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Abstract—Traditional methods in black-box optimization often
prescribe general-purpose algorithms for broad problem cate-
gories, which overlooks the significant variability in optimization
landscapes that can exist even within a single domain. We address
this gap by demonstrating the efficacy of landscape analysis
techniques in guiding the choice and tuning of optimization
algorithms for distinct landscape features. This study focuses
on two real-world problem domains characterized by black-
box simulation-based optimization: automotive control system
calibration (anti-lock braking system) and automotive crashwor-
thiness optimization. Through comparative analysis of computer
experiments in these domains, landscape analysis techniques
are employed for both visualization and explanation purposes.
The results reveal substantial variations in landscape features
across different instances within the same problem domain.
Consequently, we advocate for a paradigm shift towards learning
and applying optimizers tailored to specific landscape feature
spaces rather than applying a one-size-fits-all approach to an
entire problem domain. This research not only enhances the un-
derstanding of landscape variability in optimization problems but
also paves the way for more efficient and effective optimization
processes in complex, real-world scenarios.

Index Terms—Landscape Analysis, Algorithm Selection, Black
Box Optimization, Engineering Optimization.

I. INTRODUCTION

In engineering optimization applications, the objective func-

tion is often expensive, e.g. computed based on the output

generated by running costly and/or time-consuming simula-

tions. For instance, structural optimization or control system

calibration in the automotive industry are two typical exam-

ples. Given a resource-constrained real-world setting, in terms

of the number of available commercial simulator licenses

and the maximally available wall-clock time for running an

optimization, practitioners would ideally prefer a domain-

specific optimization algorithm selection approach (“for a

structural mechanics problem, use optimization algorithm A”)

over an instance-based optimization algorithm selection (“for

this particular instance of a structural mechanics problem,

use optimization algorithm B”). Commercially available engi-

neering design optimization tools, such as1 Optimus (Noe-

sis Solutions), modeFRONTIER (ESTECO), Hyperstudy
(Altair), LS-OPT (DYNAmore), optiSLang (Ansys), and

HEEDS (Siemens), typically offer a domain-specific approach.

The reason for preferring a domain-specific optimization

algorithm selection [1]–[3] is that an instance-based algorithm

selector necessarily requires some features of the problem

instance to be computed. This requires the execution of several

simulation runs, e.g., for evaluating an initial Design of Experi-

ments (DoE), based on which the instance-specific features can

be computed. When dealing with algorithm selection problems

in the continuous optimization domain, the so-called landscape

analysis can be used to obtain such features [4], which can be

exploited to select the best-performing algorithm [5].

In this paper, two completely different engineering design

optimization domains are investigated, namely the designs of

vehicle dynamics control systems and vehicle crashworthiness,

to prove our hypotheses empirically: An instance-based opti-
mization algorithm selection approach is needed as the diver-
sity of landscape features across problem instances from the
same engineering design domain is high. In fact, our empirical

results imply that diversity within a single engineering design

domain can be as high as across different domains. To phrase

this differently, one cannot assume an optimization algorithm

that performs well on one instance of an engineering design

domain to also work well on another instance. Therefore,

there is no single best solver for a single domain, instead an

instance-based algorithm selector is required: No-free-lunch

principle [6] and the focused no-free-lunch principle [7] also

hold within a specific engineering design problem domain.

1This list is incomplete and serves as representative examples only.
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II. EXPLORATORY LANDSCAPE ANALYSIS

The complexity of continuous optimization problems can

be understood by analyzing high-level properties, such as

multimodality, global structure, and separability. To automate

this analysis, exploratory landscape analysis (ELA) techniques

were developed [8], [9], which quantify six fundamental land-

scape properties, namely distribution of objective values, level

sets, meta-models, local searches, curvature and convexity.

Subsequently, more features were added to these six primary

ELA categories, including dispersion, nearest better clustering

(NBC), principal component analysis (PCA), linear models

and information content of fitness sequences (ICoFiS) [10].

These ELA features have proven effective for classifying

functions used in the black-box optimization benchmarking

(BBOB) suite. In brief, the computation of ELA features

requires a DoE with a set of samples X = {x1, · · · , xn}
evaluated on a specific objective function f , i.e., f : Rd → R,

where xi ∈ R
d, n is the sample size, and d is the dimension-

ality. However, it is important to note that the effectiveness

of ELA features can depend on the DoE sample size and

sampling strategy [11]. Previously, ELA has been utilized in

various domains beyond algorithm selection problems, includ-

ing vehicle dynamics control [12], [13], neural architecture

search [14], automotive car crash optimization [15], [16], and

selecting optimal hyperparameters in Bayesian optimization

algorithms [17]. While ELA has already been in the literature

successfully, it still struggles with a few challenges, including

but not limited to (i) potential bias in hand-crafted features,

(ii) decision making in feature selection, and (iii) dependency

on sampling size and strategy. There are several alternatives

to ELA features, such as DoE2Vec [18] and Deep-ELA [19],

which use deep-learning techniques to automatically learn la-

tent features from landscape samples. These latent features are,

however, less explainable and understandable than classical

ELA features and are therefore left out of the scope of this

research.

III. ENGINEERING PROBLEMS

In this work, the exploratory landscape features of two

different engineering problem domains are studied. First, the

landscape features of Anti-lock Braking Systems of cars are

explored, secondly, the crashworthiness of automative design

problems is analyzed.

TABLE I
VEHICLE TIRE AND LOADING SETTINGS

Function Tires Vehicle load
y1 High performance Partially loaded
y2 Medium performance Partially loaded
y3 Under performance Partially loaded
y4 High performance Fully loaded
y5 High performance Little loaded

A. Design of Vehicle Dynamics Control Systems

Control systems for vehicle dynamics, such as the anti-

lock braking system (ABS) [20], have significantly improved

vehicle safety and handling within the automotive sector.

ABS prevents wheels from locking during braking events

by modulating brake pressure to maintain brake slip in a

desirable range. This action shortens the braking distance and

enables the driver to retain steering control during urgent

braking situations. The effectiveness of these systems depends

on precise calibration of their parameters to cater to various

driving conditions and vehicle configurations.

A benchmark test commonly used to assess a vehicle’s

braking capability is the emergency straight-line full-stop

braking test with the ABS fully activated [21]. This test is

divided into three distinct phases:

1: The vehicle is accelerated to a speed of 103.5 km/h.

2: The vehicle’s speed is maintained at a steady 103 km/h

without any acceleration or deceleration.

3: The brakes are applied and held until the vehicle comes

to a complete stop.

The calculation of braking distance is determined by in-

tegrating the vehicle’s longitudinal velocity over the time

interval from the moment the vehicle’s speed is 100 km/h

(vs) at time ts until it comes to a halt at 0 km/h (ve) at time

te. To ensure accuracy and avoid the influence of any initial

disturbances, the initial deceleration phase from 103 km/h to

100 km/h is excluded from the braking distance computation.

In accordance with ISO 21994:2007 [21], the prescribed

methodology for measuring braking distance involves a series

of ten individual valid measurements. The objective y, which

represents the braking distance to be minimized, is defined as

follows:

y =
1

10

10∑
k=1

∫ te

ts

vk(t) dt. (1)

1) ABS Benchmarking Dataset: We use a dataset with

braking distances for five different vehicle settings from [22],

where a setting consists of a vehicle load and a tire (Table I).

The two ABS parameters x1 and x2 have the defined bounds:

x1 ∈ [−5, 6] and x2 ∈ [−5, 4]. For x1 and x2 a set of

values Di with a resolution of 0.1 as equal distance between

the values is provided. Thus, there are 10 101 possible combi-

nations for these two ABS parameters and the corresponding

braking distance per vehicle setting. In order to apply Ex-

ploratory Landscape Analysis, in the following we consider

the problem as quasi-continuous, and values are rounded to

the nearest given data point.

Within the used data set the braking distances of a particular

vehicle setting yi are specified as the distance in meters to

the corresponding optimal breaking distance. Figure 1 shows

the distribution of the 10 101 data points for each real-world

problem yi. Note that minimizing the braking distance for

each vehicle setting serves as one objective, and a different

parameter set (x1, x2) is optimal for each vehicle setting.

B. Crashworthiness of Automotive Design

Our second engineering domain is crashworthiness opti-

mization in the automotive industry, which is a classical

example of black-box optimization problem with expensive
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Fig. 1. Distribution of distances to the optimal braking distance for the 10 101
ABS parameter combinations, per vehicle setting yi from Table I. The data
was published in [22].

function evaluation, e.g., requiring finite element (FE) simula-

tion runs. Due to increasingly strict road safety regulations

by authorities, vehicle design is getting more challenging

and tedious. In automotive crashworthiness optimization, the

primary target is to identify an optimal vehicle design that not

only can sufficiently protect passengers in the event of a crash

but also fulfill other requirements, such as low weight and

production costs [23]. The optimization problem is typically

formulated as a minimization of the vehicle weight subject to

constraints, e.g., peak impact force or magnitude of vehicle

deformation.

The focus of this work is on the FE simulation-based

crashworthiness optimization of the vehicle body, also known

as body-in-white, which belongs to the early phase of vehicle

design. Classically, automotive crash optimization problems

are solved with the response surface method, where a re-

sponse surface is constructed based on a preferably large DoE

to approximate the true function and to predict the global

optimum, i.e., the best vehicle design [24]. Following this,

we analyze crash problem instances using the DoE samples

generated by a German premium automobile manufacturer

in previous vehicle development projects, where the problem

instances were mainly different in terms of crash scenarios,

vehicle models, and load cases, e.g., different pole positions

for side crash, as shown in Figure 2. On average, each

FE simulation required around 20 computation hours on

high-performance computing clusters, using the commercial

solver LS-DYNA [25]. Consequently, an enumeration of the

whole design space is computationally infeasible for crash

optimization, unlike in (simplified) vehicle dynamic problems.

Nonetheless, to ensure a reliable computation of ELA features,

only crash problem instances with a DoE sample size of

at least 10d are considered. Altogether, 13 crash problem

instances consisting of seven side crashes, two rear crashes,

and four front crashes are available for our analysis, with

Fig. 2. An example of vehicle side crash using FE simulation, where the
pole can be positioned at a different location depending on the optimization
problem definition.

dimensionalities between 8 and 22, where the design variables

are the thicknesses of different vehicle components.

Vehicle designs were evaluated based on the following five

types of crash functions, which can be quantified as scalar FE

simulation outcomes:

1: Mass (M): Component weight, affecting the vehicle

weight and manufacturing costs;

2: Intrusion (Intr): Magnitude of inward structural deforma-

tion, which might cause passenger injuries and damage

crucial components, e.g., the battery in an electric vehicle;

3: Maximum force (Fmax): Peak impact force during crash;

4: Energy absorption (EA): The total amount of kinetic

energy absorbed during the crash;

5: Rotation (Rot): Rotational deformation of components

during crash.

IV. EXPERIMENTAL SETUP

To test our hypothesis; an instance-based optimization al-
gorithm selection approach is needed because the diversity of
landscape features across problem instances from the same
engineering design domain is large, an experiment is set

up. In the experiment, the ELA features of the two engi-

neering problems are computed and compared to the ELA

features of well-known academic benchmark functions. The

benchmark problems selected to compare with are the black-

box optimization benchmarking (BBOB) testsuite problems.

The BBOB suite consists of 24 continuous and noiseless

functions of different optimization landscape complexity and

was introduced to facilitate the development and performance

evaluation of optimization algorithms [26]. The ELA features

of BBOB functions are considered as references in scaling and

transforming the engineering problems for a fair investigation

of the landscape characteristics.

The ELA features of both engineering domains are analyzed

sequentially by executing the following three steps:

a) Re-scaling: The design space is rescaled to [−5, 5]d,

which is the typical search domain considered in the BBOB

suite. Furthermore, the objective values are normalized by

using min-max scaling to minimize potential inherent bias in

ELA feature computation [27].

b) ELA feature computation: The ELA features are com-

puted for each problem instance using the pflacco pack-

age [28]. In this work, 49 ELA features are computed based

on a DoE without requiring additional function evaluations
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TABLE II
SUMMARY OF 49 ELA FEATURES CONSIDERED IN THIS WORK

Feature class ELA feature

y-distribution skewness
(3 features) kurtosis

number_of_peaks

Level set mmce_lda_{10,25,50}
(9 features) mmce_qda_{10,25,50}

lda_qda_{10,25,50}
Meta-model lin_simple.{adj_r2,intercept}
(9 features) lin_simple.coef.{min,max,max_by_min}

lin_w_interact.adj_r2
quad_simple.{adj_r2,cond}
quad_w_interact.adj_r2

Dispersion ratio_mean_{02,05,10,25}
(16 features) ratio_median_{02,05,10,25}

diff_mean_{02,05,10,25}
diff_median_{02,05,10,25}

NBC nn_nb.{sd_ratio,mean_ratio,cor}
(5 features) dist_ratio.coeff_var

nb._fitness.cor

PCA expl_var_PC1.{cov_init,cor_init}
(2 features)

ICoFiS h.max
(5 features) eps.{s,max,ratio}

m0

(Table II). It is to be noted, that if a feature computation fails,

e.g., due to small DoE sample size, this feature will be skipped.

For the vehicle dynamics control systems, the DoE sample

size is 10 101 and all ELA features can be calculated. The

DoE sample size of some crash problem instances is only

(10d), which is too small for reliable ELA feature computation.

Therefore, the ELA features on the crash problem instances

are calculated in a bootstrapping manner. Meaning, the ELA

feature computation is repeated for 20 times using only 80% of

the original DoE samples that are randomly selected in each

repetition, and eventually, the mean feature values are used

in further analysis. Similarly, the ELA features are computed

of the BBOB functions using the same DoE samples X as

the problem instance and averaged across the first five BBOB

instances.

c) Dimension reduction: To visualize the distribution

of engineering problem instances within the ELA feature

space, the high-dimensional ELA feature vectors are projected

onto a 2-dimensional space using a PCA approach. Another

advantage of using PCA is that ELA features that are highly

correlated can be excluded [29]. Before the PCA transforma-

tion, the ELA features are normalized using min-max scaling,

to ensure that all ELA features are within a similar range. We

perform both steps here first on the ELA features of BBOB

functions, and then on the engineering problem instances,

using identical scaling and transformation steps.

V. RESULTS

The distribution of engineering problem instances in the

ELA feature space is visualized in Figure 3 based on the first
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Fig. 3. Visualization of the ELA feature space for the five ABS (blue color),
30 crash (orange color), and 336 BBOB functions (altogether 24 BBOB ×
14 problem instances; gray color) using the first two PCA components.

two PCA components. Remarkably, a clear separation between

the vehicle dynamic and crash problems can be observed in

the ELA feature space, indicating that both domains are indeed

different in terms of landscape characteristics. Beyond that,

within the same engineering domain, the problem instances

are scattered across the ELA feature space as well, where the

diversity can be as large as across different domains.

To have a deeper understanding on the separation between

engineering problem instances, each computed ELA feature

is indivudually inspected in box plots, as shown in Figure 4.

The level set features are not shown here, because the feature

computation fails in many of the problem instances. Based

on visual inspection, we notice that many of the ELA features

are indeed different between the two engineering domains. For

an unbiased investigation, the ELA feature distributions are

compared using the two-sample Kolmogorov-Smirnov (KS)

test [30], with the null hypothesis that the distribution of ELA
features is similar.

VI. CONCLUSIONS AND FUTURE WORK

On closely related instance sets of two optimization prob-

lems defined in two different engineering domains, a high

diversity of landscape properties is observed, as exemplified

by the distributions of individual ELA features of problem

instances as well as their visualization after performing di-

mensionality reduction. Such diversity can in practice lead

to large differences in performance across a portfolio of

optimization algorithms on these instances [3], [31]. Therefore,

using performance data from the optimizers executed on a

limited set of problem instances to subsequently select the

best optimizer for a new unseen problem instance within

the same engineering domain is risky as instance diversity

within a domain can be as high as across different domains.

Even within one engineering domain, algorithm selection is

790



diff_mean_02

−6

−4

−2

0

diff_mean_05
−4

−3

−2

−1

0

1

diff_mean_10

−3

−2

−1

0

1

diff_mean_25
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

diff_median_02

−6

−4

−2

0

diff_median_05
−4

−3

−2

−1

0

diff_median_10

−3

−2

−1

0

diff_median_25
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ratio_mean_02

0.4

0.6

0.8

1.0

ratio_mean_05

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ratio_mean_10

0.5

0.6

0.7

0.8

0.9

1.0

ratio_mean_25

0.6

0.7

0.8

0.9

1.0

ratio_median_02

0.4

0.6

0.8

1.0

ratio_median_05
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ratio_median_10
0.4

0.5

0.6

0.7

0.8

0.9

1.0

ratio_median_25

0.6

0.7

0.8

0.9

1.0

kurtosis

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

number_of_peaks
1.0

1.5

2.0

2.5

3.0

3.5

4.0

skewness

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

lin_simple.adj_r2
0.0

0.2

0.4

0.6

0.8

1.0

lin_simple.coef.
max

0.01

0.02

0.03

0.04

0.05

lin_simple.coef.
max_by_min

0

100

200

300

400

500

600

700

lin_simple.coef.
min

0.000

0.002

0.004

0.006

0.008

0.010

0.012

lin_simple.
intercept

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lin_w_interact.
adj_r2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

quad_simple.
adj_r2

0.0

0.2

0.4

0.6

0.8

1.0

quad_simple.cond
0

100

200

300

400

500

600

quad_w_interact.
adj_r2

0.70

0.75

0.80

0.85

0.90

0.95

1.00

eps_max
0.00

0.02

0.04

0.06

0.08

0.10

eps_ratio

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

eps_s
−1.5

−1.0

−0.5

0.0

h_max

0.83

0.84

0.85

0.86

0.87

m0

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

dist_ratio.
coeff_var

0.10

0.15

0.20

0.25

0.30

0.35

nb_fitness.cor
−0.6

−0.5

−0.4

−0.3

−0.2

nn_nb.cor

0.2

0.4

0.6

0.8

nn_nb.mean_ratio

0.65

0.70

0.75

0.80

0.85

0.90

0.95

nn_nb.sd_ratio

0.2

0.4

0.6

0.8

1.0

expl_var_PC1.
cor_init

0.1

0.2

0.3

0.4

0.5

0.6

expl_var_PC1.
cov_init

0.1

0.2

0.3

0.4

0.5

0.6
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confidence.
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not possible across traditionally defined problem instances.

We assume that such conclusions apply well beyond the two

considered engineering domains. However, an open question

remains regarding how to define problem classes. In conclu-

sion, the case of these engineering applications clearly shows

the diversity of problem instances within a single domain,

implying that selecting the best optimization algorithm should

be based on the specific problem instance characteristics

rather than the engineering domain. The authors believe that

exploratory landscape analysis features can help guide the

user select the best algorithm, respectively on the engineering

domain.
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Computer Science, T. Bäck, M. Preuss, A. Deutz, H. Wang, C. Doerr,
M. Emmerich, and H. Trautmann, Eds. Cham: Springer International
Publishing, 2020, vol. 12270, pp. 139–153.

[12] A. Thomaser, A. V. Kononova, M.-E. Vogt, and T. Bäck, “One-
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[20] H.-J. Koch-Dücker and U. Papert, “Antilock braking system,” in Brakes,
Brake Control and Driver Assistance Systems, ser. Bosch professional
automotive information, K. Reif, Ed. Wiesbaden: Springer Vieweg,
2014, pp. 74–93.

[21] International Organization for Standardization, “ISO 21994:2007 - Pas-
senger cars - Stopping distance at straight-line braking with ABS - Open-
loop test method,” 2007.

[22] A. Thomaser, M.-E. Vogt, T. Bäck, and A. Kononova, “Real-World
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