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Abstract—Recent advances in Large Language Models (LLM)
open up opportunities for users to interact with domain spe-
cific knowledge and execute (semi-)professional tasks in a dia-
log fashion. Without profound knowledge in data science and
programming languages, basic statistics and further detailed
analyses can be conducted intuitively through natural language
prompts. Accessing common data science methods, LLMs can
assist users in visualizing, interpreting, and analyzing large
and complex data sets. In this paper, we study the potential
of ChatGPT from the perspective of different user expertise
levels to process and interpret existing data sets which originate
from engineering optimization tasks with varying complexity—–
a proportional-integral-controller configuration, an aerodynamic
design optimization, and an energy management task—–and use
it to cluster the data into meaningful groups. Furthermore, we
provide the LLM with a recently developed concept identification
metric and assess its capability to use the metric for an allocation
of the samples into technically reasonable concepts. On one hand,
the formulation of conceptual machine learning pipelines, as
well as using well-established methods, such as typical clustering
algorithms, are conducted seamlessly by ChatGPT for the given
tasks. On the other hand, it is observed that automatically
constructing a concept identification algorithm from its math-
ematical formulation using ChatGPT still requires supervision
and support from a domain expert.

Index Terms—Large language models, generative AI, data
analysis, clustering, concept identification, engineering applica-
tion.

I. INTRODUCTION

Generative Artificial Intelligence (GenAI) and Large Lan-

guage Models (LLM) create a paradigm shift in various

business fields by supporting processes and product develop-

ment, utilizing content generation, dialog systems, software

implementation and creative tasks, among others. Being able

to interpret and reason over several data modalities, combining

different domain knowledge, the models offers a huge potential

for method development and application. Another valuable

aspect is the change in the way on how to communicate

with computer systems and how to access domain knowledge.

In industry, development teams typically focus on various

subdomains, e.g., creative design, structural optimization, or

aerodynamic efficiency in automotive, where domain experts

generate and evaluate components using specialized tool-sets

and cooperate with colleagues to innovate a new product.

LLMs such as GPT-4 [1] or Llama 2 [2] democratize this

process. They provide access to domain-specific knowledge

for non-experts through user-friendly natural language inter-

faces and foster interactions for solving problems together.

However, due to the generative character of the models, one

needs to consider potential hallucination effects [3] producing

non-factual statements, which may a major obstacle when

numerical accuracy is required, e.g., in safety-critical systems.

Another important aspect is consistency of the generated

content, i.e., achieving similar results based on similar inputs.

One major field which profits from the LLM progress and

democratization of domain knowledge is data science [4], [5],

where LLMs can support processes in the analysis steps such

as data cleaning and data organization, or provide customized

implementations of machine learning models. In this paper,

we evaluate and discuss the potentials and limits of data

science in an engineering context. There are two overarching

questions that we address within this work for engineering

application: (1) What is the impact of LLMs’ recent advances

for data science? (2) Can LLMs increase the accessibility of

data science for non-experts? To answer both questions, we

test whether an LLM can give pivotal support for a typical data

science procedure. We assess if an LLM can process, visualize

and interpret engineering data in a way that is useful to the

user. We investigate whether basic statistics are calculated

correctly and if a machine learning procedure can be carried

out by the LLM directly. In a series of experiments, we imitate

several levels of data science expertise. We test if the LLM can

split the given data set into reasonable groups by applying (a) a

typical clustering method and (b) a recently developed concept

identification method [6]. For the second method, we provide

the LLM with the scientific description of the algorithm and

implementation details. Both methods identify groups of sim-

ilar samples based on different preconditions. In engineering

design tasks, such groups provide several benefits [7], such

as illustrating correlations and dependencies of the features,

as well as forming sets of alternative design options and

representative prototypes for further investigation. Based on

the results of the experiments, we show that an LLM can be

utilized for data analysis and conduct typical procedures, such

as statistical investigations and simple clustering methods. We

further illustrate the current limitations for the application of

more complex machine learning algorithms, such as deriving

algorithms and code from mathematical descriptions, and for

which tasks (human) expert supervision is still necessary.

Section II discusses related work. Section III provides an

overview on the utilized methods and Section IV describes

the conducted experiments. Section V discusses our general

findings and Section VI concludes the work.
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II. RELATED WORK

Recently, data analysis methods, which are available

through LLMs, have been more and more explored on various

tasks. In [4], the authors studied the capabilities of GPT-4

as a data analyst on benchmark data, concluding that GPT-4

can outperform a junior and achieve similar results as a senior

data analyst. Also, the usability and interfacing improved, e.g.,
in ChatGPT by first being available through the integration

of Third Party plugins, such as Wolfram, then through code

interpreter [8] and as of today through direct prompting in

ChatGPT. There exist different ways for users to interact with

data. Users can upload and explore data sets directly within

the ChatGPT interface or by requesting software code, which

afterwards can be locally executed, e.g., in python environ-

ments. However, despite the rapid development and improved

user interaction with data sets, the capabilities of ChatGPT

need to be further evaluated to understand the applicability in

specific expert domains. Due to the diversity of technical fields

and required expert knowledge, these assessments typically

include human observations through domain experts. In [9],

the authors evaluate the effectiveness of LLMs (GPT-3.5,

GPT-4) and prompt engineering techniques for data analysis

automation in bioinformatics tasks. By coupling LLMs with R

packages, experiments have been carried out to assess the ca-

pabilities to pre-process, visualize, and apply machine learning

and statistics on data sets. Through human assessment, Jansen

et al. conclude that while GPT-4 shows improved performance

compared to GPT-3.5, their system cannot compete with a

domain expert. In addition, complexifying the tasks reduced

the success of executable code which could also not been

compensated by prompt engineering, i.e. providing more user

guidance in the prompts. Using ChatGPT in the automotive

domain, Lingo [10] studied the potential of synthesizing data

in telematics tasks. Advantages include the opportunity to gen-

erate data samples in the size requested by the user containing

also extreme conditions and preserve data privacy. In [11],

Lingo discussed different ways on how non-expert users can

interact through ChatGPT with data, including pre-processing,

basic analysis and post-processing steps and concluded that

ChatGPT is capable to synthesize (telematics) data through

prompts. However practical relevance of such data still needs

to be verified by human experts due to the lack of benchmark

data. Further advances on utilizing LLMs to analyze and

procecute data in engineering tasks include text-to-3D models

for design optimization [12], a vision language model for a

wide spectrum of design tasks [13], as well as concurrent work

on assisted surrogate modelling for optimization tasks [14].

In this paper, we explore typical measures to allocate data

samples into similar sets as another typical data science

technique. The processing steps we are assessing are twofold.

On one hand, we consider clustering due to its frequent

application in data science for sorting data into groups. Typical

clustering algorithms, such as k-means [15], allocate samples

to clusters based on the provided full feature vector. Recent

work, such as [16], [17] has shown, that LLMs can improve

text clustering performance, and we want to investigate the

capabilities in the engineering data domain. On the other hand,

we consider concept identification [6]—a recently proposed

data allocation methodology that identifies groups of data that

are similar with respect to a predefined set of description

spaces. Here, the identified concepts represent groups of

samples that are consistently non-overlapping in subspaces

of the full feature vector. In particular for many engineering

applications, these description spaces, such as the space of

all defining parameters or all performance criteria, share a

semantic context. Identified concepts that are unique, non-

overlapping, and coherent in such a semantic context provide

a large benefit for the engineer. Related clustering techniques,

such as subspace clustering [18], which can identify clusters

in lower-dimensional projections of high-dimensional sparse

data, however, cannot predetermine the projections. Multi-

view clustering [19] utilizes multiple concurrent “views”, i.e.,
representation of the same data, to exploit complementary

information. This technique cannot assure consistency of the

found clusters across the separate views. This inability to

maintain consistency of data concepts for a fixed set of pro-

jections also applies to many other related approaches, such as

Gaussian Mixture Models [20], density-based clustering meth-

ods DBSCAN [21], reduction techniques like UMAP [22],

information maximization clustering [23], or hierarchical clus-

tering algorithms. Therefore, in case consistency of groups

of data across a-priori defined subspaces is required, concept

identification is most suitable.

III. METHODS

A. Conducting data science experiments using a large lan-
guage model

When evaluating LLMs on their capabilities in application

fields such as engineering data science, it is important to keep

in mind that LLMs have learnt a large text corpus and can

likely reproduce and apply different methods from literature.

As such, it is already an achievement to produce results with

similar or the same accuracy, since the advantage is in the

level of domain knowledge required to access the methods.

With the lack of defined benchmark tasks, we as humans and

domain experts need to explore and understand the quality of

results, identify non-factual statements or biases towards over-

represented data.

However, recent advances of LLMs offer capabilities to

support a user in the analysis of data. Starting with a raw

data set, a typical analysis procedure involves cleaning the

initial data, calculating basic statistics, as well as visualizing

and interpreting the data (Fig. 1). This is usually followed by

a processing step, e.g., the application of a machine learning

method to the data to solve a given task. Finally, a post-

processing step or interpretation of the results concludes the

procedure. The capabilities of ChatGPT we want to address

and evaluate within the scope of this work include an initial

visualization and interpretation of a raw data set, as well as

the calculation of basic statistics. We further test if and how

well the model can apply standard clustering methods and if
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Fig. 1: Typical procedure of data analysis and the evaluated support by ChatGPT

a more advanced concept identification method can be carried

out, based on the description of the method from its original

publication. In a last step, we investigate if the method output

can be analyzed and interpreted by the LLMs, and to which

degree the interpretation is meaningful to the user.

The different tasks are conducted using ChatGPT 4 (de-

noted as ChatGPT in the remainder of the paper) from the

perspective of three levels of data science expertise. The first

considers a user without prior data science knowledge, the

second an intermediate level of experience, and the third level

accounts for expert knowledge.

B. Description of the investigated data sets

First, we consider a simple control systems design case.

The abstract system to be controlled is a standard mechanical

mass-spring-damper model which connects a mass m = 1kg
via a parallel configuration of a spring k = 100N/m and

damper b = 20Ns/m to an infinitely larger second mass, i.e.,
a “wall” (Fig. 3). Gravitation is not considered. The control

task implies applying the force Fc(t) to the mass m to reach

a desired position xd = 1m. The system can be modelled by

the differential equation

mẍ = kx+ bẋ− Fc(t), (1)

where x, ẋ, and ẍ represent the lateral position, velocity, and

acceleration, respectively, of the mass. The force applied to

the mass is controlled by a proportional-integral controller (PI-

controller)

Fc(t) = Pxe(t) + I

∫
t

xe(t), with xe(t) = x(t)− xd (2)

describing the control error over time. The scalar parameters

P and I refer to the proportional and integral gain of the

controller that need to be specified in order to control the

mass. The problem, defined by equations 1 and 2, is a well-

understood problem in the control design domain, exhibiting

known patterns for the control parameters and objectives.

The control case is modelled in SimulationX1 and simulated

for a time span of 5 s. A data set is automatically created

by simulating a large amount of parameter combinations in a

multi-objective optimization. Each configuration is evaluated

with respect to two performance criteria, the overshoot xmax,

i.e., the mass’ maximum position value over time, and the

time value t±5%, describing the point in time, after which

the difference of the trajectory to the desired position is less

than 5%, i.e., |xe(t)| ≤ 0.05. In total, the data set consists

1www.esi-group.com

of roughly 1000 samples, each described by 4 features, i.e.,
the control parameters P and I , as well as the performance

indicators xmax and t±5% (Table I, Fig. 3). Although describ-

ing a very realistic configuration task, the data set can (by

engineering standards) still be considered simple, due to the

limited number of features. It nevertheless serves the purposes

of the proposed evaluation task well, as it contains the typical

control parameters and objectives that an engineer uses as

decision basis for the given scenario.

We further consider two more complex engineering data

sets from industry-procedural engineering tasks. Both sets are

significantly more complex than the PI-controller case, both,

in terms of overall size, and more importantly, also in terms

of number and correlation of features. One set contains 2500
airfoil designs from an optimization study [6]. The samples are

given as the combination of their defining parameters, descrip-

tive geometric features, as well as corresponding performance

metrics for various boundary conditions. The other set contains

more than 20 000 energy management configuration options

resulting from a many-objective optimization task [24]. In

this set, each sample is represented by nine different decision

variables and ten partially conflicting objectives. We consider

these three data sets because they have been extensively

studied and evaluated in the context of concept identification

in previous work [6], [25], [26], which allows for a simplified

evaluation and comparison of the results.

TABLE I: Data set overview.

#sample
number

P I overshoot t5%

0 127.0 641.0 0.0000 0.281
1 140.0 673.0 0.0000 0.256
· · · · · · · · · · · · · · ·
905 162.0 746.0 0.0000 0.215
906 175.0 846.0 0.0244 0.185

IV. EXPERIMENTS AND RESULTS

The experiments are conducted in a set of dialogs2, having

different levels of expert knowledge in mind (Fig. 2). The

following section analyzes typical examples and highlights the

relevant differences for the respective levels of expertise. The

prompts and answers are quoted in full or in part for each task

A-H and enumerated separately for each level of expertise 1,

2, 3, i.e., the prompt A.3 refers to the expert level 3 dialog

2The dialogs have been repeated multiple times and similar prompts have
been tested. The plots are adapted with respect to figure size, format, font
size and style, but the content is not modified.
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Fig. 2: Evaluated data analysis tasks and the dialog level for which they are considered.

Fig. 3: Mechanical system and overview of the data set: The four-dimensional data set is depicted in two separate two-dimensional spaces,
one containing the parameters (P and I), the other containing the performance criteria xmax and t±5%.

regarding the basic interpretation A of the data. If the prompt

is taken from a sequence of prompts for a task, it is followed

by a subscript, e.g., A.31.

A. Basic interpretation

For the basic interpretation of the data set, we provide

ChatGPT with a text file (comma-separated values), repre-

senting the set of configuration-performance pairs that have

been obtained from the optimization. The results for all three

levels of expertise are similar. For example, for the expert level

prompt

Prompt A.31: < controllers.csv > Interpret this

data set

we receive a general description of the included content:

Answer A.31: [· · · ] Given the column names, it seems

this dataset is related to control systems, specifically PID

(Proportional-Integral-Derivative) controllers, which are

commonly used in industrial control systems for regulating

temperature, speed, pressure, and other variables. [· · · ]
Without further description, ChatGPT correctly infers that the

data set originates from the PID-controller design domain. The

variables P and I are correctly identified as the proportional

and integral controller parameters, respectively. Further, over-

shoot, the extent to which a signal or system exceeds its target

value, is labeled correctly. The variable t±5% is correctly iden-

tified as a time-based metric that describes the performance

of the system, however incorrectly attributed to the time the

system takes to reach 5% of the target value. Only for the

expert level dialog, we explicitly correct this assumption to

improve the context for the following interaction:

Prompt A.32: t±5% refers to the time taken to reach and

stay within 95% of the target value

B. Visualization of the data set

The request to produce a visualization of the data set is

handled rather differently depending on the level of detail

introduced in the prompt. The basic inquiry

Prompt B.1: Visualize the data

leads to four two-dimensional scatter plots, each one featuring

the sample number on the x-axis, as well as one of the

respective four variables. The sample number itself does not

provide any information about the data set, such as optimiza-

tion progress. It can rather be considered to be a random index,

hence the information gain from the plots is low. Neither can

the distributions of the variables be easily obtained, nor do the

plots provide information about the correlation between them.

This can be achieved using a precise prompt, such as

Prompt B.3: Create 3 plots. The first should contain

the control parameters. The second and third should the

overshoot and t5% as a histogram, respectively.

C. Statistics

For all dialog levels, when asked to calculate statistics of

the data, e.g., with the basic request to

Prompt C.2: Calculate statistics of the data

ChatGPT provides a list presentation of the results obtained

from pandas.DataFrame.decribe() and a brief state-

ment about statistical measures:

Answer C.2: [· · · ] The mean and standard deviation are

particularly useful for understanding the central tendency

and variability of each parameter [· · · ]
The provided results are typical and correct, however the

atypical list-form does not provide a benefit over a table-form

output, which an experienced user would expect.

D. Clustering

Identifying groups within the data is a task that depends on

the exact prompt. Simply asking to

Prompt D.11: Group the data

or to
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Prompt D.12: Group the data based on ranges of P and I

values, as well as ranges of overshoot and t±5%

leads to an attribution of all samples to the categories “Low”,

“Medium”, “High”, and “Very high” for each individual fea-

ture based on percentiles. However, it is not specified if those

individual groups for each respective feature share common-

alities or correspond to each other in any way. Prompting to

find groups in the data, on the other hand, e.g.,

Prompt D.13: Can you find groups in the data?

triggers a response to use clustering algorithms:

Answer D.1: To find groups or clusters in the data, we can

use clustering algorithms such as K-Means or Hierarchical

Clustering. These methods will help to identify groups

based on similarities in the data points. [· · · ]
When a specific number of desired clusters is provided, k-

means is applied to the full four-dimensional data set. Chat-

GPT further identifies the necessity to standardize the data

in order to avoid bias in the clustering algorithms, as well as

proposes the elbow method for cases without a desired number

of groups. However, when asked to

Prompt D.3: Cluster the data into three distinct groups

k-means clustering is used directly, without scaling the data

first and without visualizing the result3.

E. Interpretation of clusters

Simply inquiring

Prompt E.1: What do the groups mean?

leads to an interpretation that is understood as

Answer E.1: [· · · ] examining the characteristics of each

cluster. This usually involves looking at the central ten-

dencies (like the mean or median) of the features within

each cluster. [· · · ]
However, looking at the central tendencies of the clusters is

problematic, since it does not capture the entire ranges of the

distributions. The interpretation of the clusters is given as:

• Cluster 0: “Configurations in this cluster have lower ’P’

and ’I’ values, minimal overshoot, and slower response

times (higher t5%)”

• Cluster 1: “This cluster represents configurations with

moderately high ’P’ and ’I’ values, moderate overshoot,

and faster response times (lower t5%)”

• Cluster 2: “This cluster signifies configurations with the

highest ’P’ and ’I’ values, the highest overshoot, and the

quickest response times (lowest t5%)”

When inspecting the clusters, the completeness of the given

interpretation is doubtful. While the interpretations are not

generally wrong, they clearly do not capture the complexity

3We chose three groups based on experience with the corresponding data
set in previous work [25].

of the identified clusters, one example being the wide range

of overshoot values for cluster 0, which is overly simplified

in the interpretation (“minimal overshoot”). When explicitly

asking to

Prompt E.3: Interpret the clusters in the 3 spaces I

described above, e.g. P vs I, Overshoot, t±5%,

i.e., when the spaces of interest from an expert view are em-

phasized, ChatGPT describes the found clusters with respect to

their system response time and stabilization properties.

Answer E.3:
• Cluster 0 could be a strategy that leads to higher

overshoot and longer stabilization times.

• Cluster 1 might represent a more conservative ap-

proach, leading to lower overshoots and a range of

stabilization times.

• Cluster 2 appears to be a more aggressive strategy,

characterized by higher P values and mixed responses

in overshoot and stabilization time.

Also in this case, the interpretation is over-simplified, due to

referencing only the central tendencies of the clusters.

F. Visualization of the clusters in the description spaces

When simply prompting to

Prompt F.1: Visualize the groups

the basic level visualization of the identified clusters is given

as three two-dimensional figures, each one featuring the pro-

portional gain P on the x-axis and the other three variables

on the y-axis, respectively. There is no explanation for why,

in particular, the second and third space are chosen for the

representation. The prompt

Prompt F.2: Show three spaces. P and I in one, overshoot

in another and t±5% in the third

provides three non-ideal visualization of the requested spaces,

using the cluster indicator as the x-axis in a scatter plot. A

better option is to combine a scatter plot with histograms

(Fig. 4), which can be achieved when specifically asking for

it:

Prompt F.3: Visualize the clusters in 3 plots. The first

should contain the control parameters. The second and

third should be the overshoot and t5% as a histogram,

respectively.

G. Concept identification

Trying to identify concepts in the data, i.e., groups of

samples that are similar and consistent with respect to the

given description spaces, the overlap between the groups needs

to be avoided. When asking ChatGPT to

Prompt G.2: Group the data in a way that the groups do

not overlap in the three spaces,
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Fig. 4: Identified clusters for the expert dialog, split into the three description spaces.

it correctly states that k-means is not a suitable algo-

rithm:

Answer G.2: [· · · ] Since K-means clustering primarily

focuses on minimizing the within-cluster variance, it might

not always result in non-overlapping clusters, especially in

spaces where the clusters are not clearly separable. [· · · ]
In the expert setting, we first define the three spaces as

description spaces. We then ask to

Prompt G.31: Find three clusters that do not overlap in

the three description spaces.

and receive a problematic result:

Answer G.31: To find three clusters that do not overlap

in the three description spaces (P vs I, Overshoot, t±5%),

we can apply clustering algorithms that consider all these

factors simultaneously. The goal is to identify clusters

where each cluster is distinct across all three description

spaces. I’ll use a clustering algorithm, such as k-means,

on the combined features of P, I, Overshoot, and t±5%
and then examine the resulting clusters to see if they are

distinct in each of the description spaces. [· · · ] From these

visualizations, it appears that the clusters are somewhat

distinct in each description space. [· · · ]
Aside from being a generally vague statement, it is also

incorrect. The previous clustering procedure and visualization

are repeated, leading to the same result as given in Fig. 4.

Hence, in the second and third space, the clusters are clearly

overlapping. We therefore correct this statement in the dialog

and ask for alternative options, i.e.,

Prompt G.32: No, the clusters are overlapping in the three

spaces. What algorithm can I use to find non-overlapping

clusters in the three spaces?

The recommended algorithms (including Hierarchical Clus-

tering, Density-Based Clustering, Gaussian Mixture Models,

Spectral Clustering) are, however, also not particularly suitable

to solve the problem, as mentioned in Section II.

H. Integration of concept quality metric

In the expert level dialog, we further test whether we can

integrate a recently developed metric that evaluates the quality

of identified groups in a data set with regard to consistency

across multiple spaces:

Prompt H.31: Can you use the concept quality metric from

the paper Concept Identification for Complex Engineering
Datasets” by Lanfermann et. al?

The summary of the publication content is correct:

Answer H.31: The concept quality metric proposed by

Lanfermann et al. in their paper ”Concept Identification

for Complex Engineering Datasets” provides a method

for assessing the distinctiveness of clusters in a multi-

dimensional dataset. This approach focuses on evaluating

how well-separated and internally cohesive the clusters are,

which is particularly useful in engineering and scientific

datasets where clear differentiation of concepts (clusters)

is crucial. [· · · ]
However, the recommended steps to implement the approach

(cluster the data, calculate the concept quality metric, iterate

with different parameters, evaluate and select the best cluster-

ing) are not correct. This would involve optimizing connected

regions for all concepts for all description spaces using the

quality metric as an evaluation function.

Providing ChatGPT with the full text version of the corre-

sponding section from the respective publication produces a

better result. For this, the correct steps are identified (define

the description spaces, define concepts and candidates, calcu-

late the CQM, optimization, integration of user preferences).

Nevertheless, when asked to produce python code for the

evaluation of concept quality based on the publication, the

implementation exhibits flaws:

Answer H.32: [· · · ]
1 for space in description_spaces:
2 in_ellipse = cdist(space,
3 [concept['center']]).flatten()
4 < concept['radius']
5 fraction = np.sum(in_ellipse
6 & concept['mask']) / np.sum(in_ellipse)
7 cqm_components.append(fraction)

In particular, the fraction component is calculated incorrectly

in lines 5 and 6, as it divides by the number of samples

belonging to each ellipse per space. Dividing by the number of

samples per concept, i.e., the samples that consistently belong

to the corresponding ellipses in all description spaces, would

be correct.

Given that the evaluation function is provided by the user

code-ready, ChatGPT is able to create a concise optimization

framework around it:
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Prompt H.33: Can you write a code framework in

python for the optimization loop? Use CMA-ES as the

optimization strategy, assume that the concept quality

metric is given as the output of an existing method

(evaluate_quality).

In this way, a co-generation of the envisioned pipeline is

possible, where ChatGPT provides the structural framework

around user-defined functions.

I. Airfoil data set investigation

The method can be applied in more complex engineering

tasks. Using a similar dialog as for the PI-control systems

optimization task, we evaluate if it is possible to achieve com-

parable results as [6] for an airfoil design case study. Here, the

shape of an airfoil is modified in a multi-objective optimization

and evaluated with respect to its aerodynamic performance

under multiple conditions. Four design parameters p0, p1,

p2, p3 can be modified by the optimization framework to

adapt an RAE2822 airfoil base profile. Additional features,

given as the camber line displacement c.03, c.2, c.4, c.6, c.8
at five points of interest are collected for each sample. The

aerodynamic performance is evaluated for each sample using

the computational fluid dynamics solver OpenFOAM4, for

three different angles of attack (α1 = 0◦, α2 = 1◦, α3 = 3◦)

to reflect characteristic operating conditions such as cruise

flight, landing or take-off (see [6] for full details). Hence, each

sample is associated with three lift and three drag coefficients.

The full data set thus contains roughly 2500 samples with

15 features each. In this use case, five different description

spaces are of interest to the engineer: the space of parameters,

the space of geometric features, and the three spaces of perfor-

mance for the respective boundary conditions. We use the same

dialog structure as detailed in subsections A-H above to assess

the resulting data set of the parameter-objective combinations

and identify several aerodynamic concepts (Fig. 5). The k-

means clustering algorithm sorts the data into three groups

that are distinguishable in all description spaces. Particularly

in the three performance spaces, we observe three conceptually

different groups: Cluster 1 demonstrates a high performance

(high lift and low drag) for the largest angle of attack and can

thus be interpreted as well-suited for take-off. Cluster 2, on

the other hand, achieves better performance for cruise-flight

conditions (lowest drag for α = 0◦), while cluster 0 offers an

intermediate performance between the two extremes.

J. Energy management data set investigation

Analogously, we investigate a data set of energy manage-

ment configuration options obtained through a many-objective

optimization [24]. Each sample represents a configuration

defined by nine different parameters concerning the electrical

demand and supply system of the research facility. Several

scalable components, such as a photovoltaic (PV) system, a

stationary battery and a combined heat and power plant are

considered. For example, the optimization may influence the

4www.openfoam.org

Fig. 5: Identified airfoil clusters. The clusters represent airfoil designs
that are similar with respect to their parameters, geometric features,
as well as the drag and lift coefficients (all normalized).

Fig. 6: Identified energy management configuration clusters. The
clusters represent configuration options that are similar with respect to
the full set of parameters and performance metrics (all normalized).
The clusters strongly overlap in the description space of Ed and
Cannual.

overall PV size and orientation, as well as battery capacity and

operation settings. The system is evaluated with respect to ten

partially conflicting performance metrics, including investment

and operational cost, CO2 emission, and factors that represent

battery aging and electrical stress for the supply grid. Due to

the large number of objectives, the data set contains more than

20 000 pareto-optimal configuration options. Since a manual

assessment of this vast amount of variations is impractical,

sorting the set automatically into semantically meaningful

groups is highly desirable. To enable the systems to unravel

reasonable trade-off options, we choose the same description

spaces as [26]: Space 1: Peak power of the photovoltaic system

PPV, nominal battery capacity CB. Space 2: Investment costs

Cinvest, maximum peak power PP. Space 3: Annual operation

costs Cannual, yearly discharged energy Ed. Space 4: Mean

battery state of charge b̄, yearly feed-in energy Ef . Using

the described dialog structure as detailed in subsections A-H

above, we are quickly able to identify clusters of configuration

options which are similar with respect to the eight parameters

and objectives. However, simply applying k-means clustering

leads to an undesirable result. While the found clusters are

distinguishable in space 2, this is not the case, for example, for

space 3, where the three clusters strongly overlap (Fig. 6). No

groups of configurations are found that provide a trade-off be-

tween annual operation cost and the discharged energy, while

being distinguishable in the other description spaces. The basic

clustering approach is thus not able to identify semantically

reasonable concepts based on the given description spaces. But

this can be achieved when a concept identification procedure

is employed using the framework provided by ChatGPT as a

response to prompt H.33.
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V. DISCUSSION

ChatGPT is, without a doubt, a practical tool for the analysis

of data. Its profound capabilities to conduct typical statistical

investigations and typical machine learning procedures can be

of great help to engineers, data scientists, and researchers. As

shown in the experiments, ChatGPT derives correct statistical

metrics from a given data set and seamlessly provides code to

apply basic clustering approaches. But as with any other tool,

one also needs to know its limitations. However, a scientific

evaluation of the capabilities and limitations of ChatGPT is

challenging for several reasons. Slightly differently formulated

prompts—in some cases even identical prompts—lead to dif-

ferent results and hinder the reproducibility of experiments.

This effect alone is worth a full investigation, however out

of scope of this work. A deeper analysis of a simple data

science procedure would also be a worthwhile investigation,

but within our work, we explicitly want to identify and address

limitations for an expert setting. Another limitation is the fact

that the internal python execution environment of ChatGPT is

unstable, e.g., opening (larger) data sets and creating figures
frequently malfunctions. Furhter, the experiments exhibit a

tendency to visualize data as two-dimensional (scatter) plots,

when not otherwise stated, which is not always the most

sensible choice. Similarly, the recommendation to scale or

normalize the data prior to the processing is inconsistent and

often not realized in the provided python implementation.

ChatGPT sometimes provides non-factual statements about

the analysis and interpretation results. In several answers, the

model argues that the identified groups are non-overlapping,

when in fact, they actually are.

While the suggested python code for basic tasks, such

as conducting a clustering process using a pre-implemented

function from a standard library, can often be used without

any modification (or even run by ChatGPT directly), direct

method implementations seem to be more problematic. Often,

the produced code did neither capture the envisioned method

correctly, nor was is executable without error. Nevertheless,

the capabilities of ChatGPT with regard to creating a struc-

tured framework and sketching an effective machine learning

pipeline is astonishing.

VI. CONCLUSION

In this paper, we show that data science tasks like sum-

marizing and visualizing data sets, as well as conducting

well-established machine learning approaches, such as many

clustering approaches, can be seamlessly conducted using

ChatGPT, and the results are equivalent to an expert approach.

For the investigated technical fields, ChatGPT integrates basic

domain knowledge into the analysis and provides reason-

able interpretations for identified data clusters. For drafting

algorithms from mathematical formulations, expert support

is, nevertheless, required to assure a correct implementation.

In those cases, ChatGPT is able to provide support for the

creation of a code framework. We thus believe that ChatGPT

can further serve an educational purpose by illustrating how

to create scientific code efficiently and introduce unknown

functions and libraries even to experienced developers. In

summary, we hence conclude that LLMs, and in particular

ChatGPT are valuable tools for data science.
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