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Abstract—Music generation has attracted growing interest
with the advancement of deep generative models. However,
generating music conditioned on textual descriptions, known
as text-to-music, remains challenging due to the complexity
of musical structures and high sampling rate requirements.
Despite the task’s significance, prevailing generative models
exhibit limitations in music quality, computational efficiency, and
generalization ability. This paper introduces JEN-1, a universal
high-fidelity model for text-to-music generation. JEN-1 is a
diffusion model incorporating both autoregressive and non-
autoregressive training in an end-to-end manner, enabling up
to 48kHz high-fidelity stereo music generation. Through multi-
task in-context learning, JEN-1 performs various generation tasks
including text-guided music generation, music inpainting, and
continuation. Evaluations demonstrate JEN-1’s superior perfor-
mance over state-of-the-art methods in text-music alignment and
music quality while maintaining computational efficiency. Our
demo pages are available at https://jenmusic.ai/audio-demos

Index Terms—generative models, text-to-music, music genera-
tion, non-autoregressive, diffusion models

I. INTRODUCTION

Music, as an artistic expression comprising harmony,

melody and rhythm, holds great cultural significance and

appeal to humans. Recent years have witnessed remarkable

progress in music generation with the rise of deep generative

models [1]–[3]. However, generating high-fidelity and real-

istic music still poses unique challenges compared to other

modalities. Firstly, music utilizes the full frequency spectrum,

requiring high sampling rates like 44.1kHz stereo to capture

the intricacies. This is in contrast to speech generation which

focuses on linguistic content and uses lower sampling rates

(e.g., 16kHz). Secondly, the blend of multiple instruments

and the arrangement of melodies and harmonies result in

highly complex structures. With humans being sensitive to

musical dissonance, music generation allows little room for

imperfections. Most critically, controllability over attributes

like key, genre and melody is indispensable for creators to

realize their artistic vision.

The multi-modal intersection of text and music, known as

text-to-music generation, offers valuable capabilities to bridge

free-form textual descriptions and musical compositions. A

variety of works have been done towards text-to-music gen-

eration. Regarding how they encode the high complexity of

input music signals, typical methods are generally categorized
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into, (1) directly adopting waveform signals with the help

of discrete encodings to handle the complexity burden [3],

[4], or (2) converting signals to spectrum formats that allow

continuous encodings, which, inevitably incur fidelity losses

during the spectrum conversion process [1], [5]. Apart from

these works, Noise2Music [6] tries to leverage waveform

signals with continuous encodings yet the fidelity of music

representation is bottle-necked to only 3.2kHz, which is still

limited even after adding a cascade model and a super-

resolution stage hierarchically.

A systematic comparison of existing methods is provided

in Table I, where some of the approaches operate on spec-

trogram representations, incurring fidelity loss from audio

conversion [1], [5]. Others employ inefficient autoregressive

designs to sequentially predict each music token [3], or adopt

multiple models to cascade-generate the music, resulting in

low computational efficiency [4], [6]. More restrictively, the

training objectives of existing methods are confined to a single

task, lacking the versatility to conduct multiple and general

music generation and editing tasks.

In this paper, we propose JEN-1, a universal text-to-music

generation model combining quality, controllability, and effi-

ciency. JEN-1 leverages a hybrid autoregressive (AR) and non-

autoregressive (NAR) structure, with a novel omnidirectional

design that potentially enjoys the benefits of both generation

efficiency and quality. By the combination of AR and NAR

structural designs, for the first time, JEN-1 unifies the learn-

ing process of multiple tasks including text-to-music, music

inpainting, and music continuation into one single model.

Another hallmark of JEN-1 is the ability to encode raw

waveform data formats, e.g., enabling the generation of high-

fidelity 48kHz stereo audios, which is realized by our proposed

masked noise-robust autoencoder with specific designs for

continuous embedding representation and latent embedding

normalization.

We extensively evaluate JEN-1 against state-of-the-art base-

lines across objective metrics and human evaluations. Results

indicate that JEN-1 produces music of perceptually higher

quality compared to the current best methods (85.7 vs. 83.8).

Ablations validate the efficacy of each technical component

and also demonstrate that JEN-1 benefits greatly from multi-

task joint training. More importantly, human judges confirm

JEN-1 generates music highly aligned with text prompts in a

melodically and harmonically pleasing fashion.
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TABLE I
COMPARISON BETWEEN STATE-OF-THE-ART MUSIC GENERATIVE MODELS.

Feature MusicLM MusicGen AudioLDM Noise2Music JEN-1 (Ours)

D
at

a high sample rate � � � � �
2-channel stereo � � � � �
waveform � � � � �

M
o
d
el autoregressive � � � � �

non-autoregressive � � � � �
non-cascade model � � � � �

T
as

k single-task training � � � � �
multi-task training � � � � �

In summary, the key contributions of this work are:

1) We propose JEN-1 as a universal framework to the

challenging text-to-music generation task. JEN-1 utilizes

an extremely efficient approach by directly modeling

waveforms and avoids the conversion loss associated

with spectrograms. It incorporates a masked autoencoder

and diffusion model, yielding high-quality music at a

48kHz sampling rate.

2) JEN-1 integrates both autoregressive and non-

autoregressive diffusion modes in an end-to-end

manner to improve sequential dependency and enhance

sequence generation concurrently, enabling music

generation, music continuation, and music inpainting

within one single non-cascade model.

3) We conduct comprehensive evaluations, both objective

and involving human judgment, to thoroughly assess the

crucial design choices underlying our method. Results

demonstrate that JEN-1 generates melodically aligned

music that adheres to textual descriptions while main-

taining high fidelity.

II. RELATED WORK

In this section, we present a review of the extant literature

within the domain of music generation. We undertake a com-

parative analysis of three primary paradigmatic distinctions:

single-task vs. multi-task training, waveform vs. spectrum-

based methods, and autoregressive vs. non-autoregressive gen-

erative modes.

Single-task vs. Multi-task. Several prior symbolic music

generation methods [7], [8] have primarily produced basic

MIDI-style compositions, characterized by their simplicity and

lack of realism. In contrast, recent methodologies [1], [3],

[6] have employed text descriptions as conditioning inputs

to facilitate the direct generation of high-fidelity raw musi-

cal compositions. Nevertheless, existing approaches are often

constrained by narrow generation objectives, limiting their

applicability to a singular task and impeding their adaptability

for diverse music generation and editing tasks. In contrast,

JEN-1 introduces a universal framework designed to tackle the

intricate text-to-music generation challenge. This framework

streamlines the learning process by encompassing multiple

tasks within a singular mode, thus encompassing text-to-music

conversion, music inpainting, and music continuation.

Waveform vs. Spectrum. The fundamental processes of audio

feature extraction and representation learning [9]–[12] play a

pivotal role in music generation and can be classified into two

main directions. One of these methods entails the transforma-

tion of the audio waveform into a mel-spectrogram [1], [5],

which is then processed as images. However, this transforma-

tion from waveform to spectrogram necessitates a shift from

continuous encodings to spectral formats, a step that inevitably

introduces fidelity losses in the audio data. Conversely, the

other approaches [3], [6] involve the direct utilization of

raw waveform-based audio data. Some variations of this

approach go a step further by converting the audio into discrete

tokens [3], [4] for modeling purposes, also resulting in a

compromise in audio quality. In this study, JEN-1 adopts a

strategy that preserves the raw waveform data in a continuous

space format, facilitating the generation of high-fidelity stereo

audio at a sampling rate of 48kHz.

Autoregressive vs. Non-autoregressive. Music generation

draws inspiration from both natural language processing

(NLP) and computer vision (CV), incorporating both au-

toregressive (AR) and non-autoregressive (NAR) models. AR

models, such as PerceiverAR [13], AudioGen [2], Musi-

cLM [3], and Jukebox [14], predict audio tokens sequentially

based on prior context. However, their processing speed lim-

itations hinder their utility in music in-painting tasks. Con-

versely, NAR models generate multiple tokens concurrently,

offering faster processing and improved generative perfor-

mance. Modern NAR models, such as StableDiffusion [15],

excel in image generation, while diffusion models [16] have

gained attention for their NAR generative capabilities in

music generation tasks. These models progressively refine

random noise into latent representations, enabling efficient

synthesis of high-quality audio. Some approaches, including

Make-An-Audio [17], Noise2Music [6], AudioLDM [1], and

TANGO [5], extend latent diffusion models (LDM) [15] and

demonstrate significant speed advantages in music generation

tasks. In this study, JEN-1 pioneers a hybrid AR and NAR

structure to enhance sequential dependency and improve con-

current sequence generation.

774



III. PRELIMINARY

A. Conditional Generative Models

In the field of content synthesis, the implementation of

conditional generative models often involves applying either

autoregressive (AR) [3], [4] or non-autoregressive (NAR) [1],

[5] paradigms. The inherent structure of language, where each

word functions as a distinct token and sentences are sequen-

tially constructed from these tokens, makes the AR paradigm

a more natural choice for language modeling. Thus, in the

domain of Natural Language Processing (NLP), transformer-

based models, e.g., GPT series, have emerged as the prevailing

approach for text generation tasks. AR methods [3], [4] rely

on predicting future tokens based on visible history tokens.

The likelihood is represented by:

pAR(y | x) =
N∏
i=1

p
(
yi | y1:i−1;x

)
, (1)

where yi represents the i-th token in sequence y.

Conversely, for the image generation task where images

have no explicit time series structure and images typically

occupy continuous space, employing an NAR approach is

deemed more suitable. Notably, the NAR approach, such as

stable diffusion, has emerged as the dominant method for

addressing image generation tasks. NAR approaches assume

conditional independence among latent embeddings and gener-

ate them uniformly without distinction during prediction. This

results in a likelihood expressed as:

pNAR(y | x) =
N∏
i=1

p (yi | x) . (2)

Although the parallel generation approach of NAR offers a

notable speed advantage, it falls short in terms of capturing

long-term consistency.

In this work, we argue that audio data can be regarded

as a hybrid form of data. It exhibits characteristics akin to

images, as it resides within a continuous space that enables

the modeling of high-quality music. Additionally, audio shares

similarities with text in its nature as a time-series data. Con-

sequently, we propose a novel approach in our JEN-1 design,

which entails the amalgamation of both the auto-regressive

and non-autoregressive modes into a cohesive omnidirectional

diffusion model.

B. Diffusion Models for Audio Generation

Diffusion models [16] constitute probabilistic models ex-

plicitly developed for the purpose of learning a data distribu-

tion p(x). The overall learning of diffusion models involves

a forward diffusion process and a gradual denoising process,

each consisting of a sequence of T steps that act as a Markov

Chain. In the forward diffusion process, a fixed linear Gaussian

model is employed to gradually perturb the initial random vari-

able z0 until it converges to the standard Gaussian distribution.

This process can be formally articulated as follows,

q (zt | z0;x) = N (
zt;

√
ᾱtz0, (1− ᾱt) I

)
,

ᾱt =

t∏
i=1

αi,
(3)

where αi is a coefficient that monotonically decreases with

timestep t, and zt is the latent state at timestep t. The

reverse process is to initiate from standard Gaussian noise and

progressively utilize the denoising transition pθ (zt−1 | zt;x)
for generation,

pθ (zt−1 | zt;x) = N (zt−1;μθ (zt, t;x) ,Σθ (zt, t;x)) ,
(4)

where the mean μθ and variance Σθ are learned from the

model parameterized by θ. We use predefined variance with-

out trainable parameters following [1], [15]. After simply

expanding and re-parameterizing, our training objective of the

conditional diffusion model can be denoted as,

L = Ez0,ε∼N (0,1),t

[
‖ε− εθ (zt, t)‖22

]
, (5)

where t is uniformly sampled from {1, ..., T}, ε is the ground

truth of the sampled noise, and εθ(·) is the noise predicted by

the diffusion model.

The conventional diffusion model is characterized as a non-

autoregressive model, which poses challenges in effectively

capturing sequential dependencies in music flow. To address

this limitation, we propose the joint omnidirectional diffusion

model JEN-1, an integrated framework that leverages both

unidirectional and bidirectional training. These adaptations

allow for precise control over the contextual information used

to condition predictions, enhancing the model’s ability to

capture sequential dependencies in music data.

IV. METHOD

In this research paper, we propose a novel model called

JEN-1, which utilizes an omnidirectional 1D diffusion model.

JEN-1 combines bidirectional and unidirectional modes, offer-

ing a unified approach for universal music generation condi-

tioned on either text or music inputs. The model operates in a

noise-robust latent embedding space obtained from a masked

audio autoencoder, enabling high-fidelity reconstruction from

latent embeddings with a low frame rate(§ IV-A). In contrast

to prior generation models that use discrete tokens or involve

multiple cascaded stages, JEN-1 introduces a unique modeling

framework capable of generating continuous, high-fidelity

music using one single model. JEN-1 effectively utilizes both

autoregressive training to improve sequential dependency and

non-autoregressive training to enhance sequence generation

concurrently (§ IV-B). By employing in-context learning and

multi-task learning, one of the significant advantages of JEN-1

is its support for conditional generation based on either text or

melody, enhancing its adaptability to various creative scenarios

(§ IV-C). This flexibility allows the model to be applied to

different music generation tasks, making it a versatile and

powerful tool for music composition and production.
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Fig. 1. Illustration of the JEN-1 multi-task training strategy, including the text-guided music generation task, the music inpainting task, and the music
continuation task. JEN-1 achieves the in-context learning task generalization by concatenating the noise and masked audio in a channel-wise manner. JEN-1
integrates both the bidirectional mode to gather comprehensive context and the unidirectional mode to capture sequential dependency.

A. Masked Autoencoder for High Fidelity Latent Representa-
tion Learning

High Fidelity Neural Audio Latent Representation. To

facilitate the training on limited computational resources with-

out compromising quality and fidelity, our approach JEN-

1 employs a high-fidelity audio autoencoder E to compress

original audio into latent representations z. Formally, given a

two-channel stereo audio x ∈ R
L×2, the encoder E encodes

x into a latent representation z = E(x), where z ∈ R
L/h×c.

L is the sequence length of given music, h is the hop size and

c is the dimension of latent embedding. While the decoder

reconstructs the audio x̃ = D(z) = D(E(x)) from the latent

representation. Our audio compression model is inspired and

modified based on previous work [18], [19], which consists of

an autoencoder trained by a combination of a reconstruction

loss over both time and frequency domains and a patch-based

adversarial objective operating at different resolutions. This

ensures that the audio reconstructions are confined to the

original audio manifold by enforcing local realism and avoids

muffled effects introduced by relying solely on sample-space

losses with L1 or L2 objectives. Unlike prior endeavors [18],

[19] that employ a quantization layer to produce the discrete

codes, our model directly extracts the continuous embeddings

without any quality-reducing loss due to quantization. This

utilization of powerful autoencoder representations enables

us to achieve a nearly optimal balance between complexity

reduction and high-frequency detail preservation, leading to a

significant improvement in music fidelity.

Noise-robust Masked Autoencoder. To further enhance the

robustness of decoder D, we propose a masking strategy,

which effectively reduces noises and mitigates artifacts, yield-

ing superior-quality audio reconstruction. In our training pro-

cedure, we adopt a specific technique wherein p = 5% of the

intermediate latent embeddings are randomly masked before

feeding into the decoder. By doing so, we enable the decoder to

acquire proficiency in reconstructing superior-quality data even

when exposed to corrupted inputs. We train the autoencoder on

Algorithm 1 Normalizing Latent Embedding Space

Input: Existing latent embeddings {zi}Ni=1 and reduced di-

mension k

1: compute μ and Σ of {zi}Ni=1

2: compute U,Λ, UT = SVD(Σ)
3: compute W = (U

√
Λ−1)[:, : k]

4: z̃i = (zi − μ)W

Output: Normalized latent embeddings {z̃i}Ni=1

48kHz stereophonic audios with large batch size and employ

an exponential moving average to aggregate the weights.

As a result of these enhancements, the performance of our

audio autoencoder surpasses that of the original model in all

evaluated reconstruction metrics. Consequently, we adopt this

audio autoencoder for all of our subsequent experiments.

Normalizing Latent Embedding Space. To avoid arbitrarily

scaled latent spaces, [15] found it is crucial to achieve bet-

ter performance by estimating the component-wise variance

and re-scale the latent z to have a unit standard deviation.

In contrast to previous approaches that only estimate the

component-wise variance, JEN-1 employs a straightforward

yet effective post-processing technique to address the chal-

lenge of anisotropy in latent embeddings as shown in Algo-

rithm 1. Specifically, we channel-wisely perform zero-mean

normalization on the latent embedding, and then transform the

covariance matrix to the identity matrix via the Singular Value

Decomposition (SVD) algorithm. We implement a batch-

incremental equivalent algorithm to calculate these transforma-

tion statistics. Additionally, we incorporate a dimension reduc-

tion strategy to keep 90% most important channels (reduced

dimension k in Algorithm 1) to enhance the whitening process

further and improve the overall effectiveness of our approach.

B. omnidirectional Latent Diffusion Models

In some prior approaches [1], [5], time-frequency conver-

sion techniques, such as mel-spectrogram, have been employed
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Fig. 2. Illustration of bidirectional mode and unidirectional mode for
convolutional block and transformer block. In the unidirectional mode, we
use causal padding in the convolutional block and attend the self-attention
mask only to the left context in the transformer block.

for transforming the audio generation into an image generation

problem. Nevertheless, we contend that this conversion from

raw audio data to mel-spectrogram inevitably leads to a

significant reduction in quality. To address this concern, JEN-1

directly leverages a temporal 1D efficient U-Net. This modified

version of the Efficient U-Net [20] allows us to effectively

model the waveform and implement the required blocks in the

diffusion model. The U-Net model’s architecture comprises

cascading down-sampling and up-sampling blocks intercon-

nected via residual connections. Each down/up-sampling block

consists of a down/upsampling layer, followed by a set of

blocks that involve 1D temporal convolutional layers, and

self/cross-attention layers. Both the stacked input and output

are represented as latent sequences of length L, while the

diffusion time t is encoded as a single-time embedding vector

that interacts with the model via the aforementioned combined

layers within the down and up-sampling blocks. In the context

of the U-Net model, the input consists of the noisy sample

denoted as xt, which is stacked with additional conditional

information. The resulting output corresponds to the noise

prediction ε during the diffusion process.

Task Generalization via In-context Learning. To better

achieve the goal of multi-task versatility, we propose a

novel omnidirectional latent diffusion model without explicitly

changing the U-Net architecture. As shown in Figure 1, JEN-1

formulates various music generation tasks as text-guided in-

context learning tasks. The common goal of these in-context

learning tasks is to produce diverse and realistic music that

is coherent with the context music and has the correct style

described by the text. For in-context learning objectives, e.g.,
music inpainting task, and music continuation task, additional

masked music information, which the model is conditioned

upon, can be extracted into latent embedding and stacked as

additional channels in the input. More precisely, apart from the

original latent channels, the U-Net block has 129 additional

input channels (128 for the encoded masked audio and 1 for

the mask itself).

From Bidirectional Mode to Unidirectional Mode. To ac-

count for the inherent sequential characteristic of music, JEN-1

integrates the unidirectional diffusion mode by ensuring that

the generation of latent on the right depends on the generated

ones on the left, a mechanism achieved through employing

a unidirectional self-attention mask and a causal padding

mode in convolutional blocks. In general, the architecture

of the omnidirectional diffusion model enables various input

pathways, facilitating the integration of different types of data

into the model, resulting in versatile and powerful capabilities

for noise prediction and diffusion modeling. During training,

JEN-1 could switch between a unidirectional mode and a

bidirectional model without changing the architecture of the

model. The parameter weight is shared for different learning

objectives. As illustrated in Figure 2, JEN-1 could switch

into the unidirectional (autoregressive) mode, i.e., the output

variable depends only on its own previous values. We employ

causal padding [21] in all 1D convolutional layers, padding

with zeros in the front so that we can also predict the values

of early time steps in the frame. In addition, we employ

a triangular attention mask following [22], by padding and

masking future tokens in the input received by the self-

attention blocks.

C. Unified Music Multi-task Training

In contrast to prior methods that solely rely on a single

text-guided learning objective, our proposed framework, JEN-

1, adopts a novel approach by simultaneously incorporating

multiple generative learning objectives while sharing common

parameters. As depicted in Figure 1, the training process en-

compasses three distinct music generation tasks: bidirectional

text-guided music generation, bidirectional music inpainting,

and unidirectional music continuation. The utilization of multi-

task training is a notable aspect of our approach, allowing for

a cohesive and unified training procedure across all desired

music generation tasks. This approach enhances the model’s

ability to generalize across tasks, while also improving the

handling of music sequential dependencies and the concurrent

generation of sequences.

Text-guided Music Generation Task. In this task, we employ

both the bidirectional and unidirectional modes. The bidirec-

tional model allows all latent embeddings to attend to one

another during the denoising process, thereby enabling the

encoding of comprehensive contextual information from both

preceding and succeeding directions. On the other hand, the

unidirectional model restricts all latent embeddings to attend

solely to their previous time counterparts, which facilitates the

learning of temporal dependencies in music data. Moreover,

for the purpose of preserving task consistency within the

framework of U-Net stacked inputs, we concatenate a full-

size mask alongside all-empty masked audio as the additional

condition.

Music inpainting Task. In the domain of audio editing,

inpainting denotes the process of restoring missing segments
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TABLE II
COMPARISON WITH STATE-OF-THE-ART TEXT-TO-MUSIC GENERATION METHODS ON MUSICCAPS TEST SET. †WE USE THE PUBLIC API TO FOR HUMAN

EVALUATION. ‡SINCE THE CODE IS NOT PUBLICLY AVAILABLE, WE REPORT THE ORIGINAL FAD FOR MUSICLM AND NOISE2MUSIC. INFERENCE

SPEEDS (MEASURED AS SECONDS PER ITEM) ARE REPORTED ON A100 GPUS.

QUANTITATIVE QUALITATIVE EFFICIENCY

METHODS FAD↓ KL ↓ CLAP↑ T2M-QLT ↑ T2M-ALI ↑ PARAMETERS ↓
Riffusion 14.8 2.06 0.19 72.1 72.2 890M
Mousai [23] 7.5 1.59 0.23 76.3 71.9 857M
MusicLM†‡ [3] 4.0 - - 81.7 82.0 860M
AudioLDM [1] 2.3 1.35 0.31 81.9 71.8 739M
Noise2Music‡ [6] 2.1 - - - - 1.3B
MusicGen [4] 3.8 1.22 0.31 83.8 79.5 3.3B

JEN-1 (Ours) 2.0 1.29 0.33 85.7 82.8 726M

within the music. This restorative technique is predominantly

employed to reconstruct corrupted audio from the past, as

well as to eliminate undesired elements like noise and water-

marks from musical compositions. In this task, we adopt the

bidirectional mode in JEN-1. During the training phase, our

approach involves simulating the music inpainting process by

randomly generating audio masks with mask ratios ranging

from 20% to 80%. These masks are then utilized to obtain the

corresponding masked audio, which serves as the conditional

in-context learning inputs within the U-Net model.

Music Continuation Task. We demonstrate that the proposed

JEN-1 model facilitates both music inpainting (interpolation)

and music continuation (extrapolation) by employing the novel

omnidirectional diffusion model. The conventional diffusion

model, due to its non-autoregressive nature, has demonstrated

suboptimal performance in previous studies [3], [24]. This

limitation has impeded its successful application in audio

continuation tasks. To address this issue, we adopt the uni-

directional mode in our music continuation task, ensuring

that the predicted latent embeddings exclusively attend to

their leftward context within the target segment. Similarly, we

simulate the music continuation process through the random

generation of exclusive right-only masks. These masks are

generated with varying ratios spanning from 20% to 80%.

The overall training objective is the sum of the different

types of JEN-1 tasks described above. Specifically, within a

training batch, for 1/3 of the data we use the bidirectional text-

guided generation objective, for 1/3 of the data we employ the

bidirectional music inpainting objective, and the unidirectional

music continuation objective is calculated with the rest of 1/3

data. To gain a more comprehensive overview of JEN-1, we

kindly direct your attention to our demo page.

V. EXPERIMENT

Implementation Details. For the masked music autoencoder,

we used a hop size of 320, resulting in 125Hz latent se-

quences for encoding 48kHz music audio. The dimension

of latent embedding is 128. We randomly mask 5% of the

latent embedding during training to achieve a noise-tolerant

decoder. We employ FLAN-T5 [25], an instruct-based large

language model to provide superior text embedding extraction.

For the omnidirectional diffusion model, we implemented

a 1D conditional UNet latent diffusion model inspired by

Stable Diffusion [15]. we set the intermediate cross-attention

dimension to 1024, resulting in 726M parameters. During

the multi-task training, we evenly allocate 1/3 of a batch to

each training task. In addition, we applied the classifier-free

guidance [26] to improve the correspondence between samples

and text conditions. During training, the cross-attention layer is

randomly replaced by self-attention with a probability of 0.2.

We train our JEN-1 models on 8 A100 GPUs for 200k steps

with the AdamW optimizer [27], a linear-decayed learning

rate starting from 3e−5 a total batch size of 512 examples,

β1 = 0.9, β2 = 0.95, a decoupled weight decay of 0.1, and

gradient clipping of 1.0. In the diffusion forward process, we

use the DDPM [16] sampler with N = 1000 steps, and a linear

noise schedule from β1 = 0.0015 to βN = 0.0195 is used.

For classifier-free guidance, a guidance scale w of 2.0 is used.

While it is feasible to employ an advanced sampling scheduler

to markedly enhance inference speed, to maintain comparison

fairness, we adhere to the approach outlined in [1] during

the inference process. Specifically, we utilize the DDIM [28]

sampler with 200 sampling steps.

Datasets. We use total 15k samples of high-quality licensed

music from Pond5 to train JEN-1. All music data consist of

full-length music sampled at 48kHz with metadata composed

of a rich textual description and additional tags information,

e.g., genre, instrument, mood/theme tags, etc. The proposed

method is evaluated using the MusicCaps [3] benchmark,

which consists of 5.5K expert-prepared music samples, each

lasting ten seconds, and a genre-balanced subset containing 1K

samples. To maintain fair comparison, objective metrics are

reported on the unbalanced set, while qualitative evaluations

and ablation studies are conducted on examples randomly

sampled from the genre-balanced set.

Evaluation Metrics. In our quantitative evaluation, we employ

both objective and subjective metrics following [4]. Objective

evaluation encompasses three metrics: Fréchet Audio Dis-

tance (FAD) [29], Kullback-Leibler Divergence (KL) [30], and

CLAP score (CLAP) [31]. FAD gauges audio plausibility, with

a lower score indicating higher plausibility. KL-divergence
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TABLE III
ABLATION STUDIES. FROM THE BASELINE CONFIGURATION, WE INCREMENTALLY MODIFY THE JEN-1 CONFIGURATION TO INVESTIGATE THE EFFECT

OF EACH COMPONENT.

QUANTITATIVE QUALITATIVE

CONFIGURATION FAD↓ KL ↓ CLAP↑ T2M-QLT ↑ T2M-ALI ↑
baseline 3.1 1.35 0.31 80.1 78.3

+ noise-robust autoencoder 3.1 1.36 0.31 80.5 78.1
+ latent space normalization 2.6 1.34 0.32 81.9 78.9

+ auto-regressive mode 2.5 1.33 0.33 82.9 79.5

+ music in-painting task 2.2 1.28 0.32 83.8 80.1
+ music continuation task 2.0 1.29 0.33 85.7 82.8

measures the similarity between generated and reference music

in terms of label probabilities, utilizing a state-of-the-art audio

classifier trained on AudioSet [32]. A lower KL score suggests

greater conceptual similarity. Additionally, the CLAP score

quantifies audio-text alignment, using the official pre-trained

CLAP model. For qualitative assessments, we follow the

experimental design outlined in Copet et al. [4]. Two aspects of

the generated music are evaluated qualitatively: text-to-music

quality (T2M-QLT) and alignment to the text input (T2M-

ALI). Human raters assigned perceptual quality ratings on a

scale of 1 to 100 in the text-to-music quality test. In the text-

to-music alignment test, raters assessed the alignment between

audio and text using the same rating scale.

A. Comparison with State-of-the-arts

As shown in Table II, we compare the performance of

JEN-1 with other state-of-the-art methods, including Riffu-

sion [33], and Mousai [23], MusicLM [3], MusicGen [4],

Noise2Music [6]. These competing approaches were all trained

on large-scale music datasets and demonstrated state-of-the-

art music synthesis ability given diverse text prompts. To

ensure a fair comparison, we evaluate the performance on

the MusicCaps test set from both quantitative and qualitative

aspects. Since the implementation is not publicly available,

we utilize the MusicLM public API for our tests. And for

Noise2Music, we only report the FAD score as mentioned

in their original paper. Experimental results demonstrate that

JEN-1 outperforms other competing baselines concerning both

text-to-music quality and text-to-music alignment. Specifi-

cally, JEN-1 exhibits superior performance in terms of FAD

and CLAP scores, outperforming the second-highest method

Noise2Music and MusicGen by a large margin. Regarding the

human qualitative assessments, JEN-1 consistently achieves

the best T2M-QLT and T2M-ALI scores. It is noteworthy

that our JEN-1 is more computationally efficient with only

22.6% of MusicGEN (726M vs. 3.3B parameters) and 57.7%
of Noise2Music (726M vs. 1.3B parameters).

B. Performance Analysis

Ablation Studies. To assess the effects of the omnidirectional

diffusion model, we compare the different configurations,

including the effect of model configuration and the effect

of different multi-task objectives. All ablations are conducted

on 1K genre-balanced samples, randomly selected from the

held-out evaluation set. As illustrated in Table III, the results

demonstrate that i) the music generation quality and perfor-

mance are substantially enhanced by our specifically designed

noise-robust autoencoder and normalized latent space; ii) JEN-

1 incorporates the auto-regressive mode greatly benefiting the

temporal consistency of generated music, leading to better

music quality; iii) our proposed multi-task learning objec-

tives, i.e., text-guided music generation, music inpainting,

and music-continuation, improve task generalization and con-

sistently achieve better performance; iv) all these dedicated

designs together lead to high-fidelity music generation without

introducing much extra training cost.

Generation Diversity. Compared to transformer-based gen-

eration methods, diffusion models are notable for their gen-

eration diversity. To further investigate JEN-1’s generation

diversity and credibility, we provide identical textual prompts,

such as descriptions involving general genres or instruments,

to generate multiple different samples. As demonstrated on

our demo page, JEN-1 showcases impressive diversity in its

generation outputs while maintaining a consistently high level

of quality.

Generalization and Controllability. Despite being trained

with paired texts and music samples in a supervised learn-

ing manner, our method, JEN-1, demonstrates noteworthy

zero-shot generation capability and effective controllability.

Notwithstanding the challenges associated with generating

high-quality audio from out-of-distribution prompts, JEN-1

still demonstrates its proficiency in producing compelling

music samples. On our demo page, we present examples of

creative zero-shot prompts, showcasing the model’s successful

generation of satisfactory quality music. Furthermore, we

present generation examples as evidence of JEN-1’s pro-

ficiency in capturing music-related semantics. Notably, our

demo indicates that the generated music adequately reflects

music concepts such as the genre, instrument, mood, speed,

etc..

VI. CONCLUSION

In this work, we propose JEN-1, a text-to-music framework

that directly models waveforms and integrates autoregressive
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and non-autoregressive training. Through multi-task objec-

tives, JEN-1 achieves high-quality music generation from text

descriptions. Extensive evaluations show JEN-1’s superiority

in quality, diversity, and controllability over strong baselines.

This research advances the state-of-the-art in controllable text-

to-music generation. Future directions include exploring hier-

archical multi-stem music generation and external knowledge

incorporation. We believe high-quality text-to-music genera-

tion will empower new creative workflows and reshape music

composition and appreciation. As the field matures from

research to practical applications, it bears great potential to

augment human creativity.
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