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Abstract—Engineers often utilize data-driven surrogate models
in optimization to partially replace the costly computational simu-
lations of physics-based models. However, different aspects affect
the accuracy and prediction capability of the surrogate models,
e.g., the dimensionality of the data and nonlinearities in the
mapping between input and output. Learning well-performing
models by selecting appropriate techniques to fit the data benefits
from the machine learning and data science expertise of the
engineer which may vary depending on the application domain.
Recently, large language models (LLMs) have shown promising
capabilities to support humans through natural language-based
interfaces in approaching technical problems, as well as to co-
develop software and to democratize domain knowledge. In this
paper, we utilize ChatGPT 4 to co-develop a framework to
select and train surrogate models for engineering optimization
tasks. More specifically, we interact with ChatGPT to outline a
process and software to support the selection and application
of regression techniques based on characteristics of the available
data and target application. We evaluate the developed methodol-
ogy on synthetic and realistic engineering optimization data and
problems. In our experiments, we demonstrate that the models
obtained through the methodology developed with ChatGPT
achieve comparable performance in regression and optimization
tasks than observed in existing works in the literature. Hence,
despite some limitations, such as missing updates of available
software libraries, LLMs can support less experienced engineers
to solve surrogate-assisted optimization problems more efficiently
by providing insights on the application data and software for
deploying surrogate models.

Index Terms—Large language models, surrogate modeling,
design optimization, generative AI, democratization.

I. INTRODUCTION

Generative artificial intelligence (GenAI) and large language

models (LLMs) currently have a major impact on a variety of

business fields, e.g., dealing with dialog-based systems [1],

software development and refactoring [2], content generation

through text-to-image [3] and text-to-shape models [4], [5],

and numerical optimization [6], [7]. Due to the memory

effect, LLMs allow users to provide contextual information

and personalize the generated content. The analysis of the

performance of LLMs is central to understand their capabilities

and identify limitations, and is currently researched especially

in the field of natural language processing (NLP) [8]. However,

there is also the need to evaluate the performance of LLMs in

application fields where user expertise and experience play a

major role for optimal results. In the present paper, we utilize

an LLM, namely ChatGPT 4 (short: ChatGPT), to assist a

user in a typical machine learning task in the engineering

context: We explore the capability of ChatGPT to assist in

the selection and training of feasible data-driven models for

performing surrogate-assisted optimization.

During product development, e.g., in the automotive indus-

try, computational engineering design optimization is a key

for realizing fast time-to-market cycles. To reduce the num-

ber of costly evaluations with physical prototypes, engineers

utilize digital computer-aided engineering (CAE) models of

the physical system to perform simulations and estimate the

performance of designs, e.g., aerodynamic analysis for drag

minimization or structural analysis for vehicle safety. When

combined with computational optimization, these CAE models

are iteratively updated and simulated, which often requires

higher computational effort than other components of the

optimization process [9]. Therefore, different approaches have

been proposed to balance computational resources and opti-

mization performance for different problems, with surrogate-

assisted optimization [10] as prominent representative. Here,

data-driven regression models are often selected as surrogates

for computer simulations in engineering optimization. In the

recent years, a wide portfolio of surrogate models has been

developed, which are typically mathematical functions with

known formulations and capable to be coupled with various

state-of-the-art optimizers, such as gradient-based, as well as

stochastic search algorithms, e.g., evolutionary optimization.

However, the application of surrogate models is still chal-

lenging, as it requires machine learning and domain expertise

for (1) preparing and pre-processing the data, (2) selecting a

reasonable model adequate for the given problem at hand, (3)

learning and validating the model on training and test data,

and (4) preparing the model for downstream applications such

as integration into the optimization process flow.

In the present paper, we propose to use ChatGPT in the

role of a data science expert to assist human users to select

and process surrogate models for engineering data in design

optimization scenarios. Our objectives are to (1) evaluate

the process for generating surrogate models through user

dialog interaction with ChatGPT and (2) validate the model

performance on typical benchmark functions available from

literature as well as in the context of engineering optimization

tasks. Hence, we first generate a process and software to select

a regression technique for a generic data set by interacting with
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ChatGPT and compare the suggested techniques to approaches

available in the literature and to standard data analysis prac-

tices. Secondly, we validate our process by applying the gen-

erated software on two types of data sets: A set of analytical

functions based on [11], and the OSU-Honda automobile hood

data set (CarHoods10k) [12], [13], which comprises geometric

and structural data of over 10k realistic car hood designs.

Our main contribution is to demonstrate that LLMs can

generate a feasible engineering and data analysis process in a

cooperative fashion with the human user. Our method unveils

new ways for engineers to interact with machine learning

methods to address data analysis tasks, which has the potential

to accelerate development processes leading to novel product

designs. Therefore, we strongly believe that reasoning about

complex data and tasks in a discussion-style with LLMs offers

a new way of democratizing knowledge in engineering and

data science, particularly if the availability and quality of

LLMs increases.

The remainder of this paper is structured as follows: In

Section II, we present a survey of recent works on surrogate-

assisted optimization and applications of LLMs. In Section III,

we provide details on our interaction with ChatGPT to de-

velop the method for selecting and fitting surrogate models

for different applications. Then, in Section IV, we present

the experimental settings for verifying the proposed method

using the benchmark and engineering data sets. In Section V,

we discuss the results obtained in the data regression and

optimization tasks. Finally, in Section VI, we conclude the

paper and highlight future research directions.

II. RELATED WORK

In surrogate-assisted optimization, domain experts utilize

data-driven models to estimate the performance of a system

when the mathematical model of the system is unknown or the

computation of the system, e.g., CAE simulation of vehicles

and their components, is prohibitively expensive [14]. As

black-box models, surrogate approaches have been success-

fully applied together with evolutionary optimization methods

for both, single and multi-objective problems, as well as for

problems of static and dynamic nature [15]. Although different

aspects of surrogate-assisted optimization are explored in

literature, a canonical methodology for selecting and fitting

surrogate modeling techniques is still missing, which is a

challenging task particularly for novice users of optimization

methods [16].

Chatterjee et al. [17] surveyed different surrogate modeling

techniques applied to robust design optimization. The authors

also included the application of surrogate modeling in realistic

design problems, e.g., crashworthiness of car structures, but

focused on the performance of a set of surrogate models on

the selected examples rather than a general approach to select

a particular technique. Salem and Tomaso [18] proposed the

penalized predictive score (PPS) metric for comparing the

performance of surrogate models. The authors also utilized

evolutionary algorithms to search and tune surrogate models

based on the PPS for specific applications. As often observed

in data-driven methods, the approach underperforms in cases

with limited data availability, and only yields surrogate models

from a predefined set of techniques.

Towards an automatic selection of surrogate models, Saini et
al. [19] developed a proof-of-concept system for automatizing

the selection of surrogate models based on the features of the

data landscape and available information about the utilized

data sampling method. The authors utilized a classifier to map

the data features to a set of standard surrogate modeling tech-

niques, which was trained on data available from benchmark

data sets, and achieved promising results on known benchmark

optimization problems. However, despite the advances in the

automation of the decision process, the understanding of

the decision process still requires advanced expertise in data

science, which can reduce the trust of the user on the system.

Recently introduced LLMs, e.g., ChatGPT1, have the poten-

tial to support the users to create more explainable systems by

democratizing the knowledge on data analysis and engineering

topics [20]. Makatura et al. [21] provide an extensive analysis

on the capabilities of ChatGPT in different 3D design tasks

considering manufacturing constraints. The authors point out

that the interaction with the LLM has potential to boost the

creativity of designers and speed up the design process but,

at the current state of the available tools, manual work is

still required to verify and fine tune the generated designs.

Picard et al. [22] performed a similar analysis on four classes

of design tasks, which include engineering education. The

authors show that ChatGPT answers questions about general

engineering knowledge better than solving detailed design

problems, where ChatGPT lacks precision and tends to take

overly cautious decisions. Hence, as LLMs are well capable

to provide assistance to outline processes in a dicussion-style,

we utilize ChatGPT to outline a framework for selecting and

testing regression functions for surrogate-assisted engineering

design optimization tasks.

III. LLM-ASSISTED SURROGATE MODEL SELECTION

In this section, we present the workflow utilized to select,

train, and apply surrogate models in optimization tasks, which

we utilized in our experiments (Fig. 1). In a first step, we

assume practical relevant conditions as detailed below for the

optimization problem and interact with ChatGPT to develop a

method to select a surrogate model for the optimization task.

In a second step, we apply the developed method on two sets

of data, i.e. benchmark data sets and a realistic application data

set, and perform the optimizations to verify the performance

of the developed methodology.

A. ChatGPT-based Methodology

We start the development of the methodology by providing

the context and objectives of our task to ChatGPT (Prompt 1).

Here, we assume a typical engineering scenario where the user

wants to optimize a system that is computationally expensive

to simulate but has performance data available from previous

1https://openai.com/
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and verification
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Fig. 1: Utilized workflow to select and fit surrogate models for
optimization based on the user preferences and available training
data. In a first step (1), the user interacts with ChatGPT to generate
the software for surrogate model selection. In a second step (2), the
user applies the software using the available data and for the targeted
optimization problem.

simulations or physics experiments. Furthermore, as gradient

information is often unavailable in complex simulation models,

we constrain our cases to optimizations with evolutionary

algorithms. The corresponding answer (Answer 1) outlines

a 5-step process, which starts with the analysis of the data

characteristics and ends with the integration of the model to

the optimization task.

Prompt 1: I need to train regression models as objective

functions (or part of the objective functions) for differ-

ent optimization tasks. My data sets have different sizes

(samples and features) and the optimization method is an

evolutionary algorithm. Can you please help me to create

a process to select a technique to fit the data and to code

the created process into a Python script?

Answer 1: Certainly! To create a process for selecting

a regression model as an objective function for different

optimization tasks, and to implement it in Python, you can

follow these steps:

• Step 1: Analyze your data (data size, feature types,

data quality)

• Step 2: Select regression techniques (linear regres-

sion, ridge regression, decision trees, support vector

regression, neural networks)

• Step 3: Define model selection criteria (performance,

computational efficiency, interpretability)

• Step 4: Implement the process in Python

• Step 5: Integrate with optimization task

• Final Steps: Test the script with your datasets. Iterate

to fine-tune model selection and preprocessing steps

as needed.

This outline gives you a starting point. You’ll need to adapt

and expand it based on the specifics of your datasets and

optimization tasks.

Since the obtained answer outlines a general process, we

proceeded by specifically requesting the Python scripts for

performing the tasks in each of the steps (Prompt 2). Also, we

requested ChatGPT to convert the software generated based

on Prompt 2 into a function, which is easier to integrate

to multiple scripts, and to generate only numerical data,

which avoids extensive comparisons based on visual analyses

(Prompt 3).

Prompt 2: In the data processing steps (steps 1 to 3),

can you generate a script to evaluate the data? And how

should I use the values to select the surrogate modeling

technique?

Prompt 3: Can you convert the script into a function

which outputs the classification of the data set (large data

set: boolean), type of features (continuous, categorical or

mixed), and data quality metrics (missing values: boolean,

outliers: boolean, skewness)?

The obtained answer (Answer 3) comprises a Python script

that evaluates the data set with respect to size, type of features,

outliers, skewness, and missing values. Most of the properties

are directly obtained by importing the data into a data frame

using the pandas library. ChatGPT proposed to utilize the

interquartile range (IQR) method to detect outliers in the

data set, which is one of the most used techniques for this

purpose [23]. In the Python script, ChatGPT suggests values

for classifying the data set with respect to size, presence of

outliers, and skewness criteria, but also includes a disclaimer

at the end of the answer, which warns the user that the script

potentially requires further tuning to perform well on specific

cases.

Answer 3: Sure, I can modify the script into a function

[. . . ] The function will return whether the dataset is large,

the type of features (continuous, categorical, or mixed),

and data quality metrics including the presence of missing

values, outliers, and skewness.

import pandas as pd
import numpy as np

def evaluate_data(data):
# Define thresholds
# Define what you consider as a
#large dataset
large_dataset_threshold = 100000
# Typically used in boxplots
outlier_threshold = 1.5
# Define your skewness threshold
skewness_threshold = 0.5

# Data Size Evaluation
[...]

return {
'is_large_dataset': \

is_large_dataset,
'feature_type_classification': \
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feature_type_classification,
'has_missing_values':\

has_missing_values,
'has_outliers': has_outliers,
'has_skewness': has_skewness}

This function provides a basic framework for dataset eval-

uation, and you may need to extend or modify it according

to the specifics of your data and the requirements of your

models.

To generate the algorithms for steps 2 (fit the data) and

3 (selection criteria), we asked ChatGPT how to fit the data

and compute the performance indicators to select the methods

(Prompt 4). However, the obtained script lacked artificial

neural networks (ANNs) as an option of regression technique,

compared to the suggestions in Answer 1-Step 3. Hence, in

two additional prompts, we requested ChatGPT to generate

a new script that includes ANNs and to consider other po-

tential models, such as multivariate adaptive regression spline

(MARS) [24] and automatic learning of algebraic models for

optimization (ALAMO) [25]

Prompt 4: Moving to Step 2, how can I fit the data

using the techniques that you suggested? Also, on Step 3,

how can I calculate the metrics to evaluate the criteria that

you suggested?

In the following step, we asked ChatGPT to modify the

software into a Python function to ease the integration with

other applications. The obtained script (Answer 4) includes

only the fitting techniques suggested by ChatGPT and the

implementation in our hardware setup required only minor

adaptations. For example, some of the functions from the

Scikit-Learn library that are utilized to evaluate the models

lack compatibility with the ANNs built using the tensor-

flow library. Furthermore, ChatGPT included a 5-fold cross

validation procedure, which is often utilized to verify data-

driven models against overfitting [26], but neglected any data

normalization procedure before training the models. However,

we did not include the normalization in our experiments to

evaluate the method as generated by ChatGPT, and only added

a custom wrapper for the Tensorflow functions to enable

the script to evaluate all generated models using the same

techniques.

Answer 4: Creating a Python function that takes a

dataset (as a CSV file) and evaluates various regression

models [. . . ] Here’s how you can structure such a function:

Reading and Preparing the Data: The function will read

[. . . ] Model Training and Evaluation: It will train different

models [. . . ] Model Complexity and Interpretability [. . . ]

Python Function Implementation

import pandas as pd
[... import other libraries ...]

# Function to evaluate models
def evaluate_models(csv_file):

# Load and prepare data
data = pd.read_csv(csv_file)
[...]
# Define models
models = {

'LinearRegression': \
LinearRegression(),

'Ridge': Ridge(),
'RandomForest': \

RandomForestRegressor(),
'SVR': SVR(),
'ANN': Sequential([...])}

# Model evaluation
results = {}
for name, model in models.items():

[...]
model.fit(X_train, y_train)
# Cross-validation scores
scores = cross_val_score([...])
[...]
# Calculate metrics
## mse, rmse, mae, mae, r2
[...]
# Number of parameters
## layers*neurons for ANN
## n_features for linear
[...]
# Interpretability
## LR, Ridge --> 'HIGH'
## Else --> 'LOW'
[...]

results[name] = {
'MSE': mse,
'RMSE': rmse,
'MAE': mae,
'R2': r2,
'Num_Params': num_params,
'Interpretability': \
interpretability}

return results

Notes: [. . . ] This function serves as a comprehensive

starting point for evaluating various regression models on a

given dataset and can be further customized and expanded

based on specific requirements and advanced modeling

techniques.

In a last step, we requested ChatGPT to generate a script

to select a technique for the surrogate modeling task based on

the output of the previous functions (Prompt 5). The objective

is to seamlessly provide the data set as a comma-separated

value (CSV) file as input and obtain as output the technique

for surrogate modeling.

Prompt 5: Now, to select the model for my task:

If I have the output of the functions evaluate data and

evaluate models, how can I use these outputs and my

preferences to select a technique? Can you generate the

Python script for that?
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As a result (Answer 5), ChatGPT created a function that

performs the data analyses, feeds the result into the model

selection and evaluation, and yields the best performing model.

Although in the script only the mean-squared error is utilized

to select the fitting technique, ChatGPT also added an in-line

comment that the user should change the metric according

to his/her preference, e.g., the 5-fold cross validation scores

to select more robust techniques against overfitting. Hence,

the algorithm generated by ChatGPT accounts for the data

properties, performance of the techniques, and, indirectly, the

preferences of the user.

Answer 5: Certainly! To select the best model for

your task based on the outputs from evaluate data and

evaluate models, and considering your preferences [. . . ]

Python Script for Model Selection:

def select_model(data_evaluation,\
model_evaluation,):

# Filter models based on data size
#and type
suitable_models = []
for model, properties in\

model_evaluation.items():
# Data set size: Skip complex models
##for large datasets
[...]
# Features type: Skip linear models
for purely categorical data
[...]
# Missing values: Skip sensitive
models for poor quality data
[...]
# Add model to the list if it
#passes the filters
suitable_models.append(\

(model, properties))

# Rank models based on metrics
# Here, we consider MSE as the primary
#metric; modify as per your preference
suitable_models.sort(key=lambda x:\

x[1]['MSE'])

# Return the best model based
#on the above criteria
return(suitable_models[0][0] \

if suitable_models else None)

[. . . ] This combined script should provide a comprehensive

evaluation of various regression models, including ANNs,

facilitating an informed decision for your modeling task.

IV. VALIDATION EXPERIMENTS

We validate the method developed with ChatGPT (Section

III) by implementing and applying the generated software on

the following sets of surrogate-assisted optimization problems,

where we do not directly interact with ChatGPT.

In the first set of experiments, based on [11], we utilize

analytical functions to generate data sets of different size

and number of features, as well as to perform the surrogate-

assisted optimizations. The objective is to verify how the

performance of the method varies with respect to the avail-

ability of data, function characteristics, and dimensionality

of the design space. For our first set of experiments, we

implemented the n-dimensional versions of the following

functions: Ackley, Griewank, Levy, Zakharov, Dixon-Price,

Rosenbrock, Michalewicz, Perm d, β, and Stybtang [27]. For

all the selected functions, we generated data sets that comprise

{500, 1000, 2000, 5000} samples within the domain (−1, 1)D,

where D = {2, 4, 6, 8, 10, 50, 100} is the number of features.

In the second set of experiments, we replace the analytic

functions by engineering data from CarHoods10k [28], which

is a large data set containing realistic car hood designs along

with a structural performance. Specifically, we utilize 50

subsets of the data to fit the surrogate models for predicting

the stress response on the car hoods based on the design

parameters that were utilized to generate the geometries.

For both, the analytical and engineering data sets, we af-

terwards utilize the covariance matrix adaptation evolutionary

strategy (CMA-ES [29]) to optimize the designs. The utilized

strategy is (μ, λ), where the population size λ and number of

parent samples μ are adapted based on the dimensionality of

the domain. We perform the optimizations for a maximum of

100 generations or until the changes in the performance of the

fittest individual becomes less than 1%.

V. RESULTS AND DISCUSSION

A. Data from Analytic Functions

In a first analysis, we verified the MSE obtained in the

training and cross-validation (MSECV ) steps of the algorithm

developed with ChatGPT for all surrogates and functions (Fig.

2). We observed that linear and ridge regression methods

are the techniques that yield the worst performance and,

thus, were selected only 13 and 16 times (combined) out of

224 experiments based on the training and cross validation

errors, respectively. However, since all utilized functions are

nonlinear, we expected these models to perform well only in

particular cases.

Differently, the ANN and random forest achieved the best

performances overall. Each technique was selected as best

model for a third of the tested cases and for both MSE and

MSECV metrics. Interestingly, the developed method selected

random forest models more often than ANNs based on the

training MSE, while the opposite happened when the cross-

validation error was utilized. Furthermore, the random forest

technique was selected more frequently to fit the data from the

Michalewitcz function than from the other functions, while

the number of times the ANN was selected is more evenly

distributed over the functions (Fig. 3).

In a second step, we applied the selected models as ob-

jective functions in surrogate-assisted optimization problems

according to the aforementioned settings (Section IV). To set

a baseline performance, we also performed the optimizations

using the corresponding analytical functions.

By verifying the variation of the normalized fitness value

f(x)N over the generations (Fig. 4), we observed that the
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Fig. 2: Distribution of the mean squared error (MSE) measured on
the test set (10% of the data) and mean over the cross validation
folds (MSECV ) over all dimensionalities and data set sizes.

MSE MSECV

Fig. 3: Number of times each technique was selected based on the
developed methodology to fit the data generated by each of the
utilized functions.

optimizations with the surrogate models behave similarly as

in the experiment with the analytic functions, apart from

the optimizations with the Zakharov and Griewank functions.

In these two cases, the optimizations perform slower and

yield an abrupt drop of the f(x) value towards the 100th

generation. The potential causes for such behavior are the

multi-modality of the Griewank function landscape, which

hinders the accuracy of the surrogate model, and the lack of

data normalization, which leads to scaling issues and lack of

variance to learn the Zakharov function.

We confirmed our hypotheses by computing the Euclidean

distance between the fittest individuals XA and XS obtained

in the optimization with the analytical functions and in the

corresponding surrogate-assisted optimization case for each

generation, respectively (Eq. 1). Since the distance scales

differently with the dimensionality D of the problem, we nor-

Fig. 4: Best fitness values obtained in each generation of the
optimizations performed with the analytic functions and surrogate
models.

malized the distance by the length of the main diagonal of the

hypercube formed by the training space. In this analysis (Fig.

5), we observed that the fittest individuals of the surrogate-

assisted optimization drifted apart from the samples in the

corresponding analytical cases. Hence, the surrogate models

selected by the proposed method are the best performing

among the available set of methods for the experiments, but

they still have limited prediction (extrapolation) capability,

which is a known issue of data-driven models and an expected

limitation of the proposed framework.

‖XA −XS‖N =
‖XA −XS‖2

2
√
D

(1)

Fig. 5: Distance between the fittest individuals in the optimizations
with the analytic functions (XA) and surrogate models (XS) for each
generation, and the corresponding breakdown based on the utilized
objective functions.

B. Structural Optimization of Car Hoods

In the second set of experiments, we extend our experi-

ments to a data set of realistic engineering data. For this

purpose, we considered the metadata of 50 subsets of the

CarHoods10k data set [28], which comprise the values of

geometric parameters that represent each hood structure and
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corresponding performance metrics, e.g., mass and maximum

equivalent stress. The geometries in each subset are defined

by a template structure, namely a skin, and differ both in

terms of topology, e.g., number of cuts and ribs, as well

as dimensions of geometric features, such as radii of bends.

The hoods were simulated for bending and twist cases (Fig.

6), since the performance in those cases are considered as

practically relevant design criteria during the development of

car hoods. For our experiments, we consider the geometric

features as design space and the maximum equivalent stress

as performance (output) value to fit the surrogate models.

F

Fixed

Fixed

F
F

Fig. 6: Schematic of the boundary conditions utilized to simulate the
hood structures.

In terms of data properties, despite the car hoods were

simulated as static linear-elastic models, the differences in

the shape topology lead to different locations and magnitudes

of maximum stress. Furthermore, the space defined by the

geometric features mixes continuous and discrete variables,

e.g., width and number of reinforcement ribs. Hence, the data

set potentially contains outliers and multi-modal performance

landscapes, which hinder the training of surrogate models.

In the first step of our analysis, we applied the proposed

selection method and compared the performance of the re-

gression techniques across the 50 sets of designs (Fig. 7). As

expected, the linear regression model outperformed the other

methods in only 4 out of 50 cases, while random forest was

the best performing method in 22 out of 50 cases. ANN was

selected as best model only in 5 cases, which is significantly

less frequent than in the experiments with analytical functions.

The potential cause for selecting ANNs less frequently is the

low number of training samples (around 100), which hinders

the training of neural networks.

Fig. 7: MSE computed on the test set after training the surrogate
models on different subsets (skins) of the CarHoods10k data set.

In a second step, we applied the selected models in

surrogate-assisted optimizations to minimize the equivalent

stress for the selected load conditions. By evaluating the fitness

values during the optimizations (Fig. 8), we observed similar

responses as in the cases with the analytical functions. For

some of the skins, the fitness value converged smoothly over

the generations, while for other skins the fitness abruptly

changes at late stages of the optimization. By comparing to the

MSE values of the utilized surrogate models, we also observed

that there is no direct correlation between the performance of

the models and the optimization convergence behavior.

Skin

1

50
MSEN

0

1

Fig. 8: Normalized fitness value of the fittest individual obtained
during the optimizations colored with respect to the normalized MSE
of the utilized surrogate model (left) and skin number (right). YN is
the normalized fitness values.

In this case, as the optimizations are unconstrained, the opti-

mizer potentially sampled significantly different regions of the

input space compared to the training data, or even generated

unfeasible values for the input parameters. We confirmed this

hypothesis by computing the Euclidean distance between the

representation of the fittest individuals obtained during the

optimizations and the fittest individual in the corresponding

data set (Fig. 9). In this analysis, we observed that some

of the samples diverged from the fittest designs of the data

set, which is an indication that the obtained optimal set of

parameters is not feasible. Furthermore, by comparing the

predicted performance yopt with respect to the values yD of

the designs with lowest equivalent stress, we observed that

the optimization cases that diverged from the best sample in

the set yield unrealistic differences in stress (over 10E4 MPa).

Therefore, in those cases, adding design constraints and tuning

the selected surrogate models are potential measures to avoid

these problems and obtain more realistic solutions.

As expected, the simplified framework generated by Chat-

GPT performs similarly as other approaches available in

the literature [10], [11]. This outcome is in line with our

expectation, since, as a machine learning model, ChatGPT po-

tentially has limited extrapolation capabilities, which hinders

the generation of a novel and more efficient approach to select

and train regression models.

VI. CONCLUSION AND OUTLOOK

In this paper, we propose a first prototypical framework to

select regression methods for surrogate-assisted optimization

by interacting with ChatGPT. We generated the process by

formulating prompts that focused on the process rather than
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Skin

1

50

Fig. 9: Euclidean distance between the representation of the fittest
individual in each generation and the fittest design in the data set
(left) and absolute difference in performance compared to the fittest
design (right).

specific data properties, such that the obtained framework

can be extended to other cases than benchmark functions or

specific optimization problems. Then, we applied the obtained

framework on analytical benchmark optimization functions

and an engineering data set of realistic car hood designs. We

showed that the process created together with ChatGPT follow

most common practices of data analysis and allowed us to train

feasible surrogate models for design optimization problems.

We also noticed that the process generated by ChatGPT has

technical and fundamental flaws, e.g., neglecting the data nor-

malization. Also, as a probabilistic model, ChatGPT provides

different answers to the same prompt and the quality of the

answer depends on how the prompt is formulated by the user.

However, the interaction with ChatGPT still accelerated the

development of the framework, as LLM facilitates the access

to software engineering, data science and machine learning

knowledge, and the observed limitations can also be addressed

by further human-machine interaction. Thus, the creation of

the framework in a discussion-style is a important step towards

improving the explainability of the decision process and de-

mocratization of data science and machine learning knowledge

in engineering tasks. Furthermore, as follow-up research, we

envision the integration of additional user preferences and

surrogate modeling techniques into the framework, as well as

information about the selected optimization algorithm.
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