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Abstract—New technologies are destined to disrupt, but ar-
tificial intelligence (AI) has achieved unusual cultural impact,
inspiring visceral fear in some, yet rapidly proliferating through
pervasive adoption. But by its nature, adoption of AI necessitates
more than mere acceptance: it requires trust. Trust surpasses co-
operation; cooperation elicits predictability, but cannot enable the
vulnerability described by human trust theorist Niklas Luhmann.
The bond of trust must be developed through interaction, and
humans inherit social constructs and societal norms that regulate
verbal and behavioral communication, indicating internal state.
AI must learn to read these cues to engender trust and recover
when its human partner becomes distrustful. Our experimental
platform, Hapti Bird, creates an environment for testing scenarios
and observing interactions from which to better understand how
humans trust each other, and how they trust AI. For this paper,
we performed a variation of the Iterated Prisoner’s Dilemma
with haptic devices and sensory capture involving two human
subjects in an embodied joint action paradigm, taking the form
of a video game. From video-derived heartrate (HR) and heart
rate variability (HRV) we predict in-game cooperativity between
subjects up to 7 seconds into the future (71% F1 score). Facial
expressions tell of significantly different experiences of subjects
depending on the amount of time given to establish trust, and
when that trust is broken. Our accumulated findings educated an
AI, named Hapti Bot, to embody the formulation of trust between
humans. Hapti Bot was trained using genetic algorithms, which
continuously generated AI candidates within given parameters.
This process mimicked biological evolution and produced a Bot
optimized to thrive in the Hapti Bird environment.

Index Terms—artificial intelligence, human trust, human-
machine interaction, psychophysiological markers, heart rate
variability, polyvagal theory, genetic algorithms
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I. INTRODUCTION

As artificial intelligence (AI) rapidly evolves and prolif-

erates to pervade daily life, fostering trust between humans

and AI becomes paramount. Though the term broadly covers

a wide array of use cases, we are particularly interested in

intelligent machines that automate some human activity and

are meant to interact with humans, or human-AI interactive

systems (HAIS). A successful collaboration demands more

than mere joint action, or coordinated behavior to bring about

a change in the environment [1]. It requires trust, reflecting

reliability not just of the AI, but of the human and the human-

AI dyad, as well to enable a resilient connection.

Trust is a behavior seen as crucial to the functioning of

human society [2]. It is a bond that allows humans to share

vulnerability and take risks [3], enabling feats not otherwise

achievable [4]. It is what underpins more complex social

constructs such as culture, replete with knowledge and norms

[5]—and how to be trustworthy, and identify others as such [3].

Biological evolution appears to have rewarded development

of the cognitive capacity for such behaviors [6]. Even if the

accumulation is not genetic, the resulting social structures

we have today—government by consent of the governed [7],

collective action, international courts—depend on trust. If trust

is broken, bonds crumble and institutions fail. In an equivalent

control system, if neither humans nor AI can maintain a trust

state, collaborative activity ceases.

Guidelines for AI to be Trustworthy have been put forth at

the highest levels [8], meant to establish a path for sustainable
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development of AI. Common themes include human control,

data privacy, accountability for the impact of AI systems,

safety and security, transparency and explainability, fairness

and nondiscrimination, professional responsibility, and promo-

tion of human values in usage [9]. Further technical guidelines

recommend reliability and resiliency [10], and a human rights-

based approach advocates for equity in the reaping of benefits

of advances in science and healthcare [11].

For AI to be Trusted in human society—in which it already

functions, since AI drives trucks [12], recognizes faces for

law enforcement [13], and provides companionship [14]—it

must build and maintain trust with humans. Humans form re-

lationships during interactions modulated by communication.

While language is a powerful tool, not all communication is

verbal and there is much information on a human’s internal

state [15] that is communicated nonverbally via social cues,

facial expressions, pose, gaze and gestures [16].

These are measurable psychophysiological markers. Facial

action units (FAUs) are small expressions on the face, dozens

of which are described and enumerated in the Facial Action

Coding System (FACS) [17], and used extensively for classifi-

cation tasks. Gaze tracking, sweating estimated with galvanic

skin response (GSR), pose, and affect are further vectors

of human-detectable social cues used in psychophysiological

studies. Underlying the latter, more subtle cues is the human

heart, the activity of which provides a window into both sym-

pathetic and parasympathetic nervous systems [18]. As it is

connected via vasculature to the entire body, modulation of the

brain-heart network reflects low-level control of internal state;

and observations of its activity contain rich information and

memory. The body remembers even if the mind does not, and

responds to events even if subjects are not consciously aware

[19]. Thus heart rate (HR) and variance of times between

beats, heart rate variability (HRV), are objective measures of

the human internal state.

Equally important is detecting when humans stop trusting

AI. Negative experiences with AI can result from unfulfilled

promises of capabilities [20], displacement of employment,

and feeling a loss of control, amongst other reasons. But there

are consequences for seeming betrayal, and rebuilding trust

requires work.

For an AI to recognize these psychophysiological markers

and respond in kind to a human partner, an interface is

required to mediate interactions. This communication channel

provides a unique opportunity to satisfy some requirements

of Trustworthy AI. With detection of markers correlated with

trust (and distrust) as a measure of AI adherence to normative

behavior, should the AI deviate from expectation, a human

reaction can indicate a correction or recalibration is required

to maintain requisite predictability, giving the system a degree

of reliability [10]. Under the watch of a human partner who

can identify the occurrence of unexpected adverse events, a se-

quence of translated human reactions provides a path through

AI learning loss landscapes back to a stable dynamic. Such

possible recovery provides the human-AI system resilience
[10].

II. BACKGROUND

A. Experimental Studies in Human Trust and Human-Machine
Interaction

Trust is more than just cooperation; it demands a refined

comprehension of the multifaceted elements that underlie

human behavior. In order to establish trust in AI systems, it is

imperative to draw insights from the complex nature of inter-

human trust. A comprehensive meta-analysis, incorporating

over 2,000 studies was conducted to systematically evaluate

the factors influencing human-human trust (primarily in teams

and organizations), concluding that the reputation of the trustee

and the shared closeness between trustor and trustee as pivotal

predictors of trustworthiness [21]. Here, we see that reliability

and relationships build trust.

In instances of human-AI interactions where a high level

of trust was demonstrated, the benefits of such trust have

highlighted the potential for mutual reliance between humans

and AI systems. In a design experiment where an AI agent

was developed to manage the design process, track progress,

and bridge communication in multidisciplinary teams, results

indicated that teams under AI management demonstrated

performance equal to or even superior to those managed by

humans [22]. Team members perceived the AI agent as equally

sensitive to the team’s needs as a human manager, suggesting

its potential to match human capabilities in trustworthy man-

agement.

Understanding the dynamics of trust in AI is crucial as

humans increasingly engage with AI systems in new contexts.

When considering cooperation and competition during joint

ventures with AI, studies have revealed that despite efforts

to “humanize” AI, uncertainty persists in human-AI collab-

oration, which can negatively impact trust [23]. However,

the cooperative nature of gameplay has shown to increase

trust between a human player and an AI [22]. These findings

demonstrate the complex relationship between human trust and

the dynamics of cooperation and competition in the evolving

landscape of human-AI interactions—and the clear need for

an objective measurement platform with which to understand

them. Hapti Bird is an initial effort at establishing just such a

tool.

B. The Prisoner’s Dilemma and the Iterated (or Repeated)
Prisoner’s Dilemma

Our experiment is a variation of the Prisoner’s Dilemma, a

thought experiment originating from game theory [24], where

two prisoners await interrogation, but are held separately and

unable to communicate with each other. Each has received an

offer of leniency in exchange for testimony about the other. So

the prisoners face the following dilemma: either remain silent

or testify against their partner. If one prisoner betrays a silent

partner, the prisoner will go free, while the partner receives

a long prison sentence. If both offer to testify, both receive

moderate sentences. If both say nothing, each receives a light

sentence. Barring sentiment or further encounters, there is a

clear incentive for betrayal.
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The Iterated (or Repeated) Prisoner’s Dilemma (IPD or

RPD, respectively) follows a similar structure; however, in

this case, the two prisoners undergo the experiment repeatedly.

It has been shown that incentives change when the prisoners

repeatedly face this dilemma and literature in game theory has

provided a plethora of strategies for this scenario [25].

C. Genetic Algorithms

The power of genetic algorithms (GAs) for finding optimal

solutions is Darwinian selection applied to computational

problems, not biological organisms. Inspired by nature’s se-

lection process, GAs efficiently tackle diverse optimization

problems with flexible rules [26] [27].

At their heart, GAs are dynamical systems [28] operating

in a space of sets of parameters–a parameter space–to be

optimized for some end. Trajectories of points in this param-

eter space are propelled by fitness functions and perturbed

by mutation, but naturally fixate on attractors in the fitness

landscape, should they exist.

The algorithm begins with a population of individuals, each

of which has an encoded chromosome, which experiences

evolutionary pressures from a fitness function determining

individuals’ utility, or proximity to a solution. The fittest

individuals reproduce to create new generations, so adaptation

is a necessary condition for survival. After many generations,

the population should have migrated to one or more possible

solutions [26]. Due to the potential for mutation, genetic

algorithms have an uncanny ability to rapidly find solutions,

even in large, high-dimensional spaces.

D. The Heart and its Role in Cooperation and Competition

The human brain regulates the heart through the auto-

nomic nervous system via sympathetic and parasympathetic

branches [29]. The heart maintains a constant internal state of

homeostatic balance between numerous demands. When there

is a need to engage actively with the environment, cortical

neurons shift this homeostatic balance, and cardiac output is

increased to match metabolic demands [30]: the heart beats

faster. Moreover, brain-heart bidirectional co-regulation can

be altered by central autonomic commands, including those

associated with stress, physical activity, arousal, sleep, and

altered states of consciousness [31]. When a calm behavioral

state is required, the re-engagement of cranial nerve X slows

the heart rate and provides the physiological support for self-

soothing behaviors [30] [32].

Heart rate variability (HRV) is derived from the heart rate,

and a reliable tool to detect the activity of autonomic nervous

regulation. Control and coordination of the body and brain

is well reflected in the measurements of HRV [33] [34].

Low HRV has a direct correlation with increased stress and

anxiety, which can hinder relationships. Contrarily, high HRV

is an indication of greater stress resilience and promotes

more positive social interactions, and is associated with better

emotional regulation and empathy, all of which could facilitate

trust and cooperation. [34].

III. METHODS

A. Description of the Experiment

Each experiment is a playthrough of the Hapti Bird game.

Each player controls an on-screen cursor with a haptic device,

as shown in Figure 1. In the game, a sequence of moving

obstacles approaches the players from the right. Successful

maneuvering of their cursors through obstacles gives the play-

ers rewards. The cursors are tethered via software-simulated

spring, effected with force feedback applied by Novint Falcon

haptic devices using the Force Dimension SDK. By operating

in a virtual environment, this apparatus was able to ensure that

experiments were repeatable, and consistent, and had built-in

data collection for the entire task state.

During the experiment, players are physically separated but

can see each other via live video inset in their game screens,

allowing for non-verbal communication and observation. Each

game begins with a brief introduction, giving players time

to adjust to the game, haptic controllers, and each other.

After the game begins, an obstacle progresses towards the

players, with two gaps, referred to as gates, offering passage.

Each (seemingly) offers to earn differing amounts of currency

in United States dollars. Players must cooperatively select a

gate and move their tethered cursors through the opening.

The game is meant to inspire players to cooperate and thus

prioritizes agreement over disagreement. So if both players fail

to cooperatively pass through an agreeable gate, and instead

crash into the obstacle, a penalty of $2.00 is applied to both

their scores. This penalty is structured such that it will always

be greater than passing through any individual gate with a

negative value.

For a period of time the gates have the same value to both

players; this is referred to as an aligned phase. Eventually,

this shared reality is shattered when gate values are reversed,

unbeknownst to the players; during such an unaligned phase,

players are incentivized to pursue opposing gates. Players that

cannot reestablish cooperation crash into obstacles, (seem-

ingly) wiping away earnings. After a time, normality returns

with a new aligned phase. This is followed by another un-

aligned phase, and finishing with an aligned phase. Some

experiments inverted this ordering, beginning and ending with

an unaligned phase.

B. Data Collection and Measure Generation

As the game runs, the game state—including player cursor

positions, obstacle locations, gate values, and current scores—

is recorded. The Euclidean distance between players’ cursors

was taken as a measure of cooperation. Small distances,

required to pass through gates to earn resources, indicate

players are in agreement. Larger distances, seen when players

do not favor the same gate, suggest the opposite. Since every

subject (and pair) has a distinct playing style, we utilize a

baseline distance with which to compare future movement.

The experimental apparatus also employed a set of video

cameras for the contactless and unobtrusive collection of

human physiological data. One of the cameras is a PhysioCam,
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Fig. 1. Three stills of the rendered game during an experiment depict possible states. In a), the two players, with distinct color-coded cursors, approach an
obstacle from left to right, tethered via simulated spring. b) shows the change in color of the obstacle (now green) to indicate the players have successfully
navigated through one of the two available gates offering safe passage through the obstacle, earning resources. c) shows the alternative scenario, whereupon
players have instead crashed into the obstacle (now red), losing resources.

which translates streamed video frames into raw pulse data

by estimating blood flow in the face [35]. Produced data are

highly sensitive to changes in lighting and subject movement.

Raw data requires extensive cleansing and segmentation, with

segments further reduced as both HR and HRV are slow

measures, requiring at least several seconds of uninterrupted

data to compute, and shifting only incrementally with each

heartbeat.

Another camera simply records the subject. From this

data we can identify FAUs. There are many FAU detectors

available, but after some testing, we selected OpenFace [36]

for its portability and reliability; there are newer and more

accurate tools available but they did not meet other criteria

for use in our study. Such detectors are classifiers that input

images, or a sequence of frames from a video and determine

whether any of some subset of FAUs are present. From our

video data, we produced a stream of detected FAUs and their

intensity (on a scale of 1-5). This data was nearly continuous

but sparse; FAUs are comparatively rare events. Thus our

metrics are typically frequencies of observed FAUs during a

prescribed window of time.

C. Hapti Bot

The ultimate goal of this work is to capture human psy-

chophysiological response to an AI counterpart by first under-

standing human-human trust dynamics. The AI counterpart we

named Hapti Bot. While AI agents in games often employ

reinforcement learning [37], the complexity of interaction

in the game prevented the algorithm from converging to

an optimal solution. GAs wrapped around a small neural

network model proved more fruitful for developing reliably

performing AI agents. The internal neural network required

only two layers to intelligently select next moves. The model is

given the game’s current state, which includes the individual’s

position and orientation toward the oncoming obstacle, and

the individual’s previous move.

The Hapti Bot lifecycle is depicted in Figure 2. Weights

for the internal model became an individual’s chromosome.

As the internal model trained, its fitness gradually peaked.

When all individuals reach this performance plateau, the

fittest are selected for producing the next generation. New,

random individuals—which are AI candidates within given

parameters—are also spawned and added to the population.

This process continues until an individual emerges with a

performance similar to humans, capable of passing through

30 gates without crashing into an obstacle.

IV. RESULTS

43 experimental runs were completed, with as participants

one Subject, typically a university undergraduate student

taking courses in psychology, and one laboratory volunteer,

referred to as the Confederate, with knowledge of the game.

A. Heart Rate and Heart Rate Variability

The HR and HRV baselines were computed from a segment

extracted prior to the start of the game. The ratio of HR and

HRV to baseline proved to be the most effective data reduc-

tion approach for these models. Only 10 experimental runs

contained sufficient data, but from them, an unusual model

was constructed: from a subject’s immediate HR, HRV, and its

comparison to baseline, we could predict their cooperativity,

as expressed in cursor distance, up to 7 seconds in the future,

with an F1 score of 71%. The inclusion of additional FAU

measures (as depicted in Figure 3 improved the F1 score by

a single point.

B. Facial Action Units

For this analysis, we split subjects by whether their exper-

imental run began with an aligned (12 subjects) or unaligned
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Fig. 2. The Hapti Bot lifecycle comprises a GA wrapped around a small neural network model. Individual chromosomes contain model weights and train in
the Hapti Bird game until performance peaks. Then the fittest individuals are selected for the next generation, and the cycle repeats.

Fig. 3. This bar plot shows the relative ranking of features from a fused dataset
containing a subject’s current HR, HRV, and observed AU, all respectively
compared to baseline values. This ranking resulted from constructing a
Random Forest that allowed us to predict the subject’s future cooperativity,
up to 7 seconds ahead of observation, operationally defined as the distance
between game cursors.

phase (17 subjects). If a subject experienced a phase of align-

ment, that could provide time to build trust, a buffer against

the first taste of betrayal of an unaligned phase. Some subjects

did not have this period, and after the introduction immediately

jumped into an unaligned phase. For each subject, we observed

the change in expression (frequencies of FAUs) during the

transition to the unaligned phase by taking the difference

between FAU frequencies 20 seconds before and after the

transition. With a paired differences test per FAU, we identified

FAUs that changed significantly during the transition, as shown

in Figure 4.
We did not find significantly expressed FAUs within sub-

groups or the entire group of subjects, perhaps due to the

small sample size, but more likely due to sheer diversity. Some

subjects during experiments became hostile, even pounding

the desk, while others appeared to truly enjoy the chaos of

unaligned phases.

C. Hapti Bot
Currently, our implementation of Hapti Bot is able to locate

the best gate and pass through it without collision with the

obstacle, and repeat that success at least 1000 times, well

above what is asked of any human participant. Hapti Bot is

also able to correctly position itself for passage through the

gate in approximately 60-70% of occurrences. After passage,

the Bot immediately seeks out the next, so that it will have

substantial flexibility adjusting to gap length variation between

gates and human player movements.

V. DISCUSSION

With measurable psychophysiological markers, we can ob-

serve the building and breaking of human trust in two contexts:
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Fig. 4. In this table we compare the change in expression of FAUs of two
groups of subjects during the transition from an introductory (I) or aligned
(A) phase to an unaligned (U) phase; it is at this time that the subjects would
experience betrayal. The first group experienced an introductory phase, an
aligned phase, and then an unaligned phase. The second group did not have
the benefit of an intermediate aligned phase, leaving little time for subjects
to develop trust.

the heart and the face.

A. Heart Activity Cues

Since the ability to detect trustworthy persons is such a

fundamental survival skill [38], we could generate a modest

Random Forest based on HR, HRV, and values compared to

baseline to anticipate cooperativity—independently of time.

Accuracy could certainly be boosted with another choice of

model; the Random Forest was only selected for its feature

ranking.

B. Facial Cues

We note here that FAUs detected in the course of the experi-

ment are spontaneous, in that they were not explicitly elicited

from subjects. Subjects likely believed actual funds were at

stake and reacted more naturally, perhaps counteracting the

polite norms induced by a university laboratory environment.

Small samples yielded a conservative list of FAUs that

changed significantly during the first transition to an unaligned

phase. The group of subjects transitioning from an initial

aligned phase would have experienced 2-3 minutes to adapt to

their partner, and build trust. After the transition, this group’s

collective reaction is fairly muted.

For the group that begins in an unaligned phase, we see

smiles (AU codes 6, 12) wiped from faces in a clear sign

of betrayal. Also significantly observed were instances of

blinking (AU 45), an autonomic reaction associated with a

startled or defensive response.

C. Hapti Bot

The minimal and versatile nature of Hapti Bot allows it to

be a point of inception for future versions of the Hapti Bird

game. Its current form, in which every action it takes favors

the best gate, will reasonably pass as human to real human

subjects. However, there is much we can build on to explore

more human-like traits.

VI. FUTURE WORK

The Falcon controllers, while ideally precise and responsive,

were discovered to be quite fragile in the hands of competitive

university students. For the next version of Hapti Bot, we are

using robust, rugged steering wheels as game controllers. We

will validate the first round of experiments before integrating

Hapti Bot for training. We expect its behavior to adjust, as it

will now find itself utilizing a wheel for movement as well as

an elastic tether to a human player.

Further, we plan to create two trained Hapti Bots, connected

by game controllers, with opposing incentives for gate selec-

tion. By creating a small penalty for selecting a suboptimal

gate, this new round of training may provide the Bot is the

ability to “give up” and choose to pass through the suboptimal

gate when it is no longer possible to reach its preferred gate,

lest risking crashing into the obstacle.

With emerging Hapti Bots and further confirmation of

psychophysiological markers, the logical next step is to create

human-in-the-loop (HITL) machine learning systems [39].

Such systems iteratively integrate human feedback to improve

models. In our case, Hapti Bot engages a human player who

is observed in realtime for identifiable markers; such reactions

are used to adjust Hapti Bot’s behavior via online reinforce-

ment learning [40]. Unsupervised, Hapti Bot would become

an autonomous cyber-physical system (CPS), an altogether

different creature, reflecting the individual proclivities of its

user [41].
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