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Abstract—We attempt to solve the Abstraction and Reasoning
Corpus (ARC) Challenge using Large Language Models (LLMs)
as a system of multiple expert agents. Using the flexibility of
LLMs to be prompted to do various novel tasks using zero-shot,
few-shot, context-grounded prompting, we explore the feasibility
of using LLMs to solve the ARC Challenge. We firstly convert the
input image into multiple suitable text-based abstraction spaces.
We then utilize the associative power of LLMs to derive the
input-output relationship and map this to actions in the form of
a working program, similar to Voyager / Ghost in the MineCraft.
In addition, we use iterative environmental feedback in order to
guide LLMs to solve the task. Our proposed approach achieves
50 solves out of 111 training set problems (45%) with just three
abstraction spaces - grid, object and pixel - and we believe that
with more abstraction spaces and learnable actions, our approach
will be able to solve more.

Index Terms—Abstraction and Reasoning Corpus, ARC Chal-
lenge, Multiple Agents, Multiple Experts, Mass Sampling and
Filtering, Abstraction Spaces, Primitive Functions, Iterative
Feedback

I. INTRODUCTION

The Abstraction and Reasoning Corpus (ARC) Challenge is

a key milestone in the march towards artificial general intelli-

gence (AGI) as it requires forming concepts and abstractions

[1]. Fig. 1 illustrates a sample ARC task. One of the key

difficulties of the ARC challenge is that it requires doing

something counter to mainstream deep learning – learning

from very few samples. Deep learning typically uses tens of

thousands of samples to do well. Humans, in comparison,

can learn how to identify different animals by just one or

two different observations. For instance, a child can identify a

giraffe in real life for the first time, even though the only other

time they may have been exposed to a giraffe was through a

cartoon flash card. Such capabilities are not well endowed in

modern AI systems, and that means that such AI systems will

need to be trained extensively before deploying in the real

world. After deploying them in the real world, they will also

be limited in their ability to adapt and learn as the environment

changes.

In contrast, traditional symbol-based systems (e.g., GOFAI

[2]) can “learn” quite fast, as any new situation can be

interpreted without any learning phase, provided that there

are existing symbols which can represent it. However, the

history of GOFAI has shown that it is difficult to engineer

Fig. 1. A sample ARC task. The challenge is to infer the abstract rule(s) gov-
erning the demonstration transformations and apply it to the test input. Exam-
ple from: https://aiguide.substack.com/p/why-the-abstraction-and-reasoning

these symbols, and at many times, even humans face difficulty

to come up with symbols as they may not be able to express

it in words.

As can be seen, there are shortcomings with the above two

approaches, and a new kind of approach will be needed in

order to learn fast and generalise to new situations, in order

to even have a chance at solving the ARC Challenge. In this

paper, we address this challenge by proposing to use Large

Language Models (LLMs) as a system grounded in functional

action spaces to tackle the ARC challenge. This can be said

to be an intermediate ground between both deep learning and

GOFAI approaches - the functional action spaces are more

flexible than symbols in GOFAI; LLMs are a form of deep

learning that are adaptable to new situations via prompting.

Specifically the contributions of the paper are as follows:

• We showcase a novel method of using LLMs as a system

of multiple expert agents (without any pre-training) to

solve the ARC Challenge

• We highlight the importance of a combination of multiple

abstraction spaces from which to associate the input space

to the output space

• We demonstrate the feasibility of grounding in functional

space for program synthesis by LLMs.
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Fig. 2. 88% of ARC tasks can be solved by the Builder from just the
description alone given by the Describer, without input-output examples. Can
GPT-4 function as both the describer and the builder? Image reproduced from
Fig. 4 of [3].

II. RELATED WORK

ARC Challenge. The ARC challenge [1] comprises 400

public training tasks, 400 public evaluation tasks and 200

private test tasks. Each of these tasks has multiple “Task

Demonstration” Input/Output grids, of which the task-taker

must infer a common relation out of them. This common

relation is then applied to the “Test Input”, from which we get

the “Test Output”. The “Test Output” must match perfectly for

it to be considered solved. The grids comprise grid sizes of

1x1 to 30x30, of which pixels can take on 10 different values.

Domain Specific Language (DSL) Approaches. The ma-

jority of ARC Challenge solutions are mainly DSL ones

[4; 5; 6]. This is also the case for the first-place solution of

the ARC Kaggle competition (https://www.kaggle.com/code/

icecuber/arc-1st-place-solution).

LLM-Based approaches. One way to approach the ARC chal-

lenge will be to use text to describe the visual characteristics

of objects [7]. Indeed, 88% of ARC tasks can be solved via

language description alone without input-output examples as

shown in Fig. 2 [3]. For certain problems, denoting pixels

in terms of objects can significantly boost the solve rate

from 13 to 23 out of 50 object-related ARC tasks [8]. Some

work has also been done to do end-to-end input to program

description generation with just LLMs alone to some success

[9]. Other approaches have used Decision Transformers [10]

to find a sequence of primitive actions from the input to output

[11], however, as noted by the authors, huge amounts of data

(10000 training data for 2000 testing data) are needed to train

this method, it is unlikely it can generalise to unseen inputs.

Recently, LLMs have been used to take the ASCII text view

of the grid as input for next token prediction and have solved

85 out of 800 ARC tasks [12].

Code as Skills and Environmental Feedback. Voyager is

an embodied lifelong learning agent powered by LLMs [13].

It features a skill library of functions to build up complex

behaviour, and an iterative prompting mechanism with the

environment to learn from environmental feedback. Ghost in

the Minecraft [14] does something similar as well, though they

constrain the action space to a list of functions. Similarly, we

use code generation with primitive functions to approximate

using a skill library, and use iterative prompting using ARC

task output as feedback to learn from the environment.

Our Method. In line with the existing LLM approaches, we

agree that we should use language as an alternate abstraction

space in addition to the original pixel grid. Unlike existing

approaches, we believe we should use more than one abstrac-

tion space. Hence, the LLM will be both the Builder and the

Describer in Fig. 2, but the Builder can also reference input-

output pairs. We also believe we should integrate LLMs with

a kind of DSL approach, but can afford to have an even more

expressive DSL because an LLM is able to do matching of

functions via semantics much more effectively than traditional

DSL approaches.

III. BROAD OVERVIEW OF METHOD

In this section, we provide an overview of our proposed

approach and envisioned future approach and discuss several

key ideas behind it. Generative Pre-trained Transformer 4

(GPT-4) is a multimodal LLM created by OpenAI and released

in March 2023 [15]. For now, we exclusively use GPT-4 for

our model, as we empirically observe that GPT-3.5 and other

open source models (e.g. Llama 2, Vicuna) are not able to

perform well enough for this method to work. Empirically, we

also observe that using GPT-4V as an image-based abstraction

space is inferior to rule-based abstractions formed by our

approach, due to errors interpreting the grid images. The

current overall method is shown in Fig. 3 and the future

envisioned system is shown in Fig. 4. The overall approach is

detailed below, with parts not implemented yet highlighted as

future work. Note that we do not need the parts highlighted

as future work for the system to work - it will just make it

more efficient and learn better from experience.

Problem Type Classification (Future Work). ARC tasks test

various concepts. If we can use past examples to ground the

LLM, and let the LLM decide what problem category an ARC

task belongs to, we can proceed with a specialised workflow

to target solving that particular style of task. Presently, we

simply run through all the various agent types and select the

agent types which work. Implementing this classifier will not

affect performance but will significantly help reduce the costs.

Useful Abstraction Spaces. While GPT-4 has proven to be

a general purpose solver, being primarily a text-based model,

GPT-4 lacks some of the innate human priors necessary to

solve the ARC challenge. For example, GPT-4 is not able

to identify objects accurately from text alone. Objects are

defined as continuous sections of the grid with the same

non-zero value. Hence, providing such an object view as an

abstraction space using text greatly helps with the GPT-4’s

ability to form associations with the input-output pair and is

better able to find a solution [8]. Moreover, we can provide

more than one abstraction space to GPT-4, which can increase

the chance that one or more abstraction spaces contain a simple

mapping from input to output, thereby reducing the complexity

of the problem. Do note that these abstraction spaces are

unchangeable, and are fixed since the beginning of learning.

Hence, these form fixed priors for stable learning.

Encoding Human Biases via Helper/Primitive Functions.
An initial implementation of using GPT-4 to solve ARC was
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Fig. 3. Current Process Flowchart of LLMs as a System to solve the ARC Challenge.

Fig. 4. Future Envisioned Process Flowchart of LLMs as a System to solve the ARC Challenge.

done with just prompting the human biases and action spaces

via text. This did not do so well due to lack of grounding

using words alone. A key innovation in this work is to use

primitive functions as action spaces, as a way to encode human

priors. If we could use functions for grounding, and express

the semantic meaning of the function in words, GPT-4 could

use the function to provide the code needed for the solution.

Hence, the problem now becomes finding out what are the

primitive functions we need to encode in order for the LLM

to solve any generic ARC problem.

Using Memory for Additional Context (Future Work). New

problems might mix and match aspects of previous solutions,

so having a memory bank to provide examples of similar

solved problems in the past can help to ground the LLM to

better generate the answer. This is currently not implemented

due to constraints of context length. Once the context length

for GPT-4 increases, we intend to let each agent have memory

of relevant previously solved problems and their solutions, so

that it can ground the agent’s output. This is akin to Retrieval

Augmented Generation (RAG) [16].

Utilising Feedback from Environment. Another key idea is

that a learning system would need to utilise feedback from the

environment, and so a recursive loop feeding in feedback from

the environment (whether there is compile error, whether the

code matches the intended output) can help a lot in getting

the right answer. This is akin to what is done in Voyager and

Ghost in the MineCraft [13; 14].

LLMs as a System. Humans do not operate with only one

system. We have various systems to call for various tasks.

Similarly, we can have multiple expert agents for each task

(such as Object View, Pixel View, Grid View) and call on them

to give their interpretation of the task, and select the most

promising agent. This greatly helps narrow the search space

for the solution. Then, we utilise the specialised functions this

agent has and solve the problem. Interfacing this agent with

environment feedback, the problem-type specific abstraction
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space, past examples and action spaces can greatly help filter

and ground GPT-4 to generate a plausible solution. We believe

that, with better grounding via expert agents, better abstraction

space representations and better primitive function grounding,

we will eventually be able to solve most of the ARC tasks

using the proposed approach.

IV. DETAILED OVERVIEW OF METHOD

We now go into some details of our method.

A. Different Abstraction Spaces

We utilise various ways of encoding the abstraction spaces

so that GPT-4 can better associate between the Input-Output

pairs. It has been shown in Image-Joint Embedding Predic-

tive Architecture (I-JEPA) [17] and Stable Diffusion [18]

that prediction in the latent/abstraction space leads to better

downstream tasks than predicting in the input space. However,

instead of just one abstraction space, we believe that there are

many possible abstraction spaces which are fixed, and it is up

to the solver to choose which is the best for the task at hand.

We believe by incorporating more useful views and refining

current ones, we can solve more ARC tasks.

For our method, we use only three views - Grid View,
Object View, Pixel View - and that has already achieved

quite good results. In brief, Grid View provides the entire

grid representation, except we change the pixel numbers to

characters so that we do not bias GPT-4 to treat it as an

arithmetic problem to perform arithmetic on the pixel values.

This also has the added benefit of ensuring that GPT-4 has not

seen the ARC tasks before as it is now of a different form.

The Object View groups pixels that are contiguous together,

so that they can be manipulated as a group. Pixel View gives

the coordinates for each pixel, which can help with more fine-

grained movement tasks or relational tasks between pixels.

B. JSON-based output format

LLMs are well known for being verbose and also relatively

free-form in the output, making it hard for any automated

program to use it. Here, we explicitly ask GPT-4 to output in a

JSON format via prompting. This JSON format also facilities

Chain-of-Thought (CoT) prompting [19], as it is done in a

specific sequence to encourage broad to specific thinking.

C. CoT Prompting

CoT enables the output to be structured and the LLM will

be able to condition the generation of the later output based

on the earlier ones. This enables a more broad to specific style

of prompting, helping the LLM to think and reflect on various

areas, narrowing the search space, and ultimately may help to

solve the problem.

Here, we do CoT prompting directly using JSON format.

We ask GPT-4 to output:

1) “reflection”: “reflect on the answer”,

2) “pixel changes”: “describe the changes between the

input and output pixels, focusing on movement or pattern

changes”,

3) “object changes”: “describe the changes between the

input and output objects, focusing on movement, object

number, size, shape, position, value, cell count”,

4) “helper functions”: “list any relevant helper functions

for this task”,

5) “overall pattern”: “describe the simplest input-output

relationship for all input-output pairs”,

6) “program instructions”: “Plan how to write the python

function and what helper functions and conditions to

use”,

7) “python program”: “Python function named ‘trans-

form grid’ that takes in a 2D grid and generates a 2D

grid. Output as a string in a single line with \n and \t.”

D. Helper/Primitive Functions

For the functions, we basically zero-shot prompt by stat-

ing the function name plus the input parameters and the

description of the function. We find that this format of zero-

shot prompting works very well for most functions, espe-

cially if the name of the function is already indicative of

what it does. This is very similar to the approach taken in

Visual ChatGPT [20], as well as OpenAI Functions (https:

//openai.com/blog/function-calling-and-other-api-updates). As

this method of prompting is not sufficient to imbue biases that

are not inherent in text (i.e. rotation, flipping), we also provide

one-shot examples of how to use the function.

E. Conditional Functions:

Rather than letting GPT-4 free-form generate its own code,

we ask it to generate a conditional flow on the primitive

functions. This greatly helps to reduce compilation errors.

Such a conditional flow is needed, as some ARC tasks require

using logic that only applies if a particular condition is met

(e.g., turn the shape red if it has exactly 6 cells). Without

this conditional flow, the program would need many more

steps before it can solve the problem. An example of such

a conditional flow is:

If {condition}: {Primitive Function}
V. METHODOLOGY

Select Problems by Context Length. We firstly filter the

ARC training set problems to only those whose Grid View

and Object View (mono-color, no diagonals) can fit into a

context length of 3000 tokens. This is important because later

when we incorporate environmental feedback, we will need

additional token length, and by empirical observation, 3000

tokens is necessary to guarantee some buffer token amount so

that the entire prompt can fit within 8000 tokens later. This

is the current maximum context length for the GPT-4 web

browser, as well as for the basic GPT-4 API. In the future,

we envision that our approach can work for more ARC tasks

when the context length for GPT-4 increases.

Mass Sampling and Filtering. Next, we use the OpenAI API

for GPT-4 May 24 2023 version with a temperature of 0.7 to

ensure a diverse range of outputs. We use the OpenAI API

and the web browser interface for GPT-4 interchangeably. We
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TABLE I
NUMBER OF TASKS SOLVED, NOT SOLVED AND PARTIALLY SOLVED (PROGRAM WORKS FOR TASK DEMONSTRATION BUT NOT FOR TEST INPUT/OUTPUT

OUT OF 111 TRAINING SET TASKS).

Total Tasks Tasks Solved Tasks Not Solved Tasks Partially Solved
111 50 58 3

TABLE II
TASKS NOT SOLVED BUT WITH CORRECT DESCRIPTION

Total Tasks Not Solved Correct description
61 8

TABLE III
TASKS SOLVED WITH ITERATIVE FEEDBACK LOOP AFTER EITHER

INCORRECT OUTPUT OR COMPILE ERROR

Total Incorrect Output Compile Error
50 6 1

employ a mass sampling and filtering process to generate code,

much like in AlphaCode [21] (see Fig. 5). Grid View is always

there unless there is context length limitation. We can choose

between toggling Object View (10 types) and Pixel View for

the agents (at least one must be active), which leads to a total

of 10×2 = 20 agents. We utilise each expert agent three times

each, with at most three feedback loop iterations, and filter the

output codes which can solve the Task Demonstration to try

it out on the Task Input. If there are multiple such codes, we

randomly pick three to test it out. Any of these three solutions

passing the Test Input will be counted as a solve, which is in

line with the Kaggle competition and Lab 42’s ARCathon.

VI. RESULTS

Overall. Overall, as shown in Table I, our method solves

50 out of 111 Training Set ARC tasks which could fit within

the context length. This is about a 45% solve rate, which is

quite remarkable as the current ARC world record solve rate

is 30.5% (though this is on the hidden test set), according to

https://lab42.global/arcathon/updates/.

Coding Issues. To see how many of the unsolved problems

are due to coding issues, we check how many of them have

the correct description as evaluated by a human, but not have

the correct code. This turns out to be 8 out of 61, as shown in

Table II. This means that if we could learn the primitive/helper

functions better and have a wider range to choose from, we

can improve solve rate. To solve the rest of the problems, we

will have to incorporate better views - it is observed that GPT-

4 cannot solve line continuation tasks, especially for diagonal

lines, grid manipulation tasks, and symmetry tasks easily, and

these could easily be incorporated as additional views.

Iterative Feedback. To see how much iterative environmental

feedback helps, we look at number of tasks solved with the

iterative environment feedback loop. This turns out to be 7

Fig. 5. Mass Sampling and Filtering process with various expert agents

tasks out of 50, as shown in Table III. This is quite significant,

and highlights the importance of environmental feedback.

VII. DISCUSSION

The results are promising, and GPT-4 agents with various

combination of views can solve different types of problems

well, as compared to just using the original Grid View. It was

also sometimes observed that Object View had to go with Pixel
View for a consolidation of information across both views in

order to solve the task. This reinforces the view that there

should not be just one, but multiple abstraction spaces which

could be used in combination with each other.

Empirical observation has shown that GPT-4 with primitive

function grounding can solve more tasks than without. It is

a better way at encoding priors than with just text alone.

Overall, GPT-4 is great at solving tasks which are made up of

a combination of primitive functions.

It was observed that function names and descriptions are

very important - GPT-4 tends to choose functions semantically

similar to what it intends to do, and the changing of a function

name to something irrelevant may cause it not to be used.

VIII. IMPROVEMENTS

GPT-4 agents cannot do tasks that have no relevant priors

encoded in the primitive functions well, such as scaling of

objects, symmetry, continuation of lines, overlay of grids

with logical rules, grid manipulation like cropping, translating,

changing of shape. Furthermore, it is weak when there is more

than one relation, and this type of problems benefit from the

iterative environment feedback loop. By setting the new input

as the output that GPT-4’s program outputs, it is in effect

taking a step towards the solution and helps GPT-4 better

associate the simpler input-output relationship.
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GPT-4 has been observed to use primitive functions not

meant for the view, for example, Pixel View Agent using the

get objects function. Hence, giving too much context might af-

fect performance. This is similar to [8] when the performance

declined after adding in relations between objects. We should

limit each agent to only use relevant primitive functions.

IX. CONCLUSION AND FUTURE WORK

Currently, we use all agents in a brute-force manner for

a task. In order to reduce computation (and cost), we could

perhaps have a classifier which takes in previous examples as

input to learn how to classify a new problem into a category,

so that the right agents can be used to solve it.

Currently, the primitive functions are hand-engineered based

on observation of the first 50 tasks in the training set, and are

also not a complete set. We will try to incorporate a way for

GPT-4 to be prompted to create new primitive functions, and

add those successful functions which could solve a new task

to the list of primitive functions, much like Voyager [13]. One

way is to add any transform grid function that is successful

as a new primitive function, as long as the description of the

function is different from existing ones.

Overall, LLMs as a system of multiple expert agents with

environmental feedback are a promising approach towards

solving the ARC Challenge. Refer to https://arxiv.org/abs/

2310.05146 for full details of the prompt, primitive functions,

conditional functions, abstraction views, analysis of tasks

solved and future proposed agent types. Our code can be found

at https://github.com/tanchongmin/ARC-Challenge, and video

explanation can be found at https://www.youtube.com/watch?

v=plVRxP8hQHY.
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