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Abstract—Electronic health record (EHR) data consists of a
wealth of information that can be used for driving clinical
research and improving patient care. However, due to the
complex and sensitive nature of EHR data, there are strict data
regulations and privacy concerns around data sharing. Generat-
ing adequately validated synthetic EHR data from scratch, such
that it is representative of real data, is a viable and attractive
solution to address such data-sharing bottlenecks. In this work,
we investigate the adoption and implementation of large language
models (LLMs) as a sustainable and scalable deep learning
approach for generating high-fidelity EHR data. The findings
of this study demonstrate that LLMs outperform commonly
used generative modeling frameworks, such as variational au-
toencoders and generative adversarial networks, and recently
introduced diffusion models.

Index Terms—Large language models, synthetic data, elec-
tronic health record data, generative adversarial network, gen-
erative models

I. INTRODUCTION

Recent years have witnessed widespread adoption of elec-

tronic health record (EHR) data across medical facilities.

Patient EHR datasets are longitudinal, heterogeneous, and

encompass thousands of diagnoses and procedural codes.

Digital solutions based on EHR datasets have applications

across medical treatment planning, patient health monitoring,

and designing predictive models for diagnostic care [1], [2].

However, the sensitive nature of patient EHR data precludes

data sharing and impedes designing digital solutions due

to strict data regulations and privacy concerns. This study

addresses the key challenge of ethical and responsible sharing

of EHR data by efficiently generating high-quality synthetic

longitudinal EHR data using large language models (LLMs).

Conventional methods for sharing EHR data include data

de-identification techniques and differential privacy technolo-

gies. However, they have challenges associated with designing

privacy-loss parameters, and therefore struggle to strike a bal-

ance between robust privacy protection and data deployment,

creating a gap that synthetic data is uniquely placed to fill [3].

Synthetic data refers to data that is generated from scratch

and closely represents real data distributions. Several state-

of-the-art generative models have been used for generating

longitudinal synthetic EHR data [6], [7], [10].

Existing works on synthetic EHR data generation have been

drawn from the field of computer vision, and have focused

majorly on applying Generative Adversarial Networks (GANs)

[6], [7]. However, training GANs is difficult and they are

susceptible to mode collapse. Few recent studies have used

Denoising Diffusion Probabilistic Model (DDPM) [10], but

DDPM also suffers from generalization challenges. In this

work, we build upon the success of LLMs in the field of

natural language processing and apply LLMs for generating

longitudinal EHR data [12], [13].

While LLMs have demonstrated transformative applications

in life science applications such as computational biology, their

potential in advancing clinical research, such as for generat-

ing synthetic EHR data, remains largely untapped. Modern

LLMs are constructed in the format of auto-regressive density

models over large sequences of words [12], [13]. This study
proposes to use pre-trained self-attention-based LLMs for
probabilistic modeling of longitudinal EHR data.

Post-processing EHR datasets also involve data transfor-

mation and normalization which may result in data loss and

introduction of artifacts. Our study addresses this limitation

by representing each patient record in the EHR dataset using

textual encoding of feature names. Such representation of

training data allows for greater contextual information, which

we believe can help with superior quality of generated syn-

thetic data using LLMs.

Moreover, in this study we comprehensively evaluate the

quality of synthetic EHR data generated using pretrained

LLMs by comparing directly with several commonly used

generative models such as, variational autoencoders, GANs,

and DDPMs using open-source EHR dataset and computing
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quantitative metrics, such as dimension-wise distribution and

covariance. Finally, we also conduct an extensive evaluation to

understand the influence of the size of the LLM measured by

the number of trainable parameters on the quality of generated

EHR data.

II. METHODS

In this section, we first describe the formalization of the

structure of EHR data. Second, we describe our baseline gen-

erative models and their corresponding mathematical notation.

Finally, we discuss the evaluation metrics used for comparing

the efficiency for generating synthetic EHR data.

A. Electronic Health Record data description

Patient EHR data typically consists of a variety of discrete

variables, for example, diagnosis and procedure codes. We

use the open-source MIMIC-III Clinical Database, which

comprises de-identified EHR data of 46,000 patients col-

lected between 2001 and 2012 [4]. From MIMIC-III data,

we extracted disease diagnostic codes, also known as ICD-

9 codes. This dataset is used for experiments with binary

discrete variables. The extracted data is post-processed to

generate a binary matrix in which columns indicate the discrete

diagnosis code of each patient in the EHR database. As such,

we represent each patient encounter event by a binary vector

x ∈ {0, 1}|n|, assuming there are n discrete variables, where

the ith dimension indicates the presence or absence of the

ith variable in the patient record. The binary representation

resulted in 1071 unique disease diagnostic codes. Therefore,

we represent a patient record as a fixed-size vector with 1071

entries for each patient record. This matrix is used as input

for training baseline generative models.

B. Baseline Generative Models

1) Variational Autoencoders: A variational autoencoder

(VAE) is a type of autoencoder architecture that includes an

encoder and a decoder, similar to a standard autoencoder [5]. It

is trained to minimize the difference between the original input

data and the reconstructed data from the encoded-decoded

sequence. The key distinction in a variational autoencoder

lies in its approach to the latent space. Unlike standard

autoencoders that represent input as a single point in the latent

space, a variational autoencoder represents each input as a

distribution within this space. To produce a latent variable z
such that z ∼ qμ,σ(z) = N (μ, σ2)ε ∼ N (0, 1) is sampled,

and for a multidimensional vector z is produced by

ε ∼ N (0, I)

�z ∼ N (�μ, σ2I)

For both the encoder and the decoder 1D convolutional

neural networks were used, each having two hidden layers

of size 128. The VAE was trained using the Adam optimizer

for 500 epochs and a batch size of 500.

2) Generative Adversarial Networks: Models based on

Generative Adversarial Network (GAN) have been a popular

choice for generating synthetic EHR data [6]–[8]. Briefly, a

GAN model is composed of two neural networks: a generator

and a discriminator. These networks are trained together

through an iterative process. The generator creates a synthetic

sample and the discriminator evaluates whether this sample is

real from the training data or fake from the generated synthetic

data. The objective of the generator is to produce convincing

samples such that the discriminator mistakes them for real

data. The generator aims to learn the data distribution pg over

data x using input noise variables z from distribution pz(z).
This input noise is transformed by the generator function

G(z; θg), where θg are the parameters of G, to create the

synthetic data. The discriminator, D(x; θd), assesses if its

input is real or artificial. It is trained to differentiate between

training samples and those produced by G, by minimizing

log(1−D(G(z))). Both G and D engage in a min-max game,

trying to optimize a value function F(G,D).

min
G

max
D

F (G,D) =

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))]

We evaluate two GAN-based models medGAN and Cor-

GAN in this study that have been demonstrated of gen-

erating high-dimensional longitudinal EHR vectors [6], [7].

The medGAN framework uses a pre-trained auto-encoder that

alters to a low-dimensional dense space for generation and re-

covers synthetic EHR using decoders [6]. The CorGAN model

is based on using convolutional neural networks to model

the autoencoder and the generative network for generating

synthetic EHR data instead of multilayer perceptron [7]. All

hyperparameters were kept consistent as in the corresponding

GitHub repositories: (medGAN, CorGAN).

3) Diffusion Models: More recent works have attempted to

use a Denoising Diffusion Probabilistic Model (DDPM) based

methods for generating synthetic EHR data [10], [11]. Diffu-

sion models operate through two distinct phases, the forward

process and the reverse process [9]. These forward and reverse

processes can be described by stochastic differential equations

In the forward process, real-world data is progressively dis-

torted by incrementally adding noise, creating training data at

various levels of noise for a denoising distribution.

dx = f(x, t)dt+ g(t)dw

where x represents data points, w represents standard Wiener

process, t is diffusion time and ranges from {0 to T}. The

reverse process focuses on producing realistic data by method-

ically eliminating noise, utilizing the denoising distribution

learned from the forward process.

dx = (f(x, t)− g2(t)∇xlogpt(x))dt+ g(t)dw,

where pt(x) is the marginal density of x at time t and to gen-

erate data from random noise, the score function ∇xlogpt(x)
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Fig. 1. Distribution of disease diagnostic codes. Dimension-wise distribution to evaluate the quality of generated data, and is measured by the correlation
between synthetic and real data. VAE - Variational Autoencoder, GAN - Generative Adversarial Network (medGAN and CorGAN), DDPM - Denoising
Diffusion Probabilistic Model, GPT - Generative Pretrained Transformer
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is needed to be learned. We compare the model presented by

Yuan et al while keeping the hyperparameters consistent as in

the ehrdiff repository.

4) Large Language Models: The generative methods de-

scribed in A-C have been transferred from the computer vision

domain, however, in this work, we explore the probabilistic

generation of discrete EHR data using LLMs. LLMs are

trained to produce a probability distribution for potential

subsequent tokens wk based on an input sequence of arbi-

trary length w1, ..., wk−1. The probability of natural-language

sequences is factorized in an auto-regressive manner in LLMs

and is represented as a product of output probabilities condi-

tioned on previously observed tokens [12].

p(t) = p(w1, ..., wj) =

j∏

k=1

p(wk|w1, ..., wk−1).

In particular, we apply self-attention-based LLM,

transformer-decoder network architecture such as the

Generative Pretrained Transformer (GPT) models, to the

EHR data [13], [17]. We represent each row of the tabular

EHR data in the format of a sentence which also includes

the variable names. Such a representation of EHR data

incorporates important contextual information that can be

useful when using a pre-trained LLM. To this end, a textual

encoder is used that converts each EHR data row with ‘Patient

ID’ and the corresponding ‘Diagnostic code’ in a sentence

with the following structure ‘Patient ID X has Diagnostic

Code(s)’ Di. We use the framework from [15] to finetune

the model on the extracted MIMIC III EHR data, and train

the model for 200 epochs to generate synthetic EHR data. A

detailed implementation of the LLM modeling framework and

hyperparameters can be found in [15] and the corresponding

GitHub repository.

Moreover, we assess the influence of LLM size on the

quality of generated EHR data. We compare four different

pre-trained transformer-decoder LLM models of various sizes

[14], [16], [17]. We use the distilled version of GPT-2 that has

82 million parameters as the baseline model, followed by the

GPT-2 small version that has approximately 124 million train-

able parameters. Furthermore, we evaluate the performance of

GPT2-Medium and GPT2-Large models which have 355 and

774 million trainable parameters, respectively.

C. Evaluation metrics

For the experiments conducted in this study, we determine

the generative model’s performance primarily from the per-

spective of utility because the objective of the EHR data was

to understand whether the study population of the synthetic

dataset has a similar distribution as the real EHR data. Utility

metrics establish the quality of synthetic EHR, and we use two

different utility metrics as described in the following sections.

1) Distribution of disease diagnostic codes: We compute

the correlation between real and synthetic EHR data for evalu-

ating the distribution of disease diagnostic codes by computing

the dimension-wise distribution. The concept of dimension-

wise distribution refers to the similarity in features between

synthetic and real data. This metric is used to assess whether a

generative model can accurately replicate the complex, high-

dimensional distribution of real EHR data. For each code

dimension, the empirical mean is computed separately for

both synthetic and real EHR data. This mean represents how

frequently each code occurs, or its prevalence. To illustrate the

dimension-wise distribution, scatter plots are used, where each

axis denotes the prevalence of codes in synthetic and real EHR

data, respectively. Higher correlation numbers correspond to

better quality of generated data that more closely represents

real EHR data distribution patterns.
2) Covariance of disease diagnostic codes: The covariance

of two disease diagnostic codes is a measure of co-occurrence

of the two disease codes in a population. Specifically, if Xi

is a binary random variable denoting the presence (Xi = 1)

or absence (Xi = 0) of disease diagnostic code i, then E[Xi]
is the frequency of disease diagnostic code i in a population

(i.e. the fraction of individuals with disease code i), E[XiXj ]
is the frequency of co-occurrence of the two disease codes i
and j in a population (i.e. the fraction of individuals with both

diseases i and j) and

cov(Xi, Xj) =E
[
(Xi − E[Xi])(Xj − E[Xj ])

]

=E[XiXj ]− E[Xi] E[Xj ]

is the difference between the observed frequency of co-

occurrence and the one that would hypothetically be obtained

by removing any association between the two diseases (i.e. by

randomly reassigning the disease codes among individuals).

In particular, cov(Xi, Xj) = 0 if there is no non-random

association between disease codes i and j, cov(Xi, Xj) > 0
if the co-occurrence of the two disease codes is higher than

what is expected by chance (i.e. there is a positive association:

a individual with disease code i will likely have disease code j
as well), and cov(Xi, Xj) < 0 if the co-occurrence of the two

disease codes is smaller than what is expected by chance (i.e.

there is a negative association: a individual with disease code i
will likely not have disease code j). The covariance matrix C
with elements Cij = cov(Xi, Xj) contains the covariances

of all pairs of disease diagnostic codes and includes the

information about their co-occurrences.

III. RESULTS AND DISCUSSION

In this section, we report the evaluation results of different

LLM models to generate synthetic EHR data and the influence

of LLM model size, measured with respect to trainable param-

eters. Moreover, to demonstrate the effectiveness of LLMs,

we compare the performance of LLMs with several baseline

generative models: 1) VAE 2) GAN models (medGAN and

CorGAN) 3) DDPM by interrogating the dimension-wise

distributions and covariances of generated data of each model.

For all baseline models, we divide the binary matrix, which

is extracted from the MIMIC III raw data as described in

Section II-A, into a training Dtraining ∈ {0, 1}RX|M | and

a test set Dtest ∈ {0, 1}TX|M |, where |M | is the feature
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Fig. 2. Covariance of disease diagnostic codes. Column-wise correlation to evaluate the quality of generated data, and is measured by the closeness between
the three histograms representing MAEreal, the MAE distance between all pairs of covariance matrices of the real groups, MAEsynt, the MAE distance
between all pairs of covariance matrices of the synthetic groups, and MAEcross, the cross MAE distance between a real covariance matrix and a synthetic
covariance matrix, for all pairs. . VAE - Variational Autoencoder, GAN - Generative Adversarial Network (medGAN and CorGAN), DDPM - Denoising
Diffusion Probabilistic Model, GPT - Generative Pretrained Transformer

819



size. The size of the training set and test set is consistent for

all baseline models. We use Dtraining to train the models,

then generate synthetic samples Dsynthetic ∈ {0, 1}SX|M |

using the trained model. For different LLM models, Distil-

GPT2, GPT2, GPT2-Medium and GPT2-Large, we finetune

the model using the textually encoded raw MIMIC III data

and generate synthetic EHR data. Therefore to compare with

baseline models, the LLM-generated synthetic EHR data is

post-processed in the binary matrix format consisting of 1071

unique codes as columns for each patient record. The number

of samples for Dsynthetic and Dtraining are kept consistent

for all evaluations.

A. Distribution of disease diagnostic codes

The key metric for high-quality synthetic EHR data is

such that it establishes that the generated data learns the

distribution of the real data (for each dimension, i.e. 1071

unique diagnostic codes). Therefore, to demonstrate this eval-

uation we report the dimension-wise probability because this

measurement refers to the Bernoulli success probability of

each disease diagnostic code. These results are presented in

Figure 1 and as can be seen, the GPT2-Medium and GPT2-

Large model are superior compared to VAE and both GAN-

based methods (medGAN and CorGAN) and equivalent to

DDPM. The VAE model does not generate data when the

probability of occurrence of a disease diagnosis code is higher

than the corresponding occurrence in the real EHR data. While

medGAN and CorGAN also show impressive correlations

(Corr = 0.9738 to Corr = 0.9866), these methods make

use of an autoencoder, which is difficult to train and is

prone to mode collapse. Despite the high Corr = 0.9986,

DDPM suffers from the generalization challenge, especially in

generating data away from the modes. While generating high-

quality synthetic EHR data, pre-trained LLMs such as those

used in this study can be efficiently fine-tuned for a specific

task. Furthermore, by virtue of textual encoding, these models

are extensible and generalizable for heterogeneous data.

Among different LLMs, Figure 1 demonstrates that the

model size, determined based on the number of trainable

parameters, has a strong influence on the quality of gener-

ated synthetic EHR data. The quality of synthetic EHR data

significantly improves (Corr = 0.7888 to Corr = 0.9502)

with an increase in the number of trainable parameters from

DistilGPT2 to GPT2. Similarly increasing the size of the

model further from GPT2 to GPT2-Medium, furthermore

improves the correlation (Corr = 0.9502 to Corr = 0.9983).

Interestingly, correlation only marginally improve from GPT2-

Medium to GPT2-Large (Corr = 0.9983 to Corr = 0.9985).

B. Covariance of disease diagnostic codes

In order to assess whether the synthetic data has the same

co-occurrence patterns as the real data, we compute the

covariance matrices of the real data Creal and of the synthetic

data Csynt and measure their distance as the Mean Absolute

Error MAE = E[|Creal − Csynt|]. We use the following

resampling technique to assess how closely the synthetic data

approximates the real data: First, we separately assign real

and synthetic individuals to n = 10 groups at random, then

we compute the covariance matrix C of each group, real

and synthetic. Finally, we compute three histograms for the

following quantities: MAEreal, the MAE distance between all

pairs of covariance matrices of the real groups, MAEsynt,

the MAE distance between all pairs of covariance matrices

of the synthetic groups, and MAEcross, the cross MAE

distance between a real covariance matrix and a synthetic

covariance matrix, for all pairs. If the synthetic covariances

are indistinguishable from the real ones, the three histograms

should overlap. In Figure 2, maximum overlap can be seen for

GPT2-Medium and GPT2-Large models. Therefore synthetic

EHR data generated using these models exhibit the same co-

occurrence patterns as the real EHR data. This result implies

that the quality of generated EHR data using pretrained LLMs

is superior compared to all baseline models (VAE, GAN and

DDPM).

IV. CONCLUSION

EHR data contains critical and exhaustive information about

patient health. The widespread clinical use of EHR data

will play key role in designing novel digital solutions for

advancing evidence-based medicine. However, the sensitive

nature of EHR data impedes upon its applications due to

stringent data-sharing protocols. Therefore, this study explored

LLMs for synthetic EHR data generation because synthetic

data that maintains the statistical properties of real data is a

viable and scalable solution for preserving privacy without the

vulnerability to risks of data leakage. This work establishes

that pre-trained LLMs can reliably and effectively generate

high-quality synthetic EHR data, and are superior to state-

of-art generative models such as VAE, GANs, and DDPM.

Moreover, the ease of fine-tuning LLMs for a specific task

and textual encoding of tabular data enables generalization to

heterogeneous and longitudinal EHR data.
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