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Abstract—Pruning neural networks has become popular in
the last decade when it was shown that a large number of
weights can be safely removed from modern neural networks
without compromising accuracy. Numerous pruning methods
have been proposed since, each claiming to be better than prior
art, however, at the cost of increasingly complex pruning method-
ologies. These methodologies include utilizing importance scores,
getting feedback through back-propagation or having heuristics-
based pruning rules amongst others. In this work, we question
whether this pattern of introducing complexity is really necessary
to achieve better pruning results. We benchmark these SOTA
techniques against a simple pruning baseline, namely, Global
Magnitude Pruning (Global MP), that ranks weights in order
of their magnitudes and prunes the smallest ones. Surprisingly,
we find that vanilla Global MP performs very well against the
SOTA techniques. When considering sparsity-accuracy trade-
off, Global MP performs better than all SOTA techniques at
all sparsity ratios. When considering FLOPs-accuracy trade-
off, some SOTA techniques outperform Global MP at lower
sparsity ratios, however, Global MP starts performing well at
high sparsity ratios and performs very well at extremely high
sparsity ratios. Moreover, we find that a common issue that
many pruning algorithms run into at high sparsity rates, namely,
layer-collapse, can be easily fixed in Global MP. We explore why
layer collapse occurs in networks and how it can be mitigated in
Global MP by utilizing a technique called Minimum Threshold.
We showcase the above findings on various models (WRN-28-
8, ResNet-32, ResNet-50, MobileNet-V1 and FastGRNN) and
multiple datasets (CIFAR-10, ImageNet and HAR-2).

Index Terms—Neural Network Compression, Neural Network
Pruning, Global Magnitude Pruning, Sparsity, Minimum Thresh-
old

I. INTRODUCTION

Scaling-up the size of neural networks is becoming a

popular way to increase model performance [1]–[3]. However,

this poses a significant cost to the environment [4] and makes

deployment on edge devices difficult [5]. Neural network

pruning has thus emerged as an essential tool to reduce

the size of modern-day neural networks. New methods have
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utilized a myriad of pruning techniques consisting of gradient-

based methods, sensitivity to or feedback from an objec-

tive function, distance or similarity measures, regularization-

based techniques, amongst others. The state-of-the-art (SOTA)

pruning techniques use complex rules like iterative pruning

and re-growth of weight parameters using heuristics rules

every few hundred iterations, as in DSR [6]. SM [7] uses

sparse momentum that benefits from exponentially smoothed

gradients (momentum) to find layers and weights that re-

duce error and then redistribute the pruned weights across

layers using the mean momentum magnitude of each layer.

For each layer, sparse momentum grows the weights using

the momentum magnitude of zero-valued weights. Another

popular SOTA technique, RigL [8], also iteratively prunes and

re-grows weights every few iterations. They use uniform or

Erdos-Renyi-Kernel (ERK) for pruning connections and re-

grow connections based on the highest magnitude gradients.

Among recent techniques, DPF [9] uses dynamic allocation of

the sparsity pattern and incorporates a feedback signal to re-

activate prematurely pruned weights, while STR [10] utilises

soft threshold reparameterization and uses back-propagation

to find sparsity ratios for each layer.

Despite the high number of new pruning algorithms pro-

posed, the tangible benefits of many of them are still ques-

tionable. For instance, recently it has been shown that many

pruning at initialization (PAI) schemes do not perform as

well as expected [11]. In that paper, it is shown through a

number of experiments that these PAI schemes are actually

no better than random pruning, which is one of the most

naive pruning baselines with no complexity involved. This

finding indeed raises another question in our minds: if a well

designed PAI does not even match the performance of random

pruning, can simple pruning approaches like global pruning

or their variants outperform other existing algorithms? We

question the trend of proposing increasingly complex pruning

algorithms and evaluate whether such complexity is really

required to achieve superior results. We benchmark popular

state-of-the-art (SOTA) pruning techniques against a naive

pruning baseline, namely, Global Magnitude Pruning (Global

MP). Global MP ranks all the weights in a neural network by

their magnitudes and prunes off the smallest ones (Fig. 1).

Despite its simplicity, Global MP has not been comprehen-

sively analyzed in the literature. Although, some prior works

have used Global MP as a baseline [12]–[17], they missed out

on conducting rigorous experiments with it, e.g., comparing it

with SOTA, running it in both gradual and one-shot pruning
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settings. Similarly, many SOTA papers do not use Global MP

for benchmarking and miss out on capturing its remarkable

performance [2], [8], [10], [18], [19]. We bridge this gap

in evaluating the efficacy of Global MP and demonstrate its

superior performance under multiple experimental conditions.

We show that with regards to the trade-off between sparsity

and accuracy, Global MP consistently outperforms all state-

of-the-art (SOTA) techniques across various sparsity ratios. In

terms of the trade-off between FLOPs and accuracy, certain

SOTA techniques exhibit superior performance than Global

MP at lower sparsity ratios. However, Global MP demonstrates

significant efficacy at higher sparsity ratios and excels partic-

ularly well at extremely high sparsity levels. While achieving

such performance, Global MP does not require any additional

algorithm-specific hyper-parameters to be tuned. We also shed

light into a potential problem with pruning, known as layer-

collapse, whereby an entire layer is pruned away, leading

to a drastic loss in accuracy. The fix for it in Global MP

is simple through introducing a Minimum Threshold (MT)

to retain a minimum number of weights in every layer. We

conduct experiments on WRN-28-8, ResNet-32, ResNet-50,

MobileNet-V1, and FastGRNN models, and on CIFAR-10,

ImageNet, and HAR-2 datasets. We test Global MP for both

unstructured and structured as well as one-shot and gradual

settings, and share our findings.

II. RELATED WORK

Compression of neural networks has become an important

research area due to the rapid increase in size of neural

networks [20], the need for fast inference [21], application

to real-world tasks [22]–[24] and concerns about the carbon

footprint of training large neural networks [4]. Over the years,

several compression techniques have emerged in the literature

[25], such as quantisation, factorisation, attention, knowledge

distillation, architecture search and pruning [26]–[29]. As

compared to other categories, pruning is more general in nature

and has shown strong performance [2].

Many pruning techniques have been developed over the

years, which use first or second order derivatives [1], [30],

[31], gradient-based methods [32]–[34], sensitivity to or

feedback from some objective function [9], [35]–[38], dis-

tance or similarity measures [39], Bayesian optimisation

[40], regularization-based techniques [10], [41]–[44], and

magnitude-based criterion [8], [17], [18], [45], [46]. A key

trick has been discovered in [47] to iteratively prune and

retrain a network, thereby preserving high accuracy. Runtime

Neural Pruning [48] attempts to use reinforcement learning

(RL) for compression by training an RL agent to select smaller

sub-networks during inference. [49] design the first approach

using RL for pruning. However, RL training approaches typ-

ically require additional RL training budgets and careful RL

action and state space design [50], [51].

Global MP on the other hand ranks all the parameters

in a network by their absolute magnitudes and prunes the

smallest ones. It is therefore, quite intuitive, logical and

straightforward. It is also not to be confused with methods that

utilize global pruning but do not conduct magnitude pruning,

for example, SNIP [32]. These methods use complex criteria,

first to determine the saliency of the weights globally and

then apply pruning. We present here an in-depth comparison

of the SOTA techniques vs. Global MP. Gradual Magnitude

Pruning (GMP) [18] uses a uniform pruning schedule and

prunes each layer by the same amount, thereby, not taking

into account the relative importance of layers. Global MP on

the other hand prunes every layer differently. Dynamic Sparse

Reparameterization (DSR) [6] prunes and regrows weights

every few hundred iterations. It also uses Global MP to prune

the weights. However, it imposes some additional heuristic-

based constraints on the pruning process, such as, not pruning

some selected layers in the network. In case the weights to

regrow outnumber the capacity of a layer, it then uses addi-

tional heuristics to redistribute the additional weights. These

kinds of heuristics add both complexity and limit the potential

pruning actions that can be taken. Discovering Neural Wirings

(DNW) [19] focuses on learning connectivity of channels in a

network. It is not primarily a pruning technique and is more

akin to Neural Architecture Search (NAS).

Sparse Momentum (SM) [7] uses a heuristic-based approach

to prune and regrow weights. They use average momentum

to assess importance of every layer and assign parameters

accordingly. Similar to DSR, a certain number of layers are

never pruned and in cases of regrowth exceeding capacity of

a layer, additional heuristics are used to redistribute weights.

This method is also computationally demanding as gradients

need to be stored in memory and additional FLOPs are

required to calculate mean momentum per parameter. Hence, it

is not as efficient as Global MP, which is computationally less

expensive and does not rely on heuristics. Rigging the Lottery

(RigL) [8] allocates sparsity based on number of parameters

in a layer. Hence, importance of a layer is based on its size,

which is not necessarily an accurate measure for all cases.

Dynamic Pruning with Feedback (DPF) [9] also uses Global

MP for pruning. However, it imposes an additional constraint

of keeping the last layer fully dense. It is thus, not as flexible

as pure Global MP that allows all layers to be pruned.

Soft Threshold Reparameterization (STR) [10] is a

regularization-based technique that subtracts a certain value

from the weights in each epoch. The exact sparsity target

cannot be controlled in STR, and it requires heavy tuning of

hyper-parameters to reach a required sparsity target. Hence, it

is not as flexible as Global MP. Matrix-Free Approximations

of Second-Order Information (M-FAC) [52] and its pre-cursor

(WoodFisher) [53] use an approximation of the second order

Hessian to prune weights. Hessian-based pruning is principled

but computationally intractable. Therefore, approximations

need to be made for the Hessian. These approximations

result in not-so-accurate importance scores for the weights,

while such approximations are not needed in Global MP.

Thus, Global MP is generally more principled, heuristic-

free, and computationally inexpensive compared to SOTA

methods which might be the underlying reason for its superior

performance.
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Fig. 1: Illustration of how Global MP works. Global MP ranks all the weights in a network by their magnitudes and prunes

off the smallest weights until the target sparsity is met. Light green weights refer to the smaller-magnitude weights which are

pruned off. A pruned network consisting of larger-magnitude weights (dark green weights) is obtained after the process.

III. METHOD

In this section, we explain how Global MP works by

describing its key components. We also introduce a simple

thresholding mechanism, called Minimum Threshold (MT), to

avoid the issue of layer-collapse at high sparsity levels.

A. Global Magnitude Pruning (Global MP)

Global MP is a magnitude-based pruning approach, whereby

weights larger than a certain threshold are kept, and weights

smaller than the threshold are pruned across a neural network.

The threshold is calculated based on the target sparsity rate

and is not a hyper-parameter that needs to be tuned or learnt.

Given a target sparsity rate κtarget, the threshold t is simply

calculated as the weight magnitude that serves as a separation

point between the smallest κtarget percent of weights and the

rest, once all weights are sorted into an array based on their

magnitude. Formally, for a calculated threshold t and each

individual weight w in any layer, the new weight wnew is

defined as follows:

wnew =

{
0 |w| < t,

w otherwise.
(1)

In Global MP, a single threshold is set for the entire

network based on the target sparsity for the network. This is

in contrast to layer-wise pruning, in which different threshold

values have to be searched for each layer individually. In the

case of uniform pruning on the other hand, a threshold for

each layer needs to be calculated based on the sparsity target

assigned to the layers uniformly across the network. In this

aspect, Global MP is more efficient than layer-wise or uniform

pruning because the threshold does not need to be searched

or calculated for every layer individually.

B. Minimum Threshold (MT)

The Minimum Threshold (MT) refers to the fixed number of

weights that are preserved in every layer of the neural network

post pruning. The MT is a scalar value that is fixed before the

start of the pruning cycle. The weights in a layer are sorted

by their magnitude and the largest MT number of weights are

preserved. For instance, an MT of 500 implies that 500 of

the largest weights in every layer need to be preserved post

pruning. If a layer originally has a smaller number of weights

than the MT number, then all the weights of that layer will be

preserved. This corresponds to:

‖Wl‖0 ≥
{
σ if m ≥ σl,

m otherwise.
(2)

The term Wl ∈ R
m denotes the weight vector for layer l, σ

is the MT value in terms of the number of weights and ‖Wl‖0
indicates the number of non-zero elements in Wl.

C. The Pruning Workflow

The pruning pipeline for Global MP consists of pruning a

model until the desired sparsity target is met and training or

fine-tuning it for a specified number of epochs. It supports

both one-shot and gradual pruning settings as well as with or

without MT. The users may choose any pruning setting as per

their use case. The procedure starts by selecting a pre-trained

model in one-shot pruning, or an untrained model in gradual

pruning. Next, the sparsity of the model is checked and if

the sparsity is lower than the target sparsity, then the model

is pruned using either vanilla Global MP or Global MP with

MT, as per the choice of the user. Once, the model is pruned,

it is trained for the case of gradual pruning or fine-tuned

for the case of one-shot pruning. The Global MP framework

allows the flexibility for previously pruned weights to regrow,

if they become more active in the later epochs, for the case of

gradual pruning. No hard pruning is done whereby weights are

permanently zeroed out. The pruning mask is calculated afresh

in each epoch thereby allowing previously pruned weights to

regrow. The above procedure repeats until the final epoch is

reached. For the case of one-shot pruning, the later epochs

are just used for doing fine-tuning as the pruning happens in

one-go in the first epoch itself. This finishes the procedure and

the final result is a pruned and trained (or fine-tuned) model.

See Appendix for pseudocode.

IV. EXPERIMENTS

Below we describe experiments related to Global MP com-

pared to state-of-the-art (SOTA) pruning algorithms.

A. Comparison with SOTA

We compare Global MP with various popular SOTA algo-

rithms that are well known for pruning, such as SNIP [32],

SM [7], DSR [6], DPF [9], GMP [18], DNW [19], RigL [8],

and STR [10]. These include a broad spectrum of methods

involving iteratively pruning and re-growing weights every

few iterations, pruning at initialization, using gradients and

feedback signals for pruning, and pruning using regularization.
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Method Sparsity WRN-28-8 Acc. ResNet-32 Acc.

Baseline 0.0% 96.06% 93.83 ± 0.12 %

SNIP [32] 90% 95.49± 0.21% 90.40 ± 0.26%
SM [7] 90% 95.67± 0.14% 91.54 ± 0.18%
DSR [6] 90% 95.81± 0.10% 91.41 ± 0.23%
DPF [9] 90% 96.08± 0.15% 92.42 ± 0.18%
Global MP 90% 96.30 ± 0.03% 92.67 ± 0.03%

SNIP [32] 95% 94.93± 0.13% 87.23 ± 0.29%
SM [7] 95% 95.64± 0.07% 88.68 ± 0.22%
DSR [6] 95% 95.55± 0.12% 84.12 ± 0.32%
DPF [9] 95% 95.98± 0.10% 90.94 ± 0.35%
Global MP 95% 96.16 ± 0.02% 90.65 ± 0.13%

TABLE I: Results of SOTA pruning algorithms on

WideResNet-28-8 and ResNet-32 on CIFAR-10. The bold font

denotes best performance. Global MP outperforms or yields

comparable performance to other algorithms.

We report results from these algorithms whenever they report

results for the specific dataset that is being experimented upon.

See Appendix for hyper-parameters.

1) CIFAR-10: We conduct experiments to compare Global

MP to SOTA pruning algorithms on the CIFAR-10 dataset.

We compare One-shot Global MP with four algorithms in

this case: SNIP [32], SM [7], DSR [6], and DPF [9]. Re-

sults for comparison algorithms are taken from [9] which

conduct standardized testing on algorithms. We report results

on two popular and widely pruned network architectures,

WideResNet-28-8 (WRN-28-8) and ResNet-32 [54]. For both

architectures, we start off with the original model having the

same initial accuracy as the other algorithms to have a fair

comparison. For WRN-28-8 (Table I), Global MP performs

better than the rest of the competitors at both 90% and 95%

sparsity levels. Global MP outperforms DSR and SM in all

cases, because of their additional heuristics-based constraints

which limit the selection of layers to be pruned. As for ResNet-

32 (Table I), Global MP outperforms at 95% sparsity and is

the second best at 90% sparsity. Global MP outperforms DSR

and SM for all sparsity levels in this case as well. This is an

indication of the capabilities of Global MP as compared to the

other algorithms, while featuring no added complexity.

2) ImageNet: Following the favorable performance on

CIFAR-10 dataset, we benchmark Global MP on ImageNet

dataset. This is a highly challenging dataset as compared

to CIFAR-10, featuring around 1.3 million RGB images

with 1,000 classes. We compare Global MP with SOTA

algorithms like GMP [18], DSR [6], DNW [19], SM [7],

RigL [8], WoodFisher [53], MFAC [52], DPF [9], and STR

[10]. Results for comparison algorithms are taken from [10]

which conduct standardized testing on algorithms. The two

network architectures we use for this comparison are ResNet-

50 and MobileNet-V1 [55], the two most popular architectures

for benchmarking pruning algorithms on ImageNet [14]. For

ResNet-50, we include an additional experimental setting of

gradual Global MP to provide more thorough comparison

with SOTA methods. We again start from the same initial

accuracy for the non-pruned models for all algorithms, either

by matching the results in their original papers or reproducing

their results whenever their code is available. We sample four

sparsity levels ranging from low sparsity (80%) to extreme

sparsity (98%) to provide a comprehensive snapshot across

different sparsity levels.

The remarkable performance of Global MP becomes clear

in ResNet-50 over ImageNet experiments. For the sparsity-

accuracy trade-off, Global MP outperforms all the other com-

petitors or achieves comparable accuracy in every sparsity

level from 80% to 98% (see results in bold in Table II). MFAC

performs closely for 95% sparsity, however, it is not a like-

for-like comparison as their sparsity is slightly lower (95%)

compared to Global MP (95.3%). We take the upper bound

sparsity target for each sparsity level for Global MP to match

the method with the highest reported sparsity in that sparsity

level. For the case of extreme sparsity (98%), Global MP

surpasses the second best algorithm (STR) by a large margin

of 5.11%. For the FLOPs-accuracy trade-off, a like-for-like

comparison is difficult to make because the methods report

different FLOPs targets. However, an experienced practitioner

can roughly gauge the efficacy of the methods based on the

ratio between the additional FLOPs pruned and the decrease

in accuracy of the methods. Based on this we find that

certain SOTA techniques exhibit superior FLOPs-accuracy

performance than Global MP at lower sparsity ratios of 80%

and 90%. However, Global MP becomes competitive at 95%

sparsity and performs very well at the extreme sparsity rate

of 98%, gaining 5.11% accuracy vs. a drop of 2% FLOPs

vis-a-vis the second best method (STR).

We also find that gradual Global MP performs better than

one-shot Global MP at high and extremely high sparsity ratios.

This is because the pruning mask is allowed to change multiple

times in gradual Global MP compared to only once in one-

shot Global MP, and hence, converges to a more optimized

value. Most SOTA methods also follow the same approach

whereby they allow the pruning mask to change each epoch

or sometimes multiple times in an epoch. Overall, Global MP

outperforms all SOTA algorithms on sparsity-accuracy trade-

off and comes in second, after STR, for FLOPs-accuracy trade-

off. It is an important finding that such a simple algorithm

like Global MP can outperform other SOTA competitors that

incorporate very complex design choices or computationally

demanding procedures.

We also test another architecture on ImageNet, MobileNet-

V1, which is a much smaller and more efficient architecture

than ResNet-50. In this case, strong competitors are limited

in the literature; only two of the aforementioned algorithms

are able to present competitive results due to the fact that this

architecture has less redundancy. We benchmark Global MP

with two other competitors at two target sparsity levels: 75%

and 90%. As can be seen in Table III, Global MP outperforms

SOTA algorithms on the sparsity-accuracy trade-off by a

margin of more than 2% at 75% sparsity, which is a significant

result given how compact MobileNet-V1 is. At 90% sparsity

on the other hand, the same compactness causes Global MP
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Method Top-1
Acc

Params Sparsity FLOPs
pruned

ResNet-50 77.0% 25.6M 0.00% 0.0%

GMP [18] 75.60% 5.12M 80.00% 80.0%
DSR*# [6] 71.60% 5.12M 80.00% 69.9%
DNW [19] 76.00% 5.12M 80.00% 80.0%
SM [7] 74.90% 5.12M 80.00% -
SM + ERK [7] 75.20% 5.12M 80.00% 58.9%
RigL* [8] 74.60% 5.12M 80.00% 77.5%
RigL + ERK [8] 75.10% 5.12M 80.00% 58.9%
DPF [9] 75.13% 5.12M 80.00% 80.0%
STR [10] 76.19% 5.22M 79.55% 81.3%
Global MP (One-shot) 76.84% 5.12M 80.00% 72.4%
Global MP (Gradual) 76.12% 5.12M 80.00% 76.7%

GMP [18] 73.91% 2.56M 90.00% 90.0%
DNW [19] 74.00% 2.56M 90.00% 90.0%
SM [7] 72.90% 2.56M 90.00% 60.1%
SM + ERK [7] 72.90% 2.56M 90.00% 76.5%
RigL* [8] 72.00% 2.56M 90.00% 87.4%
RigL + ERK [8] 73.00% 2.56M 90.00% 76.5%
DPF# [9] 74.55% 4.45M 82.60% 90.0%
STR [10] 74.73% 3.14M 87.70% 90.2%
Global MP (One-shot) 75.28% 2.56M 90.00% 82.8%
Global MP (Gradual) 74.83% 2.56M 90.00% 87.8%

GMP [18] 70.59% 1.28M 95.00% 95.0%
DNW [19] 68.30% 1.28M 95.00% 95.0%
RigL* [8] 67.50% 1.28M 95.00% 92.2%
RigL + ERK [8] 70.00% 1.28M 95.00% 85.3%
WoodFisher [53] 72.12% 1.28M 95.00% -
MFAC MFAC [52] 72.32% 1.28M 95.00% -
STR [10] 70.40% 1.27M 95.03% 96.1%
Global MP (One-shot) 71.56% 1.20M 95.30% 89.3%
Global MP (Gradual) 72.14% 1.20M 95.30% 93.1%

GMP [18] 57.90% 0.51M 98.00% 98.0%
DNW [19] 58.20% 0.51M 98.00% 98.0%
STR [10] 61.46% 0.50M 98.05% 98.2%
Global MP (One-shot) 61.80% 0.50M 98.05% 93.7%
Global MP (Gradual) 66.57% 0.50M 98.05% 96.2%

TABLE II: Results on ResNet-50 on ImageNet. Global MP

outperforms SOTA pruning algorithms at all sparsity levels

for the sparsity-accuracy trade-off and at high sparsity levels

for the FLOPs-accuracy trade-off. Bold font denotes the best

performance for the sparsity-accuracy trade-off while under-

lined font denotes the best performance for FLOPs-accuracy

trade-off. * and # imply the first and the last layer are dense,

respectively.

to over-prune certain layers in the network, which result

in a significant accuracy drop. This is the above-mentioned

problem of layer-collapse, and it is easily rectified when MT

is introduced to Global MP. We use an MT value of 0.2%

which is determined using the same grid-search procedure as

any other hyper-parameter. Usually values between 0.01% to

0.3% work well for MT regardless of models and datasets.

See Appendix for an ablation study on MT. We find that

MT behaves like a typical hyper-parameter. On increasing the

MT value initially, the accuracy increases, until it reaches a

maximum value. Thereafter, increasing the MT value leads to

Method Top-1
Acc

Params. Sparsity FLOPs
pruned

MobileNet-V1 71.95% 4.21M 0.00% 0.0%

GMP [18] 67.70% 1.09M 74.11% 71.4%
STR [10] 68.35% 1.04M 75.28% 82.2%
Global MP 70.74% 1.04M 75.28% 68.9%

GMP [18] 61.80% 0.46M 89.03% 85.6%
STR [10] 61.51% 0.44M 89.62% 93.0%
Global MP 59.49% 0.42M 90.00% 83.7%
Global MP with MT 63.94% 0.42M 90.00% 72.9%

TABLE III: Results of pruning algorithms on MobileNet-V1

on ImageNet. The bold font denotes the algorithm with the

best sparsity-accuracy performance while underlining denotes

the best FLOPs-accuracy performance. Global MP with MT

surpasses SOTA algorithms on sparsity-accuracy performance.

a decrease in accuracy. Thus, a suitable value can be found

by doing a search over MT values. The accuracy of Global

MP at 90% sparsity goes beyond SOTA again with such a

simple fix, and the accuracy margin to the next competitor

gets higher than 2%. For the FLOPs-accuracy trade-off, a like-

for-like comparison is again hard to make, but STR seems to

perform better, owing to the smaller sparsities that MobileNet

is pruned at, as compared to ResNet-50. MT also comes at the

cost of a less FLOPs reduction, but it is useful especially for

accuracy-critical applications where decreasing the size of the

network is still important. All these findings clearly indicate

that Global MP is a simple yet competitive pruning algorithm.

It delivers top performance on sparsity-accuracy trade-off, and

ranks second for FLOPs-accuracy trade-off, despite not having

any complex design choices or additional hyper-parameters.

B. Structured pruning and generalizing to other domains and
RNN architectures

We experiment with Global MP on other domains and non-

convolutional networks as well to measure the generalizability

of the algorithm on different domains and network types.

We experiment on a FastGRNN model [56] on the HAR-2

Human Activity Recognition dataset [57]. HAR-2 dataset is a

binarized version of the 6-class Human Activity Recognition

dataset. From the full-rank model with rW = 9 and rU = 80
as suggested on the STR paper [10], we apply Global MP

on the matrices W1 and W2. To do this, we find the weight

mask by ranking the columns of W1 and W2 based on their

absolute sum, then we prune the 9 − rnewW lowest columns

and 80− rnewU lowest columns from W1 and W2 respectively.

In the end, we fine-tune this pruned model by retraining

it with FastGRNN’s trainer and applying the weight mask

at every epoch. We test Global MP under different rw-rv
configurations. We find that Global MP surpasses the other

baselines on all the configurations (Table IV) and successfully

prunes the model on a very different architecture and domain.
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C. Mitigating layer-collapse

Layer-collapse is an issue that many pruning algorithms

run into [15], [58], [59] and occurs when an entire layer is

pruned, rendering the network untrainable. We investigate this

phenomena and find that performance of a pruning algorithm

gets substantially affected by the neural network architecture

being pruned, especially in the high sparsity domain. We

conduct experiments on MobileNet-V2 and WRN-22-8 models

over the CIFAR-10 dataset. We report results averaged over

multiple runs where each run uses a different pre-trained

model to provide more robustness. We first prune a WRN-22-

8 model to 99.9% sparsity. We find that at 99.9% sparsity, the

WRN is still able to get decent accuracy (Table V). We then

prune a MobileNet-V2 model to 98% sparsity. For MobileNet,

however, accuracy drops to 10% using only Global MP, and

the model is not able to learn (Table VI).
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Downsampling
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Fig. 2: Difference in architectures between WRN and Mo-

bileNet. WRN does not have prunable residual connections in

the last layers (dotted lines) while MobileNet does. This leads

to different pruning behaviors on the two architectures.

The reason for this wide discrepancy in learning behav-

ior lies in the shortcut connections [54]. Both WRN-22-8

and MobileNet-V2 use shortcut connections, however, their

placement is different. Referring to Fig. 2, WRN uses identity

shortcut connections from Layer 20 to Layer 23. This type

of shortcut connections are simple identity mappings and do

not require any extra parameters, and hence, they do not

count towards the weights. However, MobileNet-V2 uses a

convolutional shortcut mapping from Layer 52 to Layer 57.

The weights in this mapping are counted towards the model’s

weights, and thus, they are prunable. Global MP completely

prunes the two preceding layers before the last layer. However,

because WRN uses identity mappings, it is still able to relay

information to the last layer, and the model is still able to

learn, whereas MobileNet-V2 faces catastrophic accuracy drop

due to layer-collapse. Pruning algorithms can be susceptible to

such catastrophic layer-collapse issues especially in the high

sparsity domain. The MT rule can help overcome this issue.

Method Top-1 Acc rW rU

FastGRNN 96.10% 9 80

Vanilla Training 94.06% 9 8
STR [10] 95.76% 9 8
Global MP 95.89% 9 8

Vanilla Training 93.15% 9 7
STR [10] 95.62% 9 7
Global MP 95.72% 9 7

Vanilla Training 94.88% 8 7
STR [10] 95.59% 8 7
Global MP 95.62% 8 7

TABLE IV: Results on FastGRNN on HAR-2 dataset. The

bold font denotes the algorithm with the best performance.

Global MP outperforms other pruning algorithms.

Method
WRN-22-8 on CIFAR-10

Sparsity Starting Acc. Pruned Acc.

Global MP 99.9% 94.07%±0.05% 67.68%±0.78%

TABLE V: Performance of Global MP on WideResNet-22-8

in the high sparsity regime at 99.9% sparsity.

Method
MobileNet-V2 on CIFAR-10

Sparsity Starting Acc. Pruned Acc.

Global MP 98.0% 94.15%±0.23%
10% (Unable to
learn)

Global MP
with MT 98.0% 94.15%±0.23% 82.97%±0.57%

TABLE VI: Adding MT enables MobileNet-V2 to learn in the

high sparsity regime.

Retaining a small MT of 0.02% is sufficient for MobileNet-V2

to avoid layer-collapse and learn successfully. Hence, retaining

a small amount of weights can help in the learning dynamics

of models in high sparsity settings.

V. DISCUSSION, LIMITATIONS AND FUTURE WORK

Our observations indicate that Global MP works very well

and achieves superior performance on all datasets and archi-

tectures tested. It can work as a one-shot or as a gradual

pruning algorithm. We test it on challenging datasets like

ImageNet that require a high number of parameters to achieve

good results and test its pruning efficacy on them. It also sur-

passes SOTA algorithms on ResNet-50 over ImageNet on the

sparsity-accuracy trade-off and sets new SOTA results across

many sparsity levels. For FLOPs-accuracy trade-off, it comes

in second after STR, surpassing many SOTA techniques. At the

same time, Global MP has very low algorithmic complexity

and arguably is one of the simplest pruning algorithms. It

is simpler than many other pruning algorithms like custom

loss based regularization, RL-based procedures, heuristics-

based layerwise pruning ratios, etc. It just ranks weights on

their magnitude and removes the smallest ones. This raises
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a key question on whether complexity is really required for

pruning and according to our results it seems that complexity

in itself does not guarantee good performance. Practitioners

developing new pruning algorithms should thus look carefully

whether complexity is adding value to their algorithm or not.

They should also benchmark their algorithms against simple

baselines like Global MP.

A limitation of Global MP is that the theoretical foundations

for it have not been well-established yet. Following our

empirical work, we plan to conduct a theoretical analysis

for better comprehending the dynamics of Global MP in the

future. It would include finding analytical links between the

magnitude of weights and their importance in a network, or

even analytical relations of them to the resultant accuracy

of the model. Another area for future work is jointly opti-

mizing both weights and FLOPs during the pruning process.

Currently, Global MP is used to reach a certain parameter

sparsity, and FLOPs reduction comes as a by-product. In the

future, FLOPs can also be added to an optimization function

to jointly sparsify both parameters and FLOPs.

VI. CONCLUSIONS

In this work, we raised the question of whether utiliz-

ing complex and computationally demanding algorithms are

really required to achieve superior DNN pruning results.

This stemmed from the hike in the number of new pruning

algorithms proposed in the recent years, each with a marginal

performance increment, but increasingly complicated pruning

procedures. This makes it hard for a practitioner to select

the correct algorithm and the best set of algorithm-specific

hyper-parameters for their application. We benchmarked these

algorithms against a naive baseline, namely, Global MP, which

does not incorporate any complex procedure or any hard-to-

tune hyper-parameter. Despite its simplicity, we found that

Global MP outperforms many SOTA pruning algorithms over

multiple datasets, such as CIFAR-10, ImageNet, and HAR-

2; with different network architectures, such as ResNet-50

and MobileNet-V1; and at various sparsity levels from 50%

up to 99.9%. We also presented a few variants of Global

MP, i.e., one-shot and gradual, together with a new, com-

plementary technique, MT. While our results serves as an

empirical proof that a naive pruning algorithm like Global MP

can achieve SOTA results, it remains as a promising future

research direction to shed light into theoretical aspects of how

such performance is possible with Global MP. Another future

direction includes extending the capabilities of Global MP,

such as jointly optimizing both FLOPs and the number of

weights.
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E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/a4613e8d72a61b3b69b32d040f89ad81-Paper.pdf

[14] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” arXiv preprint arXiv:2003.03033, 2020.

[15] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning
neural networks without any data by iteratively conserving
synaptic flow,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 6377–
6389. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf

[16] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding and fine-
tuning in neural network pruning,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=S1gSj0NKvB

[17] J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-adaptive sparsity
for the magnitude-based pruning,” in International Conference
on Learning Representations, 2021. [Online]. Available: https:
//openreview.net/forum?id=H6ATjJ0TKdf

[18] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the
efficacy of pruning for model compression,” ICLR Workshop, vol.
abs/1710.01878, 2018.

[19] M. Wortsman, A. Farhadi, and M. Rastegari, “Discovering neural
wirings,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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