 100000, 150000 and 200000.

TABLE I
RUNNING TIMES (SECONDS) FOR LEARNING THE LEGIBILITY FUNCTION

State Space Method Running Times
LP(]D]=500) 30.55
9x9 LP(|D|=1000) 31.34
LP 31.63
LP(]D]=500) 2651.9
13 x 13 LP(|D|=1000) 2652.13
LP 2653.87

V. RELATED WORKS

In light of the dynamic progress in Al technology and its
expanding integration into real-world contexts, there is a grow-
ing imperative for humans to deepen their understanding of Al
legibility [12]. This section is dedicated to a comprehensive
review of relevant research on legibility.

The research on legibility in Al has some different appli-
cations. The most relevant research is on agents’ legibility
in multi-agent systems. Miura and Zilberstein [13] proposed
a method to balance the trade-off between maximizing the
legibility and the underlying reward in the MDP. They demon-
strated that maximizing legibility results in legible behaviors.
Miura et al. [4] developed legible MDPs in which the agent
aims to convey its intentions clear to the observer. They proved
that maximizing legibility results in more interpretable behav-
iors. Mavrogiannis et al. [14] presented a planning framework
that enabled agents to communicate their intentions to avoid
collision with other agents in multi-agent environments. Their
framework consistently achieved significantly lower topologi-
cal complexity in multi-agent collision avoidance. Kulkarni et
al. [15] presented a planning framework to simultaneously
convey legible information to collaborative agents and obfus-
cate information to adversarial agents based on the assumption
that the different observers have differing sensing capabilities.
Habibian and Losey [16] introduced an optimization approach
that enables robot teams to optimize for legibility and fairness.
They showed that humans prefer to participate and collaborate
with a legible agent team which is not just concerned with



efficiency. Liu er al. [5] exhibited the benefit of legibility
to agents’ decision-making; however, it was still challenging
to develop a rational metric to evaluate the legibility. Bied
and Chetouani [17] developed an approach to integrate the
observer’s feedback into a reinforcement learning framework
to improve the legibility of the robot’s trajectories.

It is valuable for human beings to understand robots’
intentions since they are widely used in industry. Dragan
and Srinivasa [18] proposed a functional gradient optimiza-
tion technique for autonomously generating legible motion to
deviate the robot’s trajectories from the observer’s expectation
to better convey the robot’s intentions. Wallkotter et al. [19]
showed that robots’ movement trajectories could communicate
their intentions and they provided an approach to use the
trajectories which are independent of the tested ones to eval-
uate the legibility. Nikolaidis et al. [20] proposed viewpoint
and occlusion models that enable autonomous generation of
viewpoint-based legible motions and showed that when the
robot’s trajectory can provide more information about its
goals, the observer can infer its intention more quickly and
confidently.

To the extent that legibility is a human subjective attribute,
some studies have considered these. The view of observers is
vital for the legibility, Taylor ef al. [21] designed an observer-
aware method for creating navigation paths that concern the
view of observers to make the paths legible. Hetherington et
al. [22] demonstrated that robots’ legibility cues are helpful
for humans to understand the robots’ behaviors.

The typical approach in current research assumes a known
legibility function for solving policy optimization problems.
However, evaluating legibility still depends on substantial
input from domain experts. It becomes important to research
the legibility of auto-learning in multi-agent systems.

VI. CONCLUSION AND DISCUSSION

We propose an IRL-based method to learn the legibility
function in this paper. The approach can estimate the legibility
function from the input of the agent’s legible behaviors.
We elaborate on the learning process through the Grid-
World example and demonstrate the learning performance
by varying the problem set. The experiment shows that the
learning accuracy will decrease when the number of input
legibility trajectories becomes smaller. Future research is to
focus on selecting a small set of trajectories while retaining
sufficient legible information. The new legibility research also
contributes to solving complex multiagent decision-making
problems. We are considering the integration of the legibility
function in a general decision-making framework, namely
interactive dynamic influence diagrams [23], in multiagent
systems.
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